mirror of
https://github.com/isar/libmdbx.git
synced 2025-01-06 22:44:14 +08:00
472 lines
25 KiB
Markdown
472 lines
25 KiB
Markdown
libmdbx
|
|
======================================
|
|
**Revised and extended descendant of [Symas LMDB](https://symas.com/lmdb/).**
|
|
|
|
*The Future will be positive.*
|
|
[![Build Status](https://travis-ci.org/leo-yuriev/libmdbx.svg?branch=master)](https://travis-ci.org/leo-yuriev/libmdbx)
|
|
[![Build status](https://ci.appveyor.com/api/projects/status/ue94mlopn50dqiqg/branch/master?svg=true)](https://ci.appveyor.com/project/leo-yuriev/libmdbx/branch/master)
|
|
[![Coverity Scan Status](https://scan.coverity.com/projects/12915/badge.svg)](https://scan.coverity.com/projects/reopen-libmdbx)
|
|
|
|
### Project Status
|
|
|
|
**MDBX is under _active development_**, database format and API aren't stable
|
|
at least until 2018Q2. New version won't be backwards compatible.
|
|
Main focus of the rework is to provide clear and robust API and new features.
|
|
|
|
## Contents
|
|
|
|
- [Overview](#overview)
|
|
- [Comparison with other DBs](#comparison-with-other-dbs)
|
|
- [History & Acknowledgements](#history)
|
|
- [Main features](#main-features)
|
|
- [Performance comparison](#performance-comparison)
|
|
- [Integral performance](#integral-performance)
|
|
- [Read scalability](#read-scalability)
|
|
- [Sync-write mode](#sync-write-mode)
|
|
- [Lazy-write mode](#lazy-write-mode)
|
|
- [Async-write mode](#async-write-mode)
|
|
- [Cost comparison](#cost-comparison)
|
|
- [Gotchas](#gotchas)
|
|
- [Long-time read transactions problem](#long-time-read-transactions-problem)
|
|
- [Data safety in async-write-mode](#data-safety-in-async-write-mode)
|
|
- [Improvements over LMDB](#improvements-over-lmdb)
|
|
|
|
|
|
## Overview
|
|
|
|
_libmdbx_ is an embedded lightweight key-value database engine oriented for performance.
|
|
|
|
_libmdbx_ allows multiple processes to read and update several key-value tables concurrently,
|
|
while being [ACID](https://en.wikipedia.org/wiki/ACID)-compliant, with minimal overhead and operation cost of Olog(N).
|
|
|
|
_libmdbx_ provides
|
|
[serializability](https://en.wikipedia.org/wiki/Serializability) and consistency of data after crash.
|
|
Read-write transactions don't block read-only transactions and are
|
|
[serialized](https://en.wikipedia.org/wiki/Serializability) by [mutex](https://en.wikipedia.org/wiki/Mutual_exclusion).
|
|
|
|
_libmdbx_ [wait-free](https://en.wikipedia.org/wiki/Non-blocking_algorithm#Wait-freedom) provides parallel read transactions
|
|
without atomic operations or synchronization primitives.
|
|
|
|
_libmdbx_ uses [B+Trees](https://en.wikipedia.org/wiki/B%2B_tree) and [mmap](https://en.wikipedia.org/wiki/Memory-mapped_file),
|
|
doesn't use [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging). This might have caveats for some workloads.
|
|
|
|
### Comparison with other DBs
|
|
|
|
Because _libmdbx_ is currently overhauled, I think it's better to just link
|
|
[chapter of Comparison with other databases](https://github.com/coreos/bbolt#comparison-with-other-databases) here.
|
|
|
|
### History
|
|
|
|
_libmdbx_ design is based on [Lightning Memory-Mapped Database](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database).
|
|
Initial development was going in [ReOpenLDAP](https://github.com/leo-yuriev/ReOpenLDAP) project, about a year later it
|
|
received separate development effort and in autumn 2015 was isolated to separate project, which was
|
|
[presented at Highload++ 2015 conference](http://www.highload.ru/2015/abstracts/1831.html).
|
|
|
|
Since early 2017 _libmdbx_ is used in [Fast Positive Tables](https://github.com/leo-yuriev/libfpta),
|
|
by [Positive Technologies](https://www.ptsecurity.com).
|
|
|
|
#### Acknowledgements
|
|
|
|
Howard Chu (Symas Corporation) - the author of LMDB,
|
|
from which originated the MDBX in 2015.
