libmdbx/test/chrono.c++

149 lines
4.5 KiB
C++
Raw Normal View History

2017-04-11 19:00:26 +03:00
/*
* Copyright 2017-2023 Leonid Yuriev <leo@yuriev.ru>
2017-04-11 19:00:26 +03:00
* and other libmdbx authors: please see AUTHORS file.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* <http://www.OpenLDAP.org/license.html>.
*/
#include "test.h++"
2017-04-11 19:00:26 +03:00
namespace chrono {
#ifndef NSEC_PER_SEC
2017-04-11 19:00:26 +03:00
#define NSEC_PER_SEC 1000000000u
#endif /* NSEC_PER_SEC */
2017-04-11 19:00:26 +03:00
uint32_t ns2fractional(uint32_t ns) {
assert(ns < NSEC_PER_SEC);
/* LY: здесь и далее используется "длинное деление", которое
* для ясности кода оставлено как есть (без ручной оптимизации). Так как
* GCC, Clang и даже MSVC сами давно умеют конвертировать деление на
* константу в быструю reciprocal-форму. */
return uint32_t((uint64_t(ns) << 32) / NSEC_PER_SEC);
2017-04-11 19:00:26 +03:00
}
uint32_t fractional2ns(uint32_t fractional) {
return uint32_t((fractional * uint64_t(NSEC_PER_SEC)) >> 32);
2017-04-11 19:00:26 +03:00
}
#ifndef USEC_PER_SEC
2017-04-11 19:00:26 +03:00
#define USEC_PER_SEC 1000000u
#endif /* USEC_PER_SEC */
2017-04-11 19:00:26 +03:00
uint32_t us2fractional(uint32_t us) {
assert(us < USEC_PER_SEC);
return uint32_t((uint64_t(us) << 32) / USEC_PER_SEC);
2017-04-11 19:00:26 +03:00
}
uint32_t fractional2us(uint32_t fractional) {
return uint32_t((fractional * uint64_t(USEC_PER_SEC)) >> 32);
2017-04-11 19:00:26 +03:00
}
#ifndef MSEC_PER_SEC
2017-04-11 19:00:26 +03:00
#define MSEC_PER_SEC 1000u
#endif /* MSEC_PER_SEC */
2017-04-11 19:00:26 +03:00
uint32_t ms2fractional(uint32_t ms) {
assert(ms < MSEC_PER_SEC);
return uint32_t((uint64_t(ms) << 32) / MSEC_PER_SEC);
2017-04-11 19:00:26 +03:00
}
uint32_t fractional2ms(uint32_t fractional) {
return uint32_t((fractional * uint64_t(MSEC_PER_SEC)) >> 32);
2017-04-11 19:00:26 +03:00
}
time from_ns(uint64_t ns) {
time result;
result.fixedpoint =
((ns / NSEC_PER_SEC) << 32) | ns2fractional(uint32_t(ns % NSEC_PER_SEC));
2017-04-11 19:00:26 +03:00
return result;
}
time from_us(uint64_t us) {
time result;
result.fixedpoint =
((us / USEC_PER_SEC) << 32) | us2fractional(uint32_t(us % USEC_PER_SEC));
2017-04-11 19:00:26 +03:00
return result;
}
time from_ms(uint64_t ms) {
time result;
result.fixedpoint =
((ms / MSEC_PER_SEC) << 32) | ms2fractional(uint32_t(ms % MSEC_PER_SEC));
2017-04-11 19:00:26 +03:00
return result;
}
2022-03-30 18:13:08 +03:00
#if __GNUC_PREREQ(8, 0) && \
(defined(__MINGW__) || defined(__MINGW32__) || defined(__MINGW64__))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-function-type"
#endif /* GCC/MINGW */
2017-04-21 18:33:35 +03:00
time now_realtime() {
2017-04-11 19:00:26 +03:00
#if defined(_WIN32) || defined(_WIN64) || defined(_WINDOWS)
2017-04-25 16:09:02 +03:00
static void(WINAPI * query_time)(LPFILETIME);
if (unlikely(!query_time)) {
HMODULE hModule = GetModuleHandle(TEXT("kernel32.dll"));
if (hModule)
query_time = (void(WINAPI *)(LPFILETIME))GetProcAddress(
hModule, "GetSystemTimePreciseAsFileTime");
2017-04-25 16:09:02 +03:00
if (!query_time)
query_time = GetSystemTimeAsFileTime;
}
2017-04-11 19:00:26 +03:00
FILETIME filetime;
2017-04-25 16:09:02 +03:00
query_time(&filetime);
uint64_t ns100 =
2017-04-11 19:00:26 +03:00
(uint64_t)filetime.dwHighDateTime << 32 | filetime.dwLowDateTime;
2017-04-25 16:09:02 +03:00
return from_ns((ns100 - UINT64_C(116444736000000000)) * 100u);
2017-04-11 19:00:26 +03:00
#else
struct timespec ts;
if (unlikely(clock_gettime(CLOCK_REALTIME, &ts)))
failure_perror("clock_gettime(CLOCK_REALTIME", errno);
return from_timespec(ts);
#endif
}
time now_monotonic() {
2017-04-21 18:33:35 +03:00
#if defined(_WIN32) || defined(_WIN64) || defined(_WINDOWS)
static uint64_t reciprocal;
2017-04-21 18:33:35 +03:00
static LARGE_INTEGER Frequency;
if (reciprocal == 0) {
if (!QueryPerformanceFrequency(&Frequency))
failure_perror("QueryPerformanceFrequency()", GetLastError());
reciprocal = (((UINT64_C(1) << 48) + Frequency.QuadPart / 2 + 1) /
Frequency.QuadPart);
2017-04-21 18:33:35 +03:00
assert(reciprocal);
}
LARGE_INTEGER Counter;
if (!QueryPerformanceCounter(&Counter))
failure_perror("QueryPerformanceCounter()", GetLastError());
time result;
result.fixedpoint = (Counter.QuadPart / Frequency.QuadPart) << 32;
2017-04-21 18:33:35 +03:00
uint64_t mod = Counter.QuadPart % Frequency.QuadPart;
result.fixedpoint += (mod * reciprocal) >> 16;
2017-04-21 18:33:35 +03:00
return result;
#else
struct timespec ts;
if (unlikely(clock_gettime(CLOCK_MONOTONIC, &ts)))
failure_perror("clock_gettime(CLOCK_MONOTONIC)", errno);
return from_timespec(ts);
#endif
}
2022-03-30 18:13:08 +03:00
#if __GNUC_PREREQ(8, 0) && \
(defined(__MINGW__) || defined(__MINGW32__) || defined(__MINGW64__))
#pragma GCC diagnostic pop
#endif /* GCC/MINGW */
2017-04-11 19:00:26 +03:00
} /* namespace chrono */