rusqlite/src/statement.rs
2020-04-15 21:37:39 -07:00

1253 lines
41 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use std::iter::IntoIterator;
use std::os::raw::{c_int, c_void};
#[cfg(feature = "array")]
use std::rc::Rc;
use std::slice::from_raw_parts;
use std::{convert, fmt, mem, ptr, str};
use super::ffi;
use super::{len_as_c_int, str_for_sqlite};
use super::{
AndThenRows, Connection, Error, MappedRows, RawStatement, Result, Row, Rows, ValueRef,
};
use crate::types::{ToSql, ToSqlOutput};
#[cfg(feature = "array")]
use crate::vtab::array::{free_array, ARRAY_TYPE};
/// A prepared statement.
pub struct Statement<'conn> {
conn: &'conn Connection,
pub(crate) stmt: RawStatement,
}
impl Statement<'_> {
/// Execute the prepared statement.
///
/// On success, returns the number of rows that were changed or inserted or
/// deleted (via `sqlite3_changes`).
///
/// ## Example
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn update_rows(conn: &Connection) -> Result<()> {
/// let mut stmt = conn.prepare("UPDATE foo SET bar = 'baz' WHERE qux = ?")?;
///
/// stmt.execute(&[1i32])?;
/// stmt.execute(&[2i32])?;
///
/// Ok(())
/// }
/// ```
///
/// # Failure
///
/// Will return `Err` if binding parameters fails, the executed statement
/// returns rows (in which case `query` should be used instead), or the
/// underlying SQLite call fails.
pub fn execute<P>(&mut self, params: P) -> Result<usize>
where
P: IntoIterator,
P::Item: ToSql,
{
self.bind_parameters(params)?;
self.execute_with_bound_parameters()
}
/// Execute the prepared statement with named parameter(s). If any
/// parameters that were in the prepared statement are not included in
/// `params`, they will continue to use the most-recently bound value
/// from a previous call to `execute_named`, or `NULL` if they have
/// never been bound.
///
/// On success, returns the number of rows that were changed or inserted or
/// deleted (via `sqlite3_changes`).
///
/// ## Example
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn insert(conn: &Connection) -> Result<usize> {
/// let mut stmt = conn.prepare("INSERT INTO test (name) VALUES (:name)")?;
/// stmt.execute_named(&[(":name", &"one")])
/// }
/// ```
///
/// Note, the `named_params` macro is provided for syntactic convenience,
/// and so the above example could also be written as:
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result, named_params};
/// fn insert(conn: &Connection) -> Result<usize> {
/// let mut stmt = conn.prepare("INSERT INTO test (name) VALUES (:name)")?;
/// stmt.execute_named(named_params!{":name": "one"})
/// }
/// ```
///
/// # Failure
///
/// Will return `Err` if binding parameters fails, the executed statement
/// returns rows (in which case `query` should be used instead), or the
/// underlying SQLite call fails.
pub fn execute_named(&mut self, params: &[(&str, &dyn ToSql)]) -> Result<usize> {
self.bind_parameters_named(params)?;
self.execute_with_bound_parameters()
}
/// Execute an INSERT and return the ROWID.
///
/// # Note
///
/// This function is a convenience wrapper around `execute()` intended for
/// queries that insert a single item. It is possible to misuse this
/// function in a way that it cannot detect, such as by calling it on a
/// statement which _updates_ a single
/// item rather than inserting one. Please don't do that.
///
/// # Failure
///
/// Will return `Err` if no row is inserted or many rows are inserted.
pub fn insert<P>(&mut self, params: P) -> Result<i64>
where
P: IntoIterator,
P::Item: ToSql,
{
let changes = self.execute(params)?;
match changes {
1 => Ok(self.conn.last_insert_rowid()),
_ => Err(Error::StatementChangedRows(changes)),
}
}
/// Execute the prepared statement, returning a handle to the resulting
/// rows.
///
/// Due to lifetime restricts, the rows handle returned by `query` does not
/// implement the `Iterator` trait. Consider using `query_map` or
/// `query_and_then` instead, which do.
