libmdbx/test/utils.cc
2017-05-23 22:18:20 +03:00

315 lines
8.3 KiB
C++

/*
* Copyright 2017 Leonid Yuriev <leo@yuriev.ru>
* and other libmdbx authors: please see AUTHORS file.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* <http://www.OpenLDAP.org/license.html>.
*/
#include "test.h"
#include <float.h>
#ifdef HAVE_IEEE754_H
#include <ieee754.h>
#endif
std::string format(const char *fmt, ...) {
va_list ap, ones;
va_start(ap, fmt);
va_copy(ones, ap);
#ifdef _MSC_VER
int needed = _vscprintf(fmt, ap);
#else
int needed = vsnprintf(nullptr, 0, fmt, ap);
#endif
assert(needed >= 0);
va_end(ap);
std::string result;
result.reserve((size_t)needed + 1);
result.resize((size_t)needed, '\0');
int actual = vsnprintf((char *)result.data(), result.capacity(), fmt, ones);
assert(actual == needed);
(void)actual;
va_end(ones);
return result;
}
std::string data2hex(const void *ptr, size_t bytes, simple_checksum &checksum) {
std::string result;
if (bytes > 0) {
const uint8_t *data = (const uint8_t *)ptr;
checksum.push(data, bytes);
result.reserve(bytes * 2);
const uint8_t *const end = data + bytes;
do {
char h = *data >> 4;
char l = *data & 15;
result.push_back((l < 10) ? l + '0' : l - 10 + 'a');
result.push_back((h < 10) ? h + '0' : h - 10 + 'a');
} while (++data < end);
}
assert(result.size() == bytes * 2);
return result;
}
bool hex2data(const char *hex_begin, const char *hex_end, void *ptr,
size_t bytes, simple_checksum &checksum) {
if (bytes * 2 != (size_t)(hex_end - hex_begin))
return false;
uint8_t *data = (uint8_t *)ptr;
for (const char *hex = hex_begin; hex != hex_end; hex += 2, ++data) {
unsigned l = hex[0], h = hex[1];
if (l >= '0' && l <= '9')
l = l - '0';
else if (l >= 'A' && l <= 'F')
l = l - 'A' + 10;
else if (l >= 'a' && l <= 'f')
l = l - 'a' + 10;
else
return false;
if (h >= '0' && h <= '9')
h = h - '0';
else if (h >= 'A' && h <= 'F')
h = h - 'A' + 10;
else if (h >= 'a' && h <= 'f')
h = h - 'a' + 10;
else
return false;
uint32_t c = l + (h << 4);
checksum.push(c);
*data = c;
}
return true;
}
//-----------------------------------------------------------------------------
#ifdef __mips__
static uint64_t *mips_tsc_addr;
__cold static void mips_rdtsc_init() {
int mem_fd = open("/dev/mem", O_RDONLY | O_SYNC, 0);
HIPPEUS_ENSURE(mem_fd >= 0);
mips_tsc_addr = mmap(nullptr, pagesize, PROT_READ, MAP_SHARED, mem_fd,
0x10030000 /* MIPS_ZBUS_TIMER */);
close(mem_fd);
}
#endif /* __mips__ */
uint64_t entropy_ticks(void) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__ia64__)
uint64_t ticks;
__asm("mov %0=ar.itc" : "=r"(ticks));
return ticks;
#elif defined(__hppa__)
uint64_t ticks;
__asm("mfctl 16, %0" : "=r"(ticks));
return ticks;
#elif defined(__s390__)
uint64_t ticks;
__asm("stck 0(%0)" : : "a"(&(ticks)) : "memory", "cc");
return ticks;
#elif defined(__alpha__)
uint64_t ticks;
__asm("rpcc %0" : "=r"(ticks));
return ticks;
#elif defined(__sparc_v9__)
uint64_t ticks;
__asm("rd %%tick, %0" : "=r"(ticks));
return ticks;
#elif defined(__powerpc64__) || defined(__ppc64__)
uint64_t ticks;
__asm("mfspr %0, 268" : "=r"(ticks));
return ticks;
#elif defined(__ppc__) || defined(__powerpc__)
unsigned tbl, tbu;
/* LY: Here not a problem if a high-part (tbu)
* would been updated during reading. */
__asm("mftb %0" : "=r"(tbl));
__asm("mftbu %0" : "=r"(tbu));
return (((uin64_t)tbu0) << 32) | tbl;
#elif defined(__mips__)
if (mips_tsc_addr != MAP_FAILED) {
if (unlikely(!mips_tsc_addr)) {
static pthread_once_t is_initialized = PTHREAD_ONCE_INIT;
int rc = pthread_once(&is_initialized, mips_rdtsc_init);
if (unlikely(rc))
failure_perror("pthread_once()", rc);
}
if (mips_tsc_addr != MAP_FAILED)
return *mips_tsc_addr;
}
#elif defined(__x86_64__) || defined(__i386__)
unsigned lo, hi;
/* LY: Using the "a" and "d" constraints is important for correct code. */
