rusqlite/src/functions.rs
2016-08-14 09:31:53 +02:00

808 lines
29 KiB
Rust

//! Create or redefine SQL functions.
//!
//! # Example
//!
//! Adding a `regexp` function to a connection in which compiled regular expressions
//! are cached in a `HashMap`. For an alternative implementation that uses SQLite's
//! [Function Auxilliary Data](https://www.sqlite.org/c3ref/get_auxdata.html) interface
//! to avoid recompiling regular expressions, see the unit tests for this module.
//!
//! ```rust
//! extern crate libsqlite3_sys;
//! extern crate rusqlite;
//! extern crate regex;
//!
//! use rusqlite::{Connection, Error, Result};
//! use std::collections::HashMap;
//! use regex::Regex;
//!
//! fn add_regexp_function(db: &Connection) -> Result<()> {
//! let mut cached_regexes = HashMap::new();
//! db.create_scalar_function("regexp", 2, true, move |ctx| {
//! let regex_s = try!(ctx.get::<String>(0));
//! let entry = cached_regexes.entry(regex_s.clone());
//! let regex = {
//! use std::collections::hash_map::Entry::{Occupied, Vacant};
//! match entry {
//! Occupied(occ) => occ.into_mut(),
//! Vacant(vac) => {
//! match Regex::new(&regex_s) {
//! Ok(r) => vac.insert(r),
//! Err(err) => return Err(Error::UserFunctionError(Box::new(err))),
//! }
//! }
//! }
//! };
//!
//! let text = try!(ctx.get::<String>(1));
//! Ok(regex.is_match(&text))
//! })
//! }
//!
//! fn main() {
//! let db = Connection::open_in_memory().unwrap();
//! add_regexp_function(&db).unwrap();
//!
//! let is_match: bool = db.query_row("SELECT regexp('[aeiou]*', 'aaaaeeeiii')", &[],
//! |row| row.get(0)).unwrap();
//!
//! assert!(is_match);
//! }
//! ```
use std::error::Error as StdError;
use std::ffi::CStr;
use std::mem;
use std::ptr;
use std::slice;
use libc::{c_int, c_double, c_char, c_void};
use ffi;
pub use ffi::sqlite3_context;
pub use ffi::sqlite3_value;
pub use ffi::sqlite3_value_type;
pub use ffi::sqlite3_value_numeric_type;
use types::{Null, FromSql, ValueRef};
use {Result, Error, Connection, str_to_cstring, InnerConnection};
/// A trait for types that can be converted into the result of an SQL function.
pub trait ToResult {
unsafe fn set_result(&self, ctx: *mut sqlite3_context);
}
macro_rules! raw_to_impl(
($t:ty, $f:ident) => (
impl ToResult for $t {
unsafe fn set_result(&self, ctx: *mut sqlite3_context) {
ffi::$f(ctx, *self)
}
}
)
);
raw_to_impl!(c_int, sqlite3_result_int);
raw_to_impl!(i64, sqlite3_result_int64);
raw_to_impl!(c_double, sqlite3_result_double);
impl<'a> ToResult for bool {
unsafe fn set_result(&self, ctx: *mut sqlite3_context) {
if *self {
ffi::sqlite3_result_int(ctx, 1)
} else {
ffi::sqlite3_result_int(ctx, 0)
}
}
}
impl<'a> ToResult for &'a str {
unsafe fn set_result(&self, ctx: *mut sqlite3_context) {
let length = self.len();
if length > ::std::i32::MAX as usize {
ffi::sqlite3_result_error_toobig(ctx);
return;
}
match str_to_cstring(self) {
Ok(c_str) => {
ffi::sqlite3_result_text(ctx,
c_str.as_ptr(),
length as c_int,
ffi::SQLITE_TRANSIENT())
}
// TODO sqlite3_result_error
Err(_) => ffi::sqlite3_result_error_code(ctx, ffi::SQLITE_MISUSE),
}
}
}
impl ToResult for String {
unsafe fn set_result(&self, ctx: *mut sqlite3_context) {
(&self[..]).set_result(ctx)
}
}
impl<'a> ToResult for &'a [u8] {
unsafe fn set_result(&self, ctx: *mut sqlite3_context) {
if self.len() > ::std::i32::MAX as usize {
ffi::sqlite3_result_error_toobig(ctx);
return;
}
ffi::sqlite3_result_blob(ctx,
mem::transmute(self.as_ptr()),
self.len() as c_int,
ffi::SQLITE_TRANSIENT())
}
}
impl ToResult for Vec<u8> {
unsafe fn set_result(&self, ctx: *mut sqlite3_context) {
(&self[..]).set_result(ctx)
}
}
impl<T: ToResult> ToResult for Option<T> {
unsafe fn set_result(&self, ctx: *mut sqlite3_context) {
match *self {
None => ffi::sqlite3_result_null(ctx),
Some(ref t) => t.set_result(ctx),
}
}
}
impl ToResult for Null {
unsafe fn set_result(&self, ctx: *mut sqlite3_context) {
ffi::sqlite3_result_null(ctx)
}
}
/// Error indicating that a memory allocation failed.