///
/// ## Example
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result, NO_PARAMS};
/// fn get_names(conn: &Connection) -> Result<Vec<String>> {
/// let mut stmt = conn.prepare("SELECT name FROM people")?;
/// let mut rows = stmt.query(NO_PARAMS)?;
///
/// let mut names = Vec::new();
/// while let Some(row) = rows.next()? {
/// names.push(row.get(0)?);
/// }
///
/// Ok(names)
/// }
/// ```
///
/// ## Failure
///
/// Will return `Err` if binding parameters fails.
pub fn query<P>(&mut self, params: P) -> Result<Rows<'_>>
where
P: IntoIterator,
P::Item: ToSql,
{
self.check_readonly()?;
self.bind_parameters(params)?;
Ok(Rows::new(self))
}
/// Execute the prepared statement with named parameter(s), returning a
/// handle for the resulting rows. If any parameters that were in the
/// prepared statement are not included in `params`, they will continue
/// to use the most-recently bound value from a previous
/// call to `query_named`, or `NULL` if they have never been bound.
///
/// ## Example
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn query(conn: &Connection) -> Result<()> {
/// let mut stmt = conn.prepare("SELECT * FROM test where name = :name")?;
/// let mut rows = stmt.query_named(&[(":name", &"one")])?;
/// while let Some(row) = rows.next()? {
/// // ...
/// }
/// Ok(())
/// }
/// ```
///
/// Note, the `named_params!` macro is provided for syntactic convenience,
/// and so the above example could also be written as:
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result, named_params};
/// fn query(conn: &Connection) -> Result<()> {
/// let mut stmt = conn.prepare("SELECT * FROM test where name = :name")?;
/// let mut rows = stmt.query_named(named_params!{ ":name": "one" })?;
/// while let Some(row) = rows.next()? {
/// // ...
/// }
/// Ok(())
/// }
/// ```
///
/// # Failure
///
/// Will return `Err` if binding parameters fails.
pub fn query_named(&mut self, params: &[(&str, &dyn ToSql)]) -> Result<Rows<'_>> {
self.check_readonly()?;
self.bind_parameters_named(params)?;
Ok(Rows::new(self))
}
/// Executes the prepared statement and maps a function over the resulting
/// rows, returning an iterator over the mapped function results.
///
/// ## Example
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result, NO_PARAMS};
/// fn get_names(conn: &Connection) -> Result<Vec<String>> {
/// let mut stmt = conn.prepare("SELECT name FROM people")?;
/// let rows = stmt.query_map(NO_PARAMS, |row| row.get(0))?;
///
/// let mut names = Vec::new();
/// for name_result in rows {
/// names.push(name_result?);
/// }
///
/// Ok(names)
/// }
/// ```
///
/// ## Failure
///
/// Will return `Err` if binding parameters fails.
pub fn query_map<T, P, F>(&mut self, params: P, f: F) -> Result<MappedRows<'_, F>>
where
P: IntoIterator,
P::Item: ToSql,
F: FnMut(&Row<'_>) -> Result<T>,
{
let rows = self.query(params)?;
Ok(MappedRows::new(rows, f))
}
/// Execute the prepared statement with named parameter(s), returning an
/// iterator over the result of calling the mapping function over the
/// query's rows. If any parameters that were in the prepared statement
/// are not included in `params`, they will continue to use the
/// most-recently bound value from a previous call to `query_named`,
/// or `NULL` if they have never been bound.
///
/// ## Example
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn get_names(conn: &Connection) -> Result<Vec<String>> {
/// let mut stmt = conn.prepare("SELECT name FROM people WHERE id = :id")?;
/// let rows = stmt.query_map_named(&[(":id", &"one")], |row| row.get(0))?;
///
/// let mut names = Vec::new();
/// for name_result in rows {
/// names.push(name_result?);
/// }
///
/// Ok(names)
/// }
/// ```
///
/// ## Failure
///
/// Will return `Err` if binding parameters fails.
pub fn query_map_named<T, F>(
&mut self,
params: &[(&str, &dyn ToSql)],
f: F,
) -> Result<MappedRows<'_, F>>
where
F: FnMut(&Row<'_>) -> Result<T>,
{
let rows = self.query_named(params)?;
Ok(MappedRows::new(rows, f))
}
/// Executes the prepared statement and maps a function over the resulting
/// rows, where the function returns a `Result` with `Error` type
/// implementing `std::convert::From<Error>` (so errors can be unified).