|
|
|
|
Martin Hedenfalk <martin@bzero.se> - the author of `btree.c` code,
|
|
which was used for begin development of LMDB.
|
|
|
|
|
|
Main features
|
|
=============
|
|
|
|
_libmdbx_ inherits all keys features and characteristics from
|
|
[LMDB](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database):
|
|
|
|
1. Data is stored in ordered map, keys are always sorted, range lookups are supported.
|
|
|
|
2. Data is [mmaped](https://en.wikipedia.org/wiki/Memory-mapped_file) to memory of each worker DB process, read transactions are zero-copy.
|
|
|
|
3. Transactions are [ACID](https://en.wikipedia.org/wiki/ACID)-compliant, thanks to
|
|
[MVCC](https://en.wikipedia.org/wiki/Multiversion_concurrency_control) and [CoW](https://en.wikipedia.org/wiki/Copy-on-write).
|
|
Writes are strongly serialized and aren't blocked by reads, transactions can't conflict with each other.
|
|
Reads are guaranteed to get only commited data
|
|
([relaxing serializability](https://en.wikipedia.org/wiki/Serializability#Relaxing_serializability)).
|
|
|
|
4. Reads and queries are [non-blocking](https://en.wikipedia.org/wiki/Non-blocking_algorithm),
|
|
don't use [atomic operations](https://en.wikipedia.org/wiki/Linearizability#High-level_atomic_operations).
|
|
Readers don't block each other and aren't blocked by writers. Read performance scales linearly with CPU core count.
|
|
> Though "connect to DB" (start of first read transaction in thread) and "disconnect from DB" (shutdown or thread
|
|
> termination) requires to acquire a lock to register/unregister current thread from "readers table"
|
|
|
|
5. Keys with multiple values are stored efficiently without key duplication, sorted by value, including integers
|
|
(reasonable for secondary indexes).
|
|
|
|
6. Efficient operation on short fixed length keys, including integer ones.
|
|
|
|
7. [WAF](https://en.wikipedia.org/wiki/Write_amplification) (Write Amplification Factor) и RAF (Read Amplification Factor)
|
|
are Olog(N).
|
|
|
|
8. No [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging) and transaction journal.
|
|
In case of a crash no recovery needed. No need for regular maintenance. Backups can be made on the fly on working DB
|
|
without freezing writers.
|
|
|
|
9. No custom memory management, all done with standard OS syscalls.
|
|
|
|
|
|
Performance comparison
|
|
=====================
|
|
|
|
All benchmarks were done by [IOArena](https://github.com/pmwkaa/ioarena)
|
|
and multiple [scripts](https://github.com/pmwkaa/ioarena/tree/HL%2B%2B2015)
|
|
runs on Lenovo Carbon-2 laptop, i7-4600U 2.1 GHz, 8 Gb RAM,
|
|
SSD SAMSUNG MZNTD512HAGL-000L1 (DXT23L0Q) 512 Gb.
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
### Integral performance
|
|
|
|
Here showed sum of performance metrics in 3 benchmarks:
|
|
|
|
- Read/Search on 4 CPU cores machine;
|
|
|
|
- Transactions with [CRUD](https://en.wikipedia.org/wiki/CRUD) operations
|
|
in sync-write mode (fdatasync is called after each transaction);
|
|
|
|
- Transactions with [CRUD](https://en.wikipedia.org/wiki/CRUD) operations
|
|
in lazy-write mode (moment to sync data to persistent storage is decided by OS).
|
|
|
|
*Reasons why asynchronous mode isn't benchmarked here:*
|
|
|
|
1. It doesn't make sense as it has to be done with DB engines, oriented for keeping data in memory e.g.
|
|
[Tarantool](https://tarantool.io/), [Redis](https://redis.io/)), etc.
|
|
|
|
2. Performance gap is too high to compare in any meaningful way.
|
|
|
|
![Comparison #1: Integral Performance](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-1.png)
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
### Read Scalability
|
|
|
|
Summary performance with concurrent read/search queries in 1-2-4-8 threads on 4 CPU cores machine.
|
|
|
|
![Comparison #2: Read Scalability](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-2.png)
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
### Sync-write mode
|
|
|
|
- Linear scale on left and dark rectangles mean arithmetic mean transactions per second;
|
|
|
|
- Logarithmic scale on right is in seconds and yellow intervals mean execution time of transactions.
|
|
Each interval shows minimal and maximum execution time, cross marks standard deviation.
