test: add rnd and delay tools.

This commit is contained in:
Leo Yuriev 2017-04-21 18:33:35 +03:00
parent 99dd373215
commit 2523170806
7 changed files with 389 additions and 8 deletions

View File

@ -71,7 +71,7 @@ time from_ms(uint64_t ms) {
return result;
}
time now() {
time now_realtime() {
#if defined(_WIN32) || defined(_WIN64) || defined(_WINDOWS)
FILETIME filetime;
GetSystemTimeAsFileTime(&filetime);
@ -87,4 +87,35 @@ time now() {
#endif
}
time now_motonic() {
#if defined(_WIN32) || defined(_WIN64) || defined(_WINDOWS)
static uint32_t reciprocal;
static LARGE_INTEGER Frequency;
if (reciprocal == 0) {
if (!QueryPerformanceFrequency(&Frequency))
failure_perror("QueryPerformanceFrequency()", GetLastError());
reciprocal = (UINT64_C(1) << 32) / Frequency.QuadPart;
assert(reciprocal);
}
LARGE_INTEGER Counter;
if (!QueryPerformanceCounter(&Counter))
failure_perror("QueryPerformanceCounter()", GetLastError());
time result;
result.integer = Counter.QuadPart / Frequency.QuadPart;
uint64_t mod = Counter.QuadPart % Frequency.QuadPart;
assert(mod < UINT32_MAX);
result.fractional = UInt32x32To64((uint32_t)mod, reciprocal);
assert(result.fractional == (mod << 32) / Frequency.QuadPart);
return result;
#else
struct timespec ts;
if (unlikely(clock_gettime(CLOCK_MONOTONIC, &ts)))
failure_perror("clock_gettime(CLOCK_MONOTONIC)", errno);
return from_timespec(ts);
#endif
}
} /* namespace chrono */

View File

@ -25,12 +25,21 @@ typedef union time {
struct __packed {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
uint32_t fractional;
uint32_t utc;
union {
uint32_t utc;
uint32_t integer;
};
#else
uint32_t utc;
union {
uint32_t utc;
uint32_t integer;
};
uint32_t fractional;
#endif
};
void reset() { fixedpoint = 0; }
uint32_t seconds() const { return utc; }
} time;
uint32_t ns2fractional(uint32_t);
@ -44,10 +53,21 @@ time from_ns(uint64_t us);
time from_us(uint64_t ns);
time from_ms(uint64_t ms);
inline time from_utc(time_t utc) {
assert(utc < UINT32_MAX);
inline time from_seconds(uint64_t seconds) {
assert(seconds < UINT32_MAX);
time result;
result.fixedpoint = ((uint64_t)utc) << 32;
result.fixedpoint = seconds << 32;
return result;
}
inline time from_utc(time_t utc) {
assert(utc >= 0);
return from_seconds(utc);
}
inline time infinite() {
time result;
result.fixedpoint = UINT64_MAX;
return result;
}
@ -70,6 +90,7 @@ inline time from_timeval(const struct timeval &tv) {
}
#endif /* HAVE_TIMEVAL_TV_USEC */
time now();
time now_realtime();
time now_motonic();
} /* namespace chrono */

View File

@ -157,6 +157,8 @@ static void handler_SIGCHLD(int unused) { (void)unused; }
mdbx_pid_t osal_getpid(void) { return getpid(); }
int osal_delay(unsigned seconds) { return sleep(seconds) ? errno : 0; }
int osal_actor_start(const actor_config &config, mdbx_pid_t &pid) {
if (childs.empty())
signal(SIGCHLD, handler_SIGCHLD);
@ -228,3 +230,48 @@ retry:
return errno;
}
}
void osal_yield(void) {
if (sched_yield())
failure_perror("sched_yield()", errno);
}
void osal_udelay(unsigned us) {
chrono::time until, now = chrono::now_motonic();
until.fixedpoint = now.fixedpoint + chrono::from_us(us).fixedpoint;
struct timespec ts;
static unsigned threshold_us;
if (threshold_us == 0) {
if (clock_getres(CLOCK_PROCESS_CPUTIME_ID, &ts)) {
int rc = errno;
failure_perror("clock_getres(CLOCK_PROCESS_CPUTIME_ID)", rc);
}
chrono::time threshold = chrono::from_timespec(ts);
assert(threshold.seconds() == 0);
threshold_us = chrono::fractional2us(threshold.fractional);
if (threshold_us < 1000)
threshold_us = 1000;
}
ts.tv_sec = ts.tv_nsec = 0;
if (us > threshold_us) {
ts.tv_sec = us / 1000000u;
ts.tv_nsec = (us % 1000000u) * 1000u;
}
do {
if (us > threshold_us) {
if (nanosleep(&ts, &ts)) {
int rc = errno;
/* if (rc == EINTR) { ... } ? */
failure_perror("usleep()", rc);
}
us = ts.tv_sec * 1000000u + ts.tv_nsec / 1000u;
}
cpu_relax();
now = chrono::now_motonic();
} while (until.fixedpoint > now.fixedpoint);
}