///
/// # Failure
///
/// Will return `Err` if binding parameters fails.
pub fn query_and_then<T, E, P, F>(&mut self, params: P, f: F) -> Result<AndThenRows<'_, F>>
where
P: IntoIterator,
P::Item: ToSql,
E: convert::From<Error>,
F: FnMut(&Row<'_>) -> Result<T, E>,
{
let rows = self.query(params)?;
Ok(AndThenRows::new(rows, f))
}
/// Execute the prepared statement with named parameter(s), returning an
/// iterator over the result of calling the mapping function over the
/// query's rows. If any parameters that were in the prepared statement
/// are not included in
/// `params`, they will
/// continue to use the most-recently bound value from a previous call
/// to `query_named`, or `NULL` if they have never been bound.
///
/// ## Example
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// struct Person {
/// name: String,
/// };
///
/// fn name_to_person(name: String) -> Result<Person> {
/// // ... check for valid name
/// Ok(Person { name: name })
/// }
///
/// fn get_names(conn: &Connection) -> Result<Vec<Person>> {
/// let mut stmt = conn.prepare("SELECT name FROM people WHERE id = :id")?;
/// let rows =
/// stmt.query_and_then_named(&[(":id", &"one")], |row| name_to_person(row.get(0)?))?;
///
/// let mut persons = Vec::new();
/// for person_result in rows {
/// persons.push(person_result?);
/// }
///
/// Ok(persons)
/// }
/// ```
///
/// ## Failure
///
/// Will return `Err` if binding parameters fails.
pub fn query_and_then_named<T, E, F>(
&mut self,
params: &[(&str, &dyn ToSql)],
f: F,
) -> Result<AndThenRows<'_, F>>
where
E: convert::From<Error>,
F: FnMut(&Row<'_>) -> Result<T, E>,
{
let rows = self.query_named(params)?;
Ok(AndThenRows::new(rows, f))
}
/// Return `true` if a query in the SQL statement it executes returns one
/// or more rows and `false` if the SQL returns an empty set.
pub fn exists<P>(&mut self, params: P) -> Result<bool>
where
P: IntoIterator,
P::Item: ToSql,
{
let mut rows = self.query(params)?;
let exists = rows.next()?.is_some();
Ok(exists)
}
/// Convenience method to execute a query that is expected to return a
/// single row.
///
/// If the query returns more than one row, all rows except the first are
/// ignored.
///
/// Returns `Err(QueryReturnedNoRows)` if no results are returned. If the
/// query truly is optional, you can call `.optional()` on the result of
/// this to get a `Result<Option<T>>`.
///
/// # Failure
///
/// Will return `Err` if the underlying SQLite call fails.
pub fn query_row<T, P, F>(&mut self, params: P, f: F) -> Result<T>
where
P: IntoIterator,
P::Item: ToSql,
F: FnOnce(&Row<'_>) -> Result<T>,
{
let mut rows = self.query(params)?;
rows.get_expected_row().and_then(|r| f(&r))
}
/// Convenience method to execute a query with named parameter(s) that is
/// expected to return a single row.
///
/// If the query returns more than one row, all rows except the first are
/// ignored.
///
/// Returns `Err(QueryReturnedNoRows)` if no results are returned. If the
/// query truly is optional, you can call `.optional()` on the result of
/// this to get a `Result<Option<T>>`.
///
/// # Failure
///
/// Will return `Err` if `sql` cannot be converted to a C-compatible string
/// or if the underlying SQLite call fails.
pub fn query_row_named<T, F>(&mut self, params: &[(&str, &dyn ToSql)], f: F) -> Result<T>
where
F: FnOnce(&Row<'_>) -> Result<T>,
{
let mut rows = self.query_named(params)?;
rows.get_expected_row().and_then(|r| f(&r))
}
/// Consumes the statement.