|
|
|
|
**10,000 transactions in sync-write mode**. In case of a crash all data is consistent and state is right after last successful transaction. [fdatasync](https://linux.die.net/man/2/fdatasync) syscall is used after each write transaction in this mode.
|
|
|
|
In the benchmark each transaction contains combined CRUD operations (2 inserts, 1 read, 1 update, 1 delete).
|
|
Benchmark starts on empty database and after full run the database contains 10,000 small key-value records.
|
|
|
|
![Comparison #3: Sync-write mode](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-3.png)
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
### Lazy-write mode
|
|
|
|
- Linear scale on left and dark rectangles mean arithmetic mean of thousands transactions per second;
|
|
|
|
- Logarithmic scale on right in seconds and yellow intervals mean execution time of transactions. Each interval shows minimal and maximum execution time, cross marks standard deviation.
|
|
|
|
**100,000 transactions in lazy-write mode**.
|
|
In case of a crash all data is consistent and state is right after one of last transactions, but transactions after it
|
|
will be lost. Other DB engines use [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging) or transaction journal for that,
|
|
which in turn depends on order of operations in journaled filesystem. _libmdbx_ doesn't use WAL and hands I/O operations
|
|
to filesystem and OS kernel (mmap).
|
|
|
|
In the benchmark each transaction contains combined CRUD operations (2 inserts, 1 read, 1 update, 1 delete).
|
|
Benchmark starts on empty database and after full run the database contains 100,000 small key-value records.
|
|
|
|
|
|
![Comparison #4: Lazy-write mode](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-4.png)
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
### Async-write mode
|
|
|
|
- Linear scale on left and dark rectangles mean arithmetic mean of thousands transactions per second;
|
|
|
|
- Logarithmic scale on right in seconds and yellow intervals mean execution time of transactions. Each interval shows minimal and maximum execution time, cross marks standard deviation.
|
|
|
|
**1,000,000 transactions in async-write mode**. In case of a crash all data will be consistent and state will be right after one of last transactions, but lost transaction count is much higher than in lazy-write mode. All DB engines in this mode do as little writes as possible on persistent storage. _libmdbx_ uses [msync(MS_ASYNC)](https://linux.die.net/man/2/msync) in this mode.
|
|
|
|
In the benchmark each transaction contains combined CRUD operations (2 inserts, 1 read, 1 update, 1 delete).
|
|
Benchmark starts on empty database and after full run the database contains 10,000 small key-value records.
|
|
|
|
![Comparison #5: Async-write mode](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-5.png)
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
### Cost comparison
|
|
|
|
Summary of used resources during lazy-write mode benchmarks:
|
|
|
|
- Read and write IOPS;
|
|
|
|
- Sum of user CPU time and sys CPU time;
|
|
|
|
- Used space on persistent storage after the test and closed DB, but not waiting for the end of all internal
|
|
housekeeping operations (LSM compactification, etc).
|
|
|
|
_ForestDB_ is excluded because benchmark showed it's resource consumption for each resource (CPU, IOPS) much higher than other engines which prevents to meaningfully compare it with them.
|
|
|
|
All benchmark data is gathered by [getrusage()](http://man7.org/linux/man-pages/man2/getrusage.2.html) syscall and by
|
|
scanning data directory.
|
|
|
|
![Comparison #6: Cost comparison](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-6.png)
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
## Gotchas
|
|
|
|
1. At one moment there can be only one writer. But this allows to serialize writes and eliminate any possibility
|
|
of conflict or logical errors during transaction rollback.
|
|
|
|
2. No [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging) means relatively
|
|
big [WAF](https://en.wikipedia.org/wiki/Write_amplification) (Write Amplification Factor).
|
|
Because of this syncing data to disk might be quite resource intensive and be main performance bottleneck
|
|
during intensive write workload.
|
|
> As compromise _libmdbx_ allows several modes of lazy and/or periodic syncing, including `MAPASYNC` mode, which modificate
|
|
> data in memory and asynchronously syncs data to disc, moment to sync is picked by OS.
|
|
>
|
|
> Although this should be used with care, synchronous transactions in a DB with transaction journal will require 2 IOPS
|
|
> minimum (probably 3-4 in practice) because of filesystem overhead, overhead depends on filesystem, not on record
|
|
> count or record size. In _libmdbx_ IOPS count will grow logarithmically depending on record count in DB (height of B+ tree)
|
|
> and will require at least 2 IOPS per transaction too.