View File

@ -97,6 +97,11 @@ int osal_waitfor(unsigned id) {
mdbx_pid_t osal_getpid(void) { return GetCurrentProcessId(); }
int osal_delay(unsigned seconds) {
Sleep(seconds * 1000u);
return 0;
}
//-----------------------------------------------------------------------------
const std::string
@ -260,3 +265,30 @@ int osal_actor_poll(mdbx_pid_t &pid, unsigned timeout) {
return waitstatus2errcode(rc);
}
void osal_yield(void) { SwitchToThread(); }
void osal_udelay(unsigned us) {
chrono::time until, now = chrono::now_motonic();
until.fixedpoint = now.fixedpoint + chrono::from_us(us).fixedpoint;
static unsigned threshold_us;
if (threshold_us == 0) {
ULONGLONG InterruptTimePrecise_100ns;
QueryInterruptTimePrecise(&InterruptTimePrecise_100ns);
threshold_us = InterruptTimePrecise_100ns / 5;
assert(threshold_us > 0);
}
do {
if (us > threshold_us && us > 1000) {
DWORD rc = SleepEx(us / 1000, TRUE);
if (rc)
failure_perror("SleepEx()", waitstatus2errcode(rc));
us = 0;
}
YieldProcessor();
now = chrono::now_motonic();
} while (now.fixedpoint < until.fixedpoint);
}

View File

@ -20,9 +20,13 @@ void osal_setup(const std::vector<actor_config> &actors);
void osal_broadcast(unsigned id);
int osal_waitfor(unsigned id);
mdbx_pid_t osal_getpid(void);
int osal_actor_start(const actor_config &config, mdbx_pid_t &pid);
actor_status osal_actor_info(const mdbx_pid_t pid);
void osal_killall_actors(void);
int osal_actor_poll(mdbx_pid_t &pid, unsigned timeout);
void osal_wait4barrier(void);
mdbx_pid_t osal_getpid(void);
int osal_delay(unsigned seconds);
void osal_udelay(unsigned us);
void osal_yield(void);