///
/// Functionally equivalent to the `Drop` implementation, but allows
/// callers to see any errors that occur.
///
/// # Failure
///
/// Will return `Err` if the underlying SQLite call fails.
pub fn finalize(mut self) -> Result<()> {
self.finalize_()
}
/// Return the (one-based) index of an SQL parameter given its name.
///
/// Note that the initial ":" or "$" or "@" or "?" used to specify the
/// parameter is included as part of the name.
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn example(conn: &Connection) -> Result<()> {
/// let stmt = conn.prepare("SELECT * FROM test WHERE name = :example")?;
/// let index = stmt.parameter_index(":example")?;
/// assert_eq!(index, Some(1));
/// Ok(())
/// }
/// ```
///
/// # Failure
///
/// Will return Err if `name` is invalid. Will return Ok(None) if the name
/// is valid but not a bound parameter of this statement.
pub fn parameter_index(&self, name: &str) -> Result<Option<usize>> {
Ok(self.stmt.bind_parameter_index(name))
}
fn bind_parameters<P>(&mut self, params: P) -> Result<()>
where
P: IntoIterator,
P::Item: ToSql,
{
let expected = self.stmt.bind_parameter_count();
let mut index = 0;
for p in params.into_iter() {
index += 1; // The leftmost SQL parameter has an index of 1.
if index > expected {
break;
}
self.bind_parameter(&p, index)?;
}
if index != expected {
Err(Error::InvalidParameterCount(expected, index))
} else {
Ok(())
}
}
fn bind_parameters_named(&mut self, params: &[(&str, &dyn ToSql)]) -> Result<()> {
for &(name, value) in params {
if let Some(i) = self.parameter_index(name)? {
self.bind_parameter(value, i)?;
} else {
return Err(Error::InvalidParameterName(name.into()));
}
}
Ok(())
}
/// Return the number of parameters that can be bound to this statement.
pub fn parameter_count(&self) -> usize {
self.stmt.bind_parameter_count()
}
/// Low level API to directly bind a parameter to a given index.
///
/// Note that the index is one-based, that is, the first parameter index is
/// 1 and not 0. This is consistent with the SQLite API and the values given
/// to parameters bound as `?NNN`.
///
/// The valid values for `one_based_col_index` begin at `1`, and end at
/// [`Statement::parameter_count`], inclusive.
///
/// # Caveats
///
/// This should not generally be used, but is available for special cases
/// such as:
///
/// - binding parameters where a gap exists.
/// - binding named and positional parameters in the same query.
/// - separating parameter binding from query execution.
///
/// Statements that have had their parameters bound this way should be
/// queried or executed by [`Statement::raw_query`] or
/// [`Statement::raw_execute`]. Other functions are not guaranteed to work.
///
/// # Example
///
/// ```rust,no_run
/// # use rusqlite::{Connection, Result};
/// fn query(conn: &Connection) -> Result<()> {
/// let mut stmt = conn.prepare("SELECT * FROM test WHERE name = :name AND value > ?2")?;
/// let name_index = stmt.parameter_index(":name")?.expect("No such parameter");
/// stmt.raw_bind_parameter(name_index, "foo")?;
/// stmt.raw_bind_parameter(2, 100)?;
/// let mut rows = stmt.raw_query();
/// while let Some(row) = rows.next()? {
/// // ...
/// }
/// Ok(())
/// }
/// ```
pub fn raw_bind_parameter<T: ToSql>(
&mut self,
one_based_col_index: usize,
param: T,
) -> Result<()> {
// This is the same as `bind_parameter` but slightly more ergonomic and
// correctly takes `&mut self`.
self.bind_parameter(&param, one_based_col_index)
}
/// Low level API to execute a statement given that all parameters were
/// bound explicitly with the [`Statement::raw_bind_parameter`] API.
///
/// # Caveats
///
/// Any unbound parameters will have `NULL` as their value.