|
|
|
|
3. [CoW](https://en.wikipedia.org/wiki/Copy-on-write)
|
|
for [MVCC](https://en.wikipedia.org/wiki/Multiversion_concurrency_control) is done on memory page level with [B+
|
|
trees](https://ru.wikipedia.org/wiki/B-%D0%B4%D0%B5%D1%80%D0%B5%D0%B2%D0%BE).
|
|
Therefore altering data requires to copy about Olog(N) memory pages, which uses [memory bandwidth](https://en.wikipedia.org/wiki/Memory_bandwidth) and is main performance bottleneck in `MAPASYNC` mode.
|
|
> This is unavoidable, but isn't that bad. Syncing data to disk requires much more similar operations which will
|
|
> be done by OS, therefore this is noticeable only if data sync to persistent storage is fully disabled.
|
|
> _libmdbx_ allows to safely save data to persistent storage with minimal performance overhead. If there is no need
|
|
> to save data to persistent storage then it's much more preferable to use `std::map`.
|
|
|
|
|
|
4. LMDB has a problem of long-time readers which degrades performance and bloats DB
|
|
> _libmdbx_ addresses that, details below.
|
|
|
|
5. _LMDB_ is susceptible to DB corruption in `WRITEMAP+MAPASYNC` mode.
|
|
_libmdbx_ in `WRITEMAP+MAPASYNC` guarantees DB integrity and consistency of data.
|
|
> Additionally there is an alternative: `UTTERLY_NOSYNC` mode. Details below.
|
|
|
|
|
|
#### Long-time read transactions problem
|
|
|
|
Garbage collection problem exists in all databases one way or another (e.g. VACUUM in PostgreSQL).
|
|
But in _libmbdx_ and LMDB it's even more important because of high performance and deliberate
|
|
simplification of internals with emphasis on performance.
|
|
|
|
* Altering data during long read operation may exhaust available space on persistent storage.
|
|
|
|
* If available space is exhausted then any attempt to update data
|
|
results in `MAP_FULL` error until long read operation ends.
|
|
|
|
* Main examples of long readers is hot backup
|
|
and debugging of client application which actively uses read transactions.
|
|
|
|
* In _LMDB_ this results in degraded performance of all operations
|
|
of syncing data to persistent storage.
|
|
|
|
* _libmdbx_ has a mechanism which aborts such operations and `LIFO RECLAIM`
|
|
mode which addresses performance degradation.
|
|
|
|
Read operations operate only over snapshot of DB which is consistent on the moment when read transaction started.
|
|
This snapshot doesn't change throughout the transaction but this leads to inability to reclaim the pages until
|
|
read transaction ends.
|
|
|
|
In _LMDB_ this leads to a problem that memory pages, allocated for operations during long read, will be used for operations
|
|
and won't be reclaimed until DB process terminates. In _LMDB_ they are used in
|
|
[FIFO](https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)) manner, which causes increased page count
|
|
and less chance of cache hit during I/O. In other words: one long-time reader can impact performance of all database
|
|
until it'll be reopened.
|
|
|
|
_libmdbx_ addresses the problem, details below. Illustrations to this problem can be found in the
|
|
[presentation](http://www.slideshare.net/leoyuriev/lmdb). There is also example of performance increase thanks to
|
|
[BBWC](https://en.wikipedia.org/wiki/Disk_buffer#Write_acceleration) when `LIFO RECLAIM` enabled in _libmdbx_.
|
|
|
|
#### Data safety in async-write mode
|
|
|
|
In `WRITEMAP+MAPSYNC` mode dirty pages are written to persistent storage by kernel. This means that in case of application
|
|
crash OS kernel will write all dirty data to disk and nothing will be lost. But in case of hardware malfunction or OS kernel
|
|
fatal error only some dirty data might be synced to disk, and there is high probability that pages with metadata saved,
|
|
will point to non-saved, hence non-existent, data pages. In such situation DB is completely corrupted and can't be
|
|
repaired even if there was full sync before the crash via `mdbx_env_sync().
|
|
|
|
_libmdbx_ addresses this by fully reimplementing write path of data:
|
|
|
|
* In `WRITEMAP+MAPSYNC` mode meta-data pages aren't updated in place, instead their shadow copies are used and their updates
|
|
are synced after data is flushed to disk.
|
|
|
|
* During transaction commit _libmdbx_ marks synchronization points as steady or weak depending on how much synchronization
|
|
needed between RAM and persistent storage, e.g. in `WRITEMAP+MAPSYNC` commited transactions are marked as weak,
|
|
but during explicit data synchronization - as steady.
|
|
|
|
* _libmdbx_ maintains three separate meta-pages instead of two. This allows to commit transaction with steady or
|
|
weak synchronization point without losing two previous synchronization points (one of them can be steady, and second - weak).
|
|
This allows to order weak and steady synchronization points in any order without losing consistency in case of system crash.
|
|
|
|
* During DB open _libmdbx_ rollbacks to the last steady synchronization point, this guarantees database integrity.
|
|
|
|
For data safety pages which form database snapshot with steady synchronization point must not be updated until next steady
|
|
synchronization point. So last steady synchronization point creates "long-time read" effect. The only difference that in case
|
|
of memory exhaustion the problem will be immediately addressed by flushing changes to persistent storage and forming new steady
|
|
synchronization point.
|
|
|
|
So in async-write mode _libmdbx_ will always use new pages until memory is exhausted or `mdbx_env_sync()`is invoked. Total
|
|
disk usage will be almost the same as in sync-write mode.
|
|
|
|
Current _libmdbx_ gives a choice of safe async-write mode (default) and `UTTERLY_NOSYNC` mode which may result in full DB
|
|
corruption during system crash as with LMDB.
|
|
|
|
Next version of _libmdbx_ will create steady synchronization points automatically in async-write mode.
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
Improvements over LMDB
|
|
================================================
|
|
|
|
1. `LIFO RECLAIM` mode:
|
|
|
|
The newest pages are picked for reuse instead of the oldest.
|
|
This allows to minimize reclaim loop and make it execution time independent from total page count.
|
|
|
|
This results in OS kernel cache mechanisms working with maximum efficiency.
|
|
In case of using disc controllers or storages with
|
|
[BBWC](https://en.wikipedia.org/wiki/Disk_buffer#Write_acceleration) this may greatly improve
|
|
write performance.
|
|
|
|
2. `OOM-KICK` callback.
|
|
|
|
`mdbx_env_set_oomfunc()` allows to set a callback, which will be called
|
|
in the event of memory exhausting during long-time read transaction.
|
|
Callback will be invoked with PID and pthread_id of offending thread as parameters.
|
|
Callback can do any of this things to remedy the problem:
|
|
|
|
* wait for read transaction to finish normally;
|
|
|
|
* kill the offending process (signal 9), if separate process is doing long-time read;
|
|
|
|
* abort or restart offending read transaction if it's running in sibling thread;
|
|
|
|
* abort current write transaction with returning error code.
|
|
|
|
3. Guarantee of DB integrity in `WRITEMAP+MAPSYNC` mode:
|
|
> Current _libmdbx_ gives a choice of safe async-write mode (default)
|
|
> and `UTTERLY_NOSYNC` mode which may result in full
|
|
> DB corruption during system crash as with LMDB. For details see
|
|
> [Data safety in async-write mode](#data-safety-in-async-write-mode).
|
|
|
|
4. Automatic creation of synchronization points (flush changes to persistent storage)
|
|
when changes reach set threshold (threshold can be set by `mdbx_env_set_syncbytes()`).
|
|
|
|
5. Ability to get how far current read-only snapshot is from latest version of the DB by `mdbx_txn_straggler()`.
|
|
|
|
6. `mdbx_chk` tool for DB checking and `mdbx_env_pgwalk()` for page-walking all pages in DB.
|
|
|
|
7. Control over debugging and receiving of debugging messages via `mdbx_setup_debug()`.
|
|
|
|
8. Ability to assign up to 3 markers to commiting transaction with `mdbx_canary_put()` and then get them in read transaction
|
|
by `mdbx_canary_get()`.
|
|
|
|
9. Check if there is a row with data after current cursor position via `mdbx_cursor_eof()`.
|
|
|
|
10. Ability to explicitly request update of current record without creating new record. Implemented as `MDBX_CURRENT` flag
|
|
for `mdbx_put()`.
|
|
|
|
11. Ability to update or delete record and get previous value via `mdbx_replace()` Also can update specific multi-value.
|
|
|
|
12. Support for keys and values of zero length, including sorted duplicates.
|
|
|
|
13. Fixed `mdbx_cursor_count()`, which returns correct count of duplicated for all table types and any cursor position.
|
|
|
|
14. Ability to open DB in exclusive mode via `mdbx_env_open_ex()`, e.g. for integrity check.
|
|
|
|
15. Ability to close DB in "dirty" state (without data flush and creation of steady synchronization point)
|
|
via `mdbx_env_close_ex()`.
|
|
|
|
16. Ability to get addition info, including number of the oldest snapshot of DB, which is used by one of the readers.
|
|
Implemented via `mdbx_env_info()`.
|
|
|
|
17. `mdbx_del()` doesn't ignore additional argument (specifier) `data`
|
|
for tables without duplicates (without flag `MDBX_DUPSORT`), if `data` is not zero then always uses it to verify
|
|
record, which is being deleted.
|
|
|
|
18. Ability to open dbi-table with simultaneous setup of comparators for keys and values, via `mdbx_dbi_open_ex()`.
|
|
|
|
19. Ability to find out if key or value are in dirty page. This may be useful to make a decision to avoid
|
|
excessive CoW before updates. Implemented via `mdbx_is_dirty()`.
|
|
|
|
20. Correct update of current record in `MDBX_CURRENT` mode of `mdbx_cursor_put()`, including sorted duplicated.
|
|
|
|
21. All cursors in all read and write transactions can be reused by `mdbx_cursor_renew()` and MUST be freed explicitly.
|
|
> ## Caution, please pay attention!
|
|
>
|
|
> This is the only change of API, which changes semantics of cursor management
|
|
> and can lead to memory leaks on misuse. This is a needed change as it eliminates ambiguity
|
|
> which helps to avoid such errors as:
|
|
> - use-after-free;
|
|
> - double-free;
|
|
> - memory corruption and segfaults.
|
|
|
|
22. Additional error code `MDBX_EMULTIVAL`, which is returned by `mdbx_put()` and
|
|
`mdbx_replace()` in case is ambiguous update or delete.
|
|
|
|
23. Ability to get value by key and duplicates count by `mdbx_get_ex()`
|
|
|
|
24. Functions `mdbx_cursor_on_first() and mdbx_cursor_on_last(), which allows to know if cursor is currently on first or
|
|
last position respectively.
|
|
|
|
25. If read transaction is aborted via `mdbx_txn_abort()` or `mdbx_txn_reset()` then DBI-handles, which were opened in it,
|
|
aren't closed or deleted. This allows to avoid several types of hard-to-debug errors.
|
|
|
|
26. Sequence generation via `mdbx_dbi_sequence()`.
|
|
|
|
27. Advanced dynamic control over DB size, including ability to choose page size via `mdbx_env_set_geometry()`,
|
|
including on Windows.
|
|
|
|
28. Three meta-pages instead two, this allows to guarantee consistently update weak sync-points without risking to
|
|
corrupt last steady sync-point.
|
|
|
|
29. Automatic reclaim of freed pages to specific reserved space in the end of database file. This lowers amount of pages,
|
|
loaded to memory, used in update/flush loop. In fact _libmdbx_ constantly performs compactification of data,
|
|
but doesn't use addition resources for that. Space reclaim of DB and setup of database geometry parameters also decreases
|
|
size of the database on disk, including on Windows.
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
```
|
|
$ objdump -f -h -j .text libmdbx.so
|
|
|
|
libmdbx.so: file format elf64-x86-64
|
|
architecture: i386:x86-64, flags 0x00000150:
|
|
HAS_SYMS, DYNAMIC, D_PAGED
|
|
start address 0x000030e0
|
|
|
|
Sections:
|
|
Idx Name Size VMA LMA File off Algn
|
|
11 .text 00014d84 00000000000030e0 00000000000030e0 000030e0 2**4
|
|
CONTENTS, ALLOC, LOAD, READONLY, CODE
|
|
|
|
```
|
|
|
|
```
|
|
$ gcc -v
|
|
Using built-in specs.
|
|
COLLECT_GCC=gcc
|
|
COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/7/lto-wrapper
|
|
OFFLOAD_TARGET_NAMES=nvptx-none
|
|
OFFLOAD_TARGET_DEFAULT=1
|
|
Target: x86_64-linux-gnu
|
|
Configured with: ../src/configure -v --with-pkgversion='Ubuntu 7.2.0-8ubuntu3' --with-bugurl=file:///usr/share/doc/gcc-7/README.Bugs --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++ --prefix=/usr --with-gcc-major-version-only --program-suffix=-7 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --with-sysroot=/ --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-libmpx --enable-plugin --enable-default-pie --with-system-zlib --with-target-system-zlib --enable-objc-gc=auto --enable-multiarch --disable-werror --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu
|
|
Thread model: posix
|
|
gcc version 7.2.0 (Ubuntu 7.2.0-8ubuntu3)
|
|
```
|