__asm("rdtsc" : "=a"(lo), "=d"(hi));
return (((uint64_t)hi) << 32) + lo;
#endif /* arch selector */
#elif defined(_M_IX86) || defined(_M_X64)
return __rdtsc();
#endif /* __GNUC__ || __clang__ */
#if defined(_WIN32) || defined(_WIN64) || defined(_WINDOWS)
LARGE_INTEGER PerformanceCount;
if (QueryPerformanceCounter(&PerformanceCount))
return PerformanceCount.QuadPart;
return GetTickCount64();
#else
struct timespec ts;
#if defined(CLOCK_MONOTONIC_COARSE)
clockid_t clock = CLOCK_MONOTONIC_COARSE;
#elif defined(CLOCK_MONOTONIC_RAW)
clockid_t clock = CLOCK_MONOTONIC_RAW;
#else
clockid_t clock = CLOCK_MONOTONIC;
#endif
int rc = clock_gettime(clock, &ts);
if (unlikely(rc))
failure_perror("clock_gettime()", rc);
return (((uint64_t)ts.tv_sec) << 32) + ts.tv_nsec;
#endif
}
//-----------------------------------------------------------------------------
static __inline uint64_t bleach64(uint64_t dirty) {
return mul_64x64_high(bswap64(dirty), UINT64_C(17048867929148541611));
}
static __inline uint32_t bleach32(uint32_t dirty) {
return (uint32_t)((bswap32(dirty) * UINT64_C(2175734609)) >> 32);
}
uint64_t prng64_careless(uint64_t &state) {
state = state * UINT64_C(6364136223846793005) + 1;
return state;
}
uint64_t prng64_white(uint64_t &state) {
state = state * UINT64_C(6364136223846793005) + UINT64_C(1442695040888963407);
return bleach64(state);
}
uint32_t prng32(uint64_t &state) {
return (uint32_t)(prng64_careless(state) >> 32);
}
void prng_fill(uint64_t &state, void *ptr, size_t bytes) {
while (bytes >= 4) {
*((uint32_t *)ptr) = prng32(state);
ptr = (uint32_t *)ptr + 1;
bytes -= 4;
}
switch (bytes & 3) {
case 3: {
uint32_t u32 = prng32(state);
memcpy(ptr, &u32, 3);
} break;
case 2:
*((uint16_t *)ptr) = (uint16_t)prng32(state);
break;
case 1:
*((uint8_t *)ptr) = (uint8_t)prng32(state);
break;
case 0:
break;
}
}
static __thread uint64_t prng_state;
void prng_seed(uint64_t seed) { prng_state = bleach64(seed); }
uint32_t prng32(void) { return prng32(prng_state); }
uint64_t prng64(void) { return prng64_white(prng_state); }
void prng_fill(void *ptr, size_t bytes) { prng_fill(prng_state, ptr, bytes); }
uint64_t entropy_white() { return bleach64(entropy_ticks()); }
double double_from_lower(uint64_t salt) {
#ifdef IEEE754_DOUBLE_BIAS
ieee754_double r;
r.ieee.negative = 0;
r.ieee.exponent = IEEE754_DOUBLE_BIAS;
r.ieee.mantissa0 = (unsigned)(salt >> 32);
r.ieee.mantissa1 = (unsigned)salt;
return r.d;
#else
const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1;
const double scale = 1.0 / (double)top;
return (salt & top) * scale;
#endif
}
double double_from_upper(uint64_t salt) {
#ifdef IEEE754_DOUBLE_BIAS
ieee754_double r;
r.ieee.negative = 0;
r.ieee.exponent = IEEE754_DOUBLE_BIAS;
salt >>= 64 - DBL_MANT_DIG;
r.ieee.mantissa0 = (unsigned)(salt >> 32);
r.ieee.mantissa1 = (unsigned)salt;
return r.d;
#else
const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1;
const double scale = 1.0 / (double)top;
return (salt >> (64 - DBL_MANT_DIG)) * scale;
#endif
}
bool flipcoin() { return bleach32((uint32_t)entropy_ticks()) & 1; }
bool jitter(unsigned probability_percent) {
const uint32_t top = UINT32_MAX - UINT32_MAX % 100;
uint32_t dice, edge = (top) / 100 * probability_percent;
do
dice = bleach32((uint32_t)entropy_ticks());
while (dice >= top);
return dice < edge;
}
void jitter_delay(bool extra) {
unsigned dice = entropy_white() & 3;
if (dice == 0) {
log_trace("== jitter.no-delay");
} else {
log_trace(">> jitter.delay: dice %u", dice);
do {
cpu_relax();
memory_barrier();
cpu_relax();
if (dice > 1) {
osal_yield();
cpu_relax();
if (dice > 2) {
unsigned us = entropy_white() &
(extra ? 0xfffff /* 1.05 s */ : 0x3ff /* 1 ms */);
log_trace("== jitter.delay: %0.6f", us / 1000000.0);
osal_udelay(us);
}
}
} while (flipcoin());
log_trace("<< jitter.delay: dice %u", dice);
}
}