///
/// This should not generally be used outside of special cases, and
/// functions in the [`Statement::execute`] family should be preferred.
///
/// # Failure
///
/// Will return `Err` if the executed statement returns rows (in which case
/// `query` should be used instead), or the underlying SQLite call fails.
pub fn raw_execute(&mut self) -> Result<usize> {
self.execute_with_bound_parameters()
}
/// Low level API to get `Rows` for this query given that all parameters
/// were bound explicitly with the [`Statement::raw_bind_parameter`] API.
///
/// # Caveats
///
/// Any unbound parameters will have `NULL` as their value.
///
/// This should not generally be used outside of special cases, and
/// functions in the [`Statement::query`] family should be preferred.
///
/// Note that if the SQL does not return results, [`Statement::raw_execute`]
/// should be used instead.
pub fn raw_query(&mut self) -> Rows<'_> {
Rows::new(self)
}
fn bind_parameter(&self, param: &dyn ToSql, col: usize) -> Result<()> {
let value = param.to_sql()?;
let ptr = unsafe { self.stmt.ptr() };
let value = match value {
ToSqlOutput::Borrowed(v) => v,
ToSqlOutput::Owned(ref v) => ValueRef::from(v),
#[cfg(feature = "blob")]
ToSqlOutput::ZeroBlob(len) => {
return self
.conn
.decode_result(unsafe { ffi::sqlite3_bind_zeroblob(ptr, col as c_int, len) });
}
#[cfg(feature = "array")]
ToSqlOutput::Array(a) => {
return self.conn.decode_result(unsafe {
ffi::sqlite3_bind_pointer(
ptr,
col as c_int,
Rc::into_raw(a) as *mut c_void,
ARRAY_TYPE,
Some(free_array),
)
});
}
};
self.conn.decode_result(match value {
ValueRef::Null => unsafe { ffi::sqlite3_bind_null(ptr, col as c_int) },
ValueRef::Integer(i) => unsafe { ffi::sqlite3_bind_int64(ptr, col as c_int, i) },
ValueRef::Real(r) => unsafe { ffi::sqlite3_bind_double(ptr, col as c_int, r) },
ValueRef::Text(s) => unsafe {
let (c_str, len, destructor) = str_for_sqlite(s)?;
ffi::sqlite3_bind_text(ptr, col as c_int, c_str, len, destructor)
},
ValueRef::Blob(b) => unsafe {
let length = len_as_c_int(b.len())?;
if length == 0 {
ffi::sqlite3_bind_zeroblob(ptr, col as c_int, 0)
} else {
ffi::sqlite3_bind_blob(
ptr,
col as c_int,
b.as_ptr() as *const c_void,
length,
ffi::SQLITE_TRANSIENT(),
)
}
},
})
}
fn execute_with_bound_parameters(&mut self) -> Result<usize> {
self.check_update()?;
let r = self.stmt.step();
self.stmt.reset();
match r {
ffi::SQLITE_DONE => Ok(self.conn.changes()),
ffi::SQLITE_ROW => Err(Error::ExecuteReturnedResults),
_ => Err(self.conn.decode_result(r).unwrap_err()),
}
}
fn finalize_(&mut self) -> Result<()> {
let mut stmt = unsafe { RawStatement::new(ptr::null_mut(), false) };
mem::swap(&mut stmt, &mut self.stmt);
self.conn.decode_result(stmt.finalize())
}
#[cfg(not(feature = "modern_sqlite"))]
#[inline]
fn check_readonly(&self) -> Result<()> {
Ok(())
}
#[cfg(feature = "modern_sqlite")]
#[inline]
fn check_readonly(&self) -> Result<()> {
/*if !self.stmt.readonly() { does not work for PRAGMA
return Err(Error::InvalidQuery);
}*/
Ok(())
}
#[cfg(all(feature = "modern_sqlite", feature = "extra_check"))]
#[inline]
fn check_update(&self) -> Result<()> {
// sqlite3_column_count works for DML but not for DDL (ie ALTER)
if self.column_count() > 0 || self.stmt.readonly() {
return Err(Error::ExecuