/* * Copyright 2017 Leonid Yuriev * and other libmdbx authors: please see AUTHORS file. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted only as authorized by the OpenLDAP * Public License. * * A copy of this license is available in the file LICENSE in the * top-level directory of the distribution or, alternatively, at * . */ #include "test.h" #include #ifdef HAVE_IEEE754_H #include #endif std::string format(const char *fmt, ...) { va_list ap, ones; va_start(ap, fmt); va_copy(ones, ap); #ifdef _MSC_VER int needed = _vscprintf(fmt, ap); #else int needed = vsnprintf(nullptr, 0, fmt, ap); #endif assert(needed >= 0); va_end(ap); std::string result; result.reserve((size_t)needed + 1); result.resize((size_t)needed, '\0'); int actual = vsnprintf((char *)result.data(), result.capacity(), fmt, ones); assert(actual == needed); (void)actual; va_end(ones); return result; } std::string data2hex(const void *ptr, size_t bytes, simple_checksum &checksum) { std::string result; if (bytes > 0) { const uint8_t *data = (const uint8_t *)ptr; checksum.push(data, bytes); result.reserve(bytes * 2); const uint8_t *const end = data + bytes; do { char h = *data >> 4; char l = *data & 15; result.push_back((l < 10) ? l + '0' : l - 10 + 'a'); result.push_back((h < 10) ? h + '0' : h - 10 + 'a'); } while (++data < end); } assert(result.size() == bytes * 2); return result; } bool hex2data(const char *hex_begin, const char *hex_end, void *ptr, size_t bytes, simple_checksum &checksum) { if (bytes * 2 != (size_t)(hex_end - hex_begin)) return false; uint8_t *data = (uint8_t *)ptr; for (const char *hex = hex_begin; hex != hex_end; hex += 2, ++data) { unsigned l = hex[0], h = hex[1]; if (l >= '0' && l <= '9') l = l - '0'; else if (l >= 'A' && l <= 'F') l = l - 'A' + 10; else if (l >= 'a' && l <= 'f') l = l - 'a' + 10; else return false; if (h >= '0' && h <= '9') h = h - '0'; else if (h >= 'A' && h <= 'F') h = h - 'A' + 10; else if (h >= 'a' && h <= 'f') h = h - 'a' + 10; else return false; uint32_t c = l + (h << 4); checksum.push(c); *data = c; } return true; } //----------------------------------------------------------------------------- #ifdef __mips__ static uint64_t *mips_tsc_addr; __cold static void mips_rdtsc_init() { int mem_fd = open("/dev/mem", O_RDONLY | O_SYNC, 0); HIPPEUS_ENSURE(mem_fd >= 0); mips_tsc_addr = mmap(nullptr, pagesize, PROT_READ, MAP_SHARED, mem_fd, 0x10030000 /* MIPS_ZBUS_TIMER */); close(mem_fd); } #endif /* __mips__ */ uint64_t entropy_ticks(void) { #if defined(__GNUC__) || defined(__clang__) #if defined(__ia64__) uint64_t ticks; __asm("mov %0=ar.itc" : "=r"(ticks)); return ticks; #elif defined(__hppa__) uint64_t ticks; __asm("mfctl 16, %0" : "=r"(ticks)); return ticks; #elif defined(__s390__) uint64_t ticks; __asm("stck 0(%0)" : : "a"(&(ticks)) : "memory", "cc"); return ticks; #elif defined(__alpha__) uint64_t ticks; __asm("rpcc %0" : "=r"(ticks)); return ticks; #elif defined(__sparc_v9__) uint64_t ticks; __asm("rd %%tick, %0" : "=r"(ticks)); return ticks; #elif defined(__powerpc64__) || defined(__ppc64__) uint64_t ticks; __asm("mfspr %0, 268" : "=r"(ticks)); return ticks; #elif defined(__ppc__) || defined(__powerpc__) unsigned tbl, tbu; /* LY: Here not a problem if a high-part (tbu) * would been updated during reading. */ __asm("mftb %0" : "=r"(tbl)); __asm("mftbu %0" : "=r"(tbu)); return (((uin64_t)tbu0) << 32) | tbl; #elif defined(__mips__) if (mips_tsc_addr != MAP_FAILED) { if (unlikely(!mips_tsc_addr)) { static pthread_once_t is_initialized = PTHREAD_ONCE_INIT; int rc = pthread_once(&is_initialized, mips_rdtsc_init); if (unlikely(rc)) failure_perror("pthread_once()", rc); } if (mips_tsc_addr != MAP_FAILED) return *mips_tsc_addr; } #elif defined(__x86_64__) || defined(__i386__) unsigned lo, hi; /* LY: Using the "a" and "d" constraints is important for