#[derive(Copy,Clone)]
pub struct NoMem;
impl ToResult for NoMem {
unsafe fn set_result(&self, ctx: *mut sqlite3_context) {
ffi::sqlite3_result_error_nomem(ctx)
}
}
/// Error indicating that a string or BLOB is too long to represent.
#[derive(Copy,Clone)]
pub struct TooBig;
impl ToResult for TooBig {
unsafe fn set_result(&self, ctx: *mut sqlite3_context) {
ffi::sqlite3_result_error_toobig(ctx)
}
}
impl<'a> ValueRef<'a> {
pub unsafe fn from_value(value: *mut sqlite3_value) -> ValueRef<'a> {
use std::slice::from_raw_parts;
match ffi::sqlite3_value_type(value) {
ffi::SQLITE_NULL => ValueRef::Null,
ffi::SQLITE_INTEGER => ValueRef::Integer(ffi::sqlite3_value_int64(value)),
ffi::SQLITE_FLOAT => ValueRef::Real(ffi::sqlite3_value_double(value)),
ffi::SQLITE_TEXT => {
let text = ffi::sqlite3_value_text(value);
assert!(!text.is_null(), "unexpected SQLITE_TEXT value type with NULL data");
let s = CStr::from_ptr(text as *const c_char);
// sqlite3_value_text returns UTF8 data, so our unwrap here should be fine.
let s = s.to_str().expect("sqlite3_value_text returned invalid UTF-8");
ValueRef::Text(s)
}
ffi::SQLITE_BLOB => {
let blob = ffi::sqlite3_value_blob(value);
assert!(!blob.is_null(), "unexpected SQLITE_BLOB value type with NULL data");
let len = ffi::sqlite3_value_bytes(value);
assert!(len >= 0, "unexpected negative return from sqlite3_value_bytes");
ValueRef::Blob(from_raw_parts(blob as *const u8, len as usize))
}
_ => unreachable!("sqlite3_value_type returned invalid value"),
}
}
}
unsafe extern "C" fn free_boxed_value<T>(p: *mut c_void) {
let _: Box<T> = Box::from_raw(mem::transmute(p));
}
/// Context is a wrapper for the SQLite function evaluation context.
pub struct Context<'a> {
ctx: *mut sqlite3_context,
args: &'a [*mut sqlite3_value],
}
impl<'a> Context<'a> {
/// Returns the number of arguments to the function.
pub fn len(&self) -> usize {
self.args.len()
}
/// Returns `true` when there is no argument.
pub fn is_empty(&self) -> bool {
self.args.is_empty()
}
/// Returns the `idx`th argument as a `T`.
///
/// # Failure
///
/// Will panic if `idx` is greater than or equal to `self.len()`.
///
/// Will return Err if the underlying SQLite type cannot be converted to a `T`.
pub fn get<T: FromSql>(&self, idx: usize) -> Result<T> {
let arg = self.args[idx];
let value = unsafe { ValueRef::from_value(arg) };
FromSql::column_result(value).map_err(|err| match err {
Error::InvalidColumnType => Error::InvalidFunctionParameterType,
_ => err,
})
}
/// Sets the auxilliary data associated with a particular parameter. See
/// https://www.sqlite.org/c3ref/get_auxdata.html for a discussion of
/// this feature, or the unit tests of this module for an example.
pub fn set_aux<T>(&self, arg: c_int, value: T) {
let boxed = Box::into_raw(Box::new(value));
unsafe {
ffi::sqlite3_set_auxdata(self.ctx,
arg,
mem::transmute(boxed),
Some(free_boxed_value::<T>))
};
}
/// Gets the auxilliary data that was associated with a given parameter
/// via `set_aux`. Returns `None` if no data has been associated.