View File

@ -13,6 +13,8 @@
*/
#include "test.h"
#include <float.h>
#include <ieee754.h>
std::string format(const char *fmt, ...) {
va_list ap, ones;
@ -88,3 +90,193 @@ bool hex2data(const char *hex_begin, const char *hex_end, void *ptr,
}
//-----------------------------------------------------------------------------
#ifdef __mips__
static uint64_t *mips_tsc_addr;
__cold static void mips_rdtsc_init() {
int mem_fd = open("/dev/mem", O_RDONLY | O_SYNC, 0);
HIPPEUS_ENSURE(mem_fd >= 0);
mips_tsc_addr = mmap(nullptr, pagesize, PROT_READ, MAP_SHARED, mem_fd,
0x10030000 /* MIPS_ZBUS_TIMER */);
close(mem_fd);
}
#endif /* __mips__ */
uint64_t entropy_ticks(void) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__ia64__)
uint64_t ticks;
__asm("mov %0=ar.itc" : "=r"(ticks));
return ticks;
#elif defined(__hppa__)
uint64_t ticks;
__asm("mfctl 16, %0" : "=r"(ticks));
return ticks;
#elif defined(__s390__)
uint64_t ticks;
__asm("stck 0(%0)" : : "a"(&(ticks)) : "memory", "cc");
return ticks;
#elif defined(__alpha__)
uint64_t ticks;
__asm("rpcc %0" : "=r"(ticks));
return ticks;
#elif defined(__sparc_v9__)
uint64_t ticks;
__asm("rd %%tick, %0" : "=r"(ticks));
return ticks;
#elif defined(__powerpc64__) || defined(__ppc64__)
uint64_t ticks;
__asm("mfspr %0, 268" : "=r"(ticks));
return ticks;
#elif defined(__ppc__) || defined(__powerpc__)
unsigned tbl, tbu;
/* LY: Here not a problem if a high-part (tbu)
* would been updated during reading. */
__asm("mftb %0" : "=r"(tbl));
__asm("mftbu %0" : "=r"(tbu));
return (((uin64_t)tbu0) << 32) | tbl;
#elif defined(__mips__)
if (mips_tsc_addr != MAP_FAILED) {
if (unlikely(!mips_tsc_addr)) {
static pthread_once_t is_initialized = PTHREAD_ONCE_INIT;
int rc = pthread_once(&is_initialized, mips_rdtsc_init);
if (unlikely(rc))
failure_perror("pthread_once()", rc);
}
if (mips_tsc_addr != MAP_FAILED)
return *mips_tsc_addr;
}
#elif defined(__x86_64__) || defined(__i386__)
unsigned lo, hi;
/* LY: Using the "a" and "d" constraints is important for correct code. */
__asm("rdtsc" : "=a"(lo), "=d"(hi));
return (((uint64_t)hi) << 32) + lo;
#endif /* arch selector */
#elif defined(_M_IX86) || defined(_M_X64)
return __rdtsc();
#endif /* __GNUC__ || __clang__ */
#if defined(_WIN32) || defined(_WIN64) || defined(_WINDOWS)
LARGE_INTEGER PerformanceCount;
if (QueryPerformanceCounter(&PerformanceCount))
return PerformanceCount.QuadPart;
return GetTickCount64();
#else
struct timespec ts;
#if defined(CLOCK_MONOTONIC_COARSE)
clockid_t clock = CLOCK_MONOTONIC_COARSE;
#elif defined(CLOCK_MONOTONIC_RAW)
clockid_t clock = CLOCK_MONOTONIC_RAW;
#else
clockid_t clock = CLOCK_MONOTONIC;
#endif
int rc = clock_gettime(clock, &ts);
if (unlikely(rc))
failure_perror("clock_gettime()", rc);
return (((uint64_t)ts.tv_sec) << 32) + ts.tv_nsec;
#endif
}
//-----------------------------------------------------------------------------
static __inline uint64_t bleach64(uint64_t dirty) {
dirty = mul_64x64_high(bswap64(dirty), UINT64_C(17048867929148541611));
return dirty;
}
static __inline uint32_t bleach32(uint32_t dirty) {
return (uint32_t)(
(bswap32(dirty) * UINT64_C(/*3080105489, 4267077937 */ 2175734609)) >>
32);
}
uint64_t prng64_careless(uint64_t &state) {
state = state * UINT64_C(6364136223846793005) + 1;
return state;
}
uint64_t prng64_white(uint64_t &state) {
state = state * UINT64_C(6364136223846793005) + UINT64_C(1442695040888963407);
return bleach64(state);
}
uint32_t prng32(uint64_t &state) {
return (uint32_t)(prng64_careless(state) >> 32);
}
uint64_t entropy_white() { return bleach64(entropy_ticks()); }
double double_from_lower(uint64_t salt) {
#ifdef IEEE754_DOUBLE_BIAS
ieee754_double r;
r.ieee.negative = 0;
r.ieee.exponent = IEEE754_DOUBLE_BIAS;
r.ieee.mantissa0 = (unsigned)(salt >> 32);
r.ieee.mantissa1 = (unsigned)salt;
return r.d;
#else
const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1;
const double scale = 1.0 / (double)top;
return (salt & top) * scale;
#endif
}
double double_from_upper(uint64_t salt) {
#ifdef IEEE754_DOUBLE_BIAS
ieee754_double r;
r.ieee.negative = 0;
r.ieee.exponent = IEEE754_DOUBLE_BIAS;
salt >>= 64 - DBL_MANT_DIG;
r.ieee.mantissa0 = (unsigned)(salt >> 32);
r.ieee.mantissa1 = (unsigned)salt;
return r.d;
#else
const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1;
const double scale = 1.0 / (double)top;
return (salt >> (64 - DBL_MANT_DIG)) * scale;
#endif
}
bool flipcoin() { return bleach32((uint32_t)entropy_ticks()) & 1; }
bool jitter(unsigned probability_percent) {
const uint32_t top = UINT32_MAX - UINT32_MAX % 100;
uint32_t dice, edge = (top) / 100 * probability_percent;
do
dice = bleach32((uint32_t)entropy_ticks());
while (dice >= top);
return dice < edge;
}
void jitter_delay(bool extra) {
unsigned dice = entropy_white() & 3;
if (dice == 0) {
log_trace("== jitter.no-delay");
} else {
log_trace(">> jitter.delay: dice %u", dice);
do {
cpu_relax();
memory_barrier();
cpu_relax();
if (dice > 1) {
osal_yield();
cpu_relax();
if (dice > 2) {
unsigned us = entropy_white() &
(extra ? 0xfffff /* 1.05 s */ : 0x3fff /* 16 ms */);
log_trace("== jitter.delay: %0.6f", us / 1000000.0);
osal_udelay(us);
}
}
} while (flipcoin());
log_trace("<< jitter.delay: dice %u", dice);
}
}