correct code. */ __asm("rdtsc" : "=a"(lo), "=d"(hi)); return (((uint64_t)hi) << 32) + lo; #endif /* arch selector */ #elif defined(_M_IX86) || defined(_M_X64) return __rdtsc(); #endif /* __GNUC__ || __clang__ */ #if defined(_WIN32) || defined(_WIN64) || defined(_WINDOWS) LARGE_INTEGER PerformanceCount; if (QueryPerformanceCounter(&PerformanceCount)) return PerformanceCount.QuadPart; return GetTickCount64(); #else struct timespec ts; #if defined(CLOCK_MONOTONIC_COARSE) clockid_t clock = CLOCK_MONOTONIC_COARSE; #elif defined(CLOCK_MONOTONIC_RAW) clockid_t clock = CLOCK_MONOTONIC_RAW; #else clockid_t clock = CLOCK_MONOTONIC; #endif int rc = clock_gettime(clock, &ts); if (unlikely(rc)) failure_perror("clock_gettime()", rc); return (((uint64_t)ts.tv_sec) << 32) + ts.tv_nsec; #endif } //----------------------------------------------------------------------------- static __inline uint64_t bleach64(uint64_t dirty) { return mul_64x64_high(bswap64(dirty), UINT64_C(17048867929148541611)); } static __inline uint32_t bleach32(uint32_t dirty) { return (uint32_t)((bswap32(dirty) * UINT64_C(2175734609)) >> 32); } uint64_t prng64_careless(uint64_t &state) { state = state * UINT64_C(6364136223846793005) + 1; return state; } uint64_t prng64_white(uint64_t &state) { state = state * UINT64_C(6364136223846793005) + UINT64_C(1442695040888963407); return bleach64(state); } uint32_t prng32(uint64_t &state) { return (uint32_t)(prng64_careless(state) >> 32); } void prng_fill(uint64_t &state, void *ptr, size_t bytes) { while (bytes >= 4) { *((uint32_t *)ptr) = prng32(state); ptr = (uint32_t *)ptr + 1; bytes -= 4; } switch (bytes & 3) { case 3: { uint32_t u32 = prng32(state); memcpy(ptr, &u32, 3); } break; case 2: *((uint16_t *)ptr) = (uint16_t)prng32(state); break; case 1: *((uint8_t *)ptr) = (uint8_t)prng32(state); break; case 0: break; } } static __thread uint64_t prng_state; void prng_seed(uint64_t seed) { prng_state = bleach64(seed); } uint32_t prng32(void) { return prng32(prng_state); } uint64_t prng64(void) { return prng64_white(prng_state); } void prng_fill(void *ptr, size_t bytes) { prng_fill(prng_state, ptr, bytes); } uint64_t entropy_white() { return bleach64(entropy_ticks()); } double double_from_lower(uint64_t salt) { #ifdef IEEE754_DOUBLE_BIAS ieee754_double r; r.ieee.negative = 0; r.ieee.exponent = IEEE754_DOUBLE_BIAS; r.ieee.mantissa0 = (unsigned)(salt >> 32); r.ieee.mantissa1 = (unsigned)salt; return r.d; #else const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1; const double scale = 1.0 / (double)top; return (salt & top) * scale; #endif } double double_from_upper(uint64_t salt) { #ifdef IEEE754_DOUBLE_BIAS ieee754_double r; r.ieee.negative = 0; r.ieee.exponent = IEEE754_DOUBLE_BIAS; salt >>= 64 - DBL_MANT_DIG; r.ieee.mantissa0 = (unsigned)(salt >> 32); r.ieee.mantissa1 = (unsigned)salt; return r.d; #else const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1; const double scale = 1.0 / (double)top; return (salt >> (64 - DBL_MANT_DIG)) * scale; #endif } bool flipcoin() { return bleach32((uint32_t)entropy_ticks()) & 1; } bool jitter(unsigned probability_percent) { const uint32_t top = UINT32_MAX - UINT32_MAX % 100; uint32_t dice, edge = (top) / 100 * probability_percent; do dice = bleach32((uint32_t)entropy_ticks()); while (dice >= top); return dice < edge; } void jitter_delay(bool extra) { unsigned dice = entropy_white() & 3; if (dice == 0) { log_trace("== jitter.no-delay"); } else { log_trace(">> jitter.delay: dice %u", dice); do { cpu_relax(); memory_barrier(); cpu_relax(); if (dice > 1) { osal_yield(); cpu_relax(); if (dice > 2) { unsigned us = entropy_white() & (extra ? 0xfffff /* 1.05 s */ : 0x3ff /* 1 ms */); log_trace("== jitter.delay: %0.6f", us / 1000000.0); osal_udelay(us); } } } while (flipcoin()); log_trace("<< jitter.delay: dice %u", dice); } }