///
/// # Unsafety
///
/// This function is unsafe as there is no guarantee that the type `T`
/// requested matches the type `T` that was provided to `set_aux`. The
/// types must be identical.
pub unsafe fn get_aux<T>(&self, arg: c_int) -> Option<&T> {
let p = ffi::sqlite3_get_auxdata(self.ctx, arg) as *mut T;
if p.is_null() { None } else { Some(&*p) }
}
}
/// Aggregate is the callback interface for user-defined aggregate function.
///
/// `A` is the type of the aggregation context and `T` is the type of the final result.
/// Implementations should be stateless.
pub trait Aggregate<A, T>
where T: ToResult
{
/// Initializes the aggregation context. Will be called prior to the first call
/// to `step()` to set up the context for an invocation of the function. (Note:
/// `init()` will not be called if the there are no rows.)
fn init(&self) -> A;
/// "step" function called once for each row in an aggregate group. May be called
/// 0 times if there are no rows.
fn step(&self, &mut Context, &mut A) -> Result<()>;
/// Computes and returns the final result. Will be called exactly once for each
/// invocation of the function. If `step()` was called at least once, will be given
/// `Some(A)` (the same `A` as was created by `init` and given to `step`); if `step()`
/// was not called (because the function is running against 0 rows), will be given
/// `None`.
fn finalize(&self, Option<A>) -> Result<T>;
}
impl Connection {
/// Attach a user-defined scalar function to this database connection.
///
/// `fn_name` is the name the function will be accessible from SQL.
/// `n_arg` is the number of arguments to the function. Use `-1` for a variable
/// number. If the function always returns the same value given the same
/// input, `deterministic` should be `true`.
///
/// The function will remain available until the connection is closed or
/// until it is explicitly removed via `remove_function`.
///
/// # Example
///
/// ```rust
/// # use rusqlite::{Connection, Result};
/// # type c_double = f64;
/// fn scalar_function_example(db: Connection) -> Result<()> {
/// try!(db.create_scalar_function("halve", 1, true, |ctx| {
/// let value = try!(ctx.get::<c_double>(0));
/// Ok(value / 2f64)
/// }));
///
/// let six_halved: f64 = try!(db.query_row("SELECT halve(6)", &[], |r| r.get(0)));
/// assert_eq!(six_halved, 3f64);
/// Ok(())
/// }
/// ```
///
/// # Failure
///
/// Will return Err if the function could not be attached to the connection.
pub fn create_scalar_function<F, T>(&self,
fn_name: &str,
n_arg: c_int,
deterministic: bool,
x_func: F)
-> Result<()>
where F: FnMut(&Context) -> Result<T>,
T: ToResult
{
self.db.borrow_mut().create_scalar_function(fn_name, n_arg, deterministic, x_func)
}
/// Attach a user-defined aggregate function to this database connection.
///
/// # Failure
///
/// Will return Err if the function could not be attached to the connection.
pub fn create_aggregate_function<A, D, T>(&self,
fn_name: &str,
n_arg: c_int,
deterministic: bool,
aggr: D)
-> Result<()>
where D: Aggregate<A, T>,
T: ToResult
{
self.db
.borrow_mut()
.create_aggregate_function(fn_name, n_arg, deterministic, aggr)
}
/// Removes a user-defined function from this database connection.
///
/// `fn_name` and `n_arg` should match the name and number of arguments
/// given to `create_scalar_function` or `create_aggregate_function`.
///
/// # Failure
///
/// Will return Err if the function could not be removed.
pub fn remove_function(&self, fn_name: &str, n_arg: c_int) -> Result<()> {
self.db.borrow_mut().remove_function(fn_name, n_arg)
}
}
impl InnerConnection {
fn create_scalar_function<F, T>(&mut self,
fn_name: &str,
n_arg: c_int,
deterministic: bool,
x_func: F)
-> Result<()>
where F: FnMut(&Context) -> Result<T>,
T: ToResult
{
unsafe extern "C" fn call_boxed_closure<F, T>(ctx: *mut sqlite3_context,
argc: c_int,
argv: *mut *mut sqlite3_value)
where F: FnMut(&Context) -> Result<T>,
T: ToResult
{
let ctx = Context {
ctx: ctx,
args: slice::from_raw_parts(argv, argc as usize),
};
let boxed_f: *mut F = mem::transmute(ffi::sqlite3_user_data(ctx.ctx));
assert!(!boxed_f.is_null(), "Internal error - null function pointer");
match (*boxed_f)(&ctx) {
Ok(r) => r.set_result(ctx.ctx),
Err(Error::SqliteFailure(err, s)) => {
ffi::sqlite3_result_error_code(ctx.ctx, err.extended_code);
if let Some(Ok(cstr)) = s.map(|s| str_to_cstring(&s)) {
ffi::sqlite3_result_error(ctx.ctx, cstr.as_ptr(), -1);
}
}
Err(err) => {
ffi::sqlite3_result_error_code(ctx.ctx, ffi::SQLITE_CONSTRAINT_FUNCTION);
if let Ok(cstr) = str_to_cstring(err.description()) {
ffi::sqlite3_result_error(ctx.ctx, cstr.as_ptr(), -1);
}
}
}
}
let boxed_f: *mut F = Box::into_raw(Box::new(x_func));
let c_name = try!(str_to_cstring(fn_name));
let mut flags = ffi::SQLITE_UTF8;
if deterministic {
flags |= ffi::SQLITE_DETERMINISTIC;
}
let r = unsafe {
ffi::sqlite3_create_function_v2(self.db(),
c_name.as_ptr(),
n_arg,
flags,
mem::transmute(boxed_f),
Some(call_boxed_closure::<F, T>),
None,
None,
Some(free_boxed_value::<F>))
};
self.decode_result(r)
}
fn create_aggregate_function<A, D, T>(&mut self,
fn_name: &str,
n_arg: c_int,
deterministic: bool,
aggr: D)
-> Result<()>
where D: Aggregate<A, T>,
T: ToResult
{
unsafe fn aggregate_context<A>(ctx: *mut sqlite3_context,
bytes: usize)
-> Option<*mut *mut A> {
let pac = ffi::sqlite3_aggregate_context(ctx, bytes as c_int) as *mut *mut A;
if pac.is_null() {
return None;
}
Some(pac)
}
unsafe fn report_aggregate_error(ctx: *mut sqlite3_context, err: Error) {
match err {
Error::SqliteFailure(err, s) => {
ffi::sqlite3_result_error_code(ctx, err.extended_code);
if let Some(Ok(cstr)) = s.map(|s| str_to_cstring(&s)) {
ffi::sqlite3_result_error(ctx, cstr.as_ptr(), -1);
}
}
_ => {
ffi::sqlite3_result_error_code(ctx, ffi::SQLITE_CONSTRAINT_FUNCTION);
if let Ok(cstr) = str_to_cstring(err.description()) {
ffi::sqlite3_result_error(ctx, cstr.as_ptr(), -1);
}
}
}
}
unsafe extern "C" fn call_boxed_step<A, D, T>(ctx: *mut sqlite3_context,
argc: c_int,
argv: *mut *mut sqlite3_value)
where D: Aggregate<A, T>,
T: ToResult
{
let boxed_aggr: *mut D = mem::transmute(ffi::sqlite3_user_data(ctx));
assert!(!boxed_aggr.is_null(),
"Internal error - null aggregate pointer");
let pac = match aggregate_context(ctx, ::std::mem::size_of::<*mut A>()) {
Some(pac) => pac,
None => {
ffi::sqlite3_result_error_nomem(ctx);
return;
}
};
if (*pac).is_null() {
*pac = Box::into_raw(Box::new((*boxed_aggr).init()));
}
let mut ctx = Context {
ctx: ctx,
args: slice::from_raw_parts(argv, argc as usize),
};
match (*boxed_aggr).step(&mut ctx, &mut **pac) {
Ok(_) => {}
Err(err) => report_aggregate_error(ctx.ctx, err),
};
}
unsafe extern "C" fn call_boxed_final<A, D, T>(ctx: *mut sqlite3_context)
where D: Aggregate<A, T>,
T: ToResult
{
let boxed_aggr: *mut D = mem::transmute(ffi::sqlite3_user_data(ctx));
assert!(!boxed_aggr.is_null(),
"Internal error - null aggregate pointer");
// Within the xFinal callback, it is customary to set N=0 in calls to
// sqlite3_aggregate_context(C,N) so that no pointless memory allocations occur.