View File

@ -271,6 +271,50 @@ static __inline size_t roundup2(size_t value, size_t granularity) {
//-----------------------------------------------------------------------------
static __inline void memory_barrier(void) {
#if __has_extension(c_atomic) || __has_extension(cxx_atomic)
__c11_atomic_thread_fence(__ATOMIC_SEQ_CST);
#elif defined(__ATOMIC_SEQ_CST)
__atomic_thread_fence(__ATOMIC_SEQ_CST);
#elif defined(__clang__) || defined(__GNUC__)
__sync_synchronize();
#elif defined(_MSC_VER)
MemoryBarrier();
#elif defined(__INTEL_COMPILER) /* LY: Intel Compiler may mimic GCC and MSC */
#if defined(__ia64__) || defined(__ia64) || defined(_M_IA64)
__mf();
#elif defined(__i386__) || defined(__x86_64__)
_mm_mfence();
#else
#error "Unknown target for Intel Compiler, please report to us."
#endif
#elif defined(__SUNPRO_C) || defined(__sun) || defined(sun)
__machine_rw_barrier();
#elif (defined(_HPUX_SOURCE) || defined(__hpux) || defined(__HP_aCC)) && \
(defined(HP_IA64) || defined(__ia64))
_Asm_mf();
#elif defined(_AIX) || defined(__ppc__) || defined(__powerpc__) || \
defined(__ppc64__) || defined(__powerpc64__)
__lwsync();
#else
#error "Could not guess the kind of compiler, please report to us."
#endif
}
static __inline void cpu_relax() {
#if defined(__i386__) || defined(__x86_64__) || defined(_M_IX86) || \
defined(_M_X64)
_mm_pause();
#elif defined(_WIN32) || defined(_WIN64) || defined(_WINDOWS) || \
defined(YieldProcessor)
YieldProcessor();
#else
/* nope */
#endif
}
//-----------------------------------------------------------------------------
struct simple_checksum {
uint64_t value;
@ -310,3 +354,13 @@ bool hex2data(const char *hex_begin, const char *hex_end, void *ptr,
size_t bytes, simple_checksum &checksum);
std::string format(const char *fmt, ...);
uint64_t entropy_ticks(void);
uint64_t entropy_white(void);
uint64_t prng64_careless(uint64_t &state);
uint64_t prng64_white(uint64_t &state);
uint32_t prng32(uint64_t &state);
bool flipcoin();
bool jitter(unsigned probability_percent);
void jitter_delay(bool extra = false);