let a: Option<A> = match aggregate_context(ctx, 0) {
Some(pac) => {
if (*pac).is_null() {
None
} else {
let a = Box::from_raw(*pac);
Some(*a)
}
}
None => None,
};
match (*boxed_aggr).finalize(a) {
Ok(r) => r.set_result(ctx),
Err(err) => report_aggregate_error(ctx, err),
};
}
let boxed_aggr: *mut D = Box::into_raw(Box::new(aggr));
let c_name = try!(str_to_cstring(fn_name));
let mut flags = ffi::SQLITE_UTF8;
if deterministic {
flags |= ffi::SQLITE_DETERMINISTIC;
}
let r = unsafe {
ffi::sqlite3_create_function_v2(self.db(),
c_name.as_ptr(),
n_arg,
flags,
mem::transmute(boxed_aggr),
None,
Some(call_boxed_step::<A, D, T>),
Some(call_boxed_final::<A, D, T>),
Some(free_boxed_value::<D>))
};
self.decode_result(r)
}
fn remove_function(&mut self, fn_name: &str, n_arg: c_int) -> Result<()> {
let c_name = try!(str_to_cstring(fn_name));
let r = unsafe {
ffi::sqlite3_create_function_v2(self.db(),
c_name.as_ptr(),
n_arg,
ffi::SQLITE_UTF8,
ptr::null_mut(),
None,
None,
None,
None)
};
self.decode_result(r)
}
}
#[cfg(test)]
mod test {
extern crate regex;
use std::collections::HashMap;
use libc::c_double;
use self::regex::Regex;
use std::f64::EPSILON;
use {Connection, Error, Result};
use functions::{Aggregate, Context};
fn half(ctx: &Context) -> Result<c_double> {
assert!(ctx.len() == 1, "called with unexpected number of arguments");
let value = try!(ctx.get::<c_double>(0));
Ok(value / 2f64)
}
#[test]
fn test_function_half() {
let db = Connection::open_in_memory().unwrap();
db.create_scalar_function("half", 1, true, half).unwrap();
let result: Result<f64> = db.query_row("SELECT half(6)", &[], |r| r.get(0));
assert!((3f64 - result.unwrap()).abs() < EPSILON);
}
#[test]
fn test_remove_function() {
let db = Connection::open_in_memory().unwrap();
db.create_scalar_function("half", 1, true, half).unwrap();
let result: Result<f64> = db.query_row("SELECT half(6)", &[], |r| r.get(0));
assert!((3f64 - result.unwrap()).abs() < EPSILON);
db.remove_function("half", 1).unwrap();
let result: Result<f64> = db.query_row("SELECT half(6)", &[], |r| r.get(0));
assert!(result.is_err());
}
// This implementation of a regexp scalar function uses SQLite's auxilliary data
// (https://www.sqlite.org/c3ref/get_auxdata.html) to avoid recompiling the regular
// expression multiple times within one query.
fn regexp_with_auxilliary(ctx: &Context) -> Result<bool> {
assert!(ctx.len() == 2, "called with unexpected number of arguments");
let saved_re: Option<&Regex> = unsafe { ctx.get_aux(0) };
let new_re = match saved_re {
None => {
let s = try!(ctx.get::<String>(0));
match Regex::new(&s) {
Ok(r) => Some(r),
Err(err) => return Err(Error::UserFunctionError(Box::new(err))),
}
}
Some(_) => None,
};
let is_match = {
let re = saved_re.unwrap_or_else(|| new_re.as_ref().unwrap());
let text = try!(ctx.get::<String>(1));
re.is_match(&text)
};
if let Some(re) = new_re {
ctx.set_aux(0, re);
}
Ok(is_match)
}
#[test]
#[cfg_attr(rustfmt, rustfmt_skip)]
fn test_function_regexp_with_auxilliary() {
let db = Connection::open_in_memory().unwrap();
db.execute_batch("BEGIN;
CREATE TABLE foo (x string);
INSERT INTO foo VALUES ('lisa');
INSERT INTO foo VALUES ('lXsi');
INSERT INTO foo VALUES ('lisX');
END;").unwrap();
db.create_scalar_function("regexp", 2, true, regexp_with_auxilliary).unwrap();
let result: Result<bool> = db.query_row("SELECT regexp('l.s[aeiouy]', 'lisa')",
&[],
|r| r.get(0));
assert_eq!(true, result.unwrap());
let result: Result<i64> =
db.query_row("SELECT COUNT(*) FROM foo WHERE regexp('l.s[aeiouy]', x) == 1",
&[],
|r| r.get(0));
assert_eq!(2, result.unwrap());
}
#[test]
#[cfg_attr(rustfmt, rustfmt_skip)]
fn test_function_regexp_with_hashmap_cache() {
let db = Connection::open_in_memory().unwrap();
db.execute_batch("BEGIN;
CREATE TABLE foo (x string);
INSERT INTO foo VALUES ('lisa');
INSERT INTO foo VALUES ('lXsi');
INSERT INTO foo VALUES ('lisX');
END;").unwrap();
// This implementation of a regexp scalar function uses a captured HashMap
// to keep cached regular expressions around (even across multiple queries)
// until the function is removed.
let mut cached_regexes = HashMap::new();
db.create_scalar_function("regexp", 2, true, move |ctx| {
assert!(ctx.len() == 2, "called with unexpected number of arguments");
let regex_s = try!(ctx.get::<String>(0));
let entry = cached_regexes.entry(regex_s.clone());
let regex = {
use std::collections::hash_map::Entry::{Occupied, Vacant};
match entry {
Occupied(occ) => occ.into_mut(),
Vacant(vac) => {
match Regex::new(&regex_s) {
Ok(r) => vac.insert(r),
Err(err) => return Err(Error::UserFunctionError(Box::new(err))),
}
}
}
};
let text = try!(ctx.get::<String>(1));
Ok(regex.is_match(&text))
}).unwrap();
let result: Result<bool> = db.query_row("SELECT regexp('l.s[aeiouy]', 'lisa')",
&[],
|r| r.get(0));
assert_eq!(true, result.unwrap());
let result: Result<i64> =
db.query_row("SELECT COUNT(*) FROM foo WHERE regexp('l.s[aeiouy]', x) == 1",
&[],
|r| r.get(0));
assert_eq!(2, result.unwrap());
}
#[test]
fn test_varargs_function() {
let db = Connection::open_in_memory().unwrap();
db.create_scalar_function("my_concat", -1, true, |ctx| {
let mut ret = String::new();
for idx in 0..ctx.len() {
let s = try!(ctx.get::<String>(idx));
ret.push_str(&s);
}
Ok(ret)
})
.unwrap();
for &(expected, query) in &[("", "SELECT my_concat()"),
("onetwo", "SELECT my_concat('one', 'two')"),
("abc", "SELECT my_concat('a', 'b', 'c')")] {
let result: String = db.query_row(query, &[], |r| r.get(0)).unwrap();
assert_eq!(expected, result);
}
}
struct Sum;
struct Count;
impl Aggregate<i64, Option<i64>> for Sum {
fn init(&self) -> i64 {
0
}
fn step(&self, ctx: &mut Context, sum: &mut i64) -> Result<()> {
*sum += try!(ctx.get::<i64>(0));
Ok(())
}
fn finalize(&self, sum: Option<i64>) -> Result<Option<i64>> {
Ok(sum)
}
}
impl Aggregate<i64, i64> for Count {
fn init(&self) -> i64 {
0
}
fn step(&self, _ctx: &mut Context, sum: &mut i64) -> Result<()> {
*sum += 1;
Ok(())
}
fn finalize(&self, sum: Option<i64>) -> Result<i64> {
Ok(sum.unwrap_or(0))
}
}
#[test]
fn test_sum() {
let db = Connection::open_in_memory().unwrap();
db.create_aggregate_function("my_sum", 1, true, Sum).unwrap();
// sum should return NULL when given no columns (contrast with count below)
let no_result = "SELECT my_sum(i) FROM (SELECT 2 AS i WHERE 1 <> 1)";
let result: Option<i64> = db.query_row(no_result, &[], |r| r.get(0))
.unwrap();
assert!(result.is_none());
let single_sum = "SELECT my_sum(i) FROM (SELECT 2 AS i UNION ALL SELECT 2)";
let result: i64 = db.query_row(single_sum, &[], |r| r.get(0))
.unwrap();
assert_eq!(4, result);
let dual_sum = "SELECT my_sum(i), my_sum(j) FROM (SELECT 2 AS i, 1 AS j UNION ALL SELECT \
2, 1)";
let result: (i64, i64) = db.query_row(dual_sum, &[], |r| (r.get(0), r.get(1)))
.unwrap();
assert_eq!((4, 2), result);
}
#[test]
fn test_count() {
let db = Connection::open_in_memory().unwrap();
db.create_aggregate_function("my_count", -1, true, Count).unwrap();
// count should return 0 when given no columns (contrast with sum above)
let no_result = "SELECT my_count(i) FROM (SELECT 2 AS i WHERE 1 <> 1)";
let result: i64 = db.query_row(no_result, &[], |r| r.get(0)).unwrap();
assert_eq!(result, 0);
let single_sum = "SELECT my_count(i) FROM (SELECT 2 AS i UNION ALL SELECT 2)";
let result: i64 = db.query_row(single_sum, &[], |r| r.get(0))
.unwrap();
assert_eq!(2, result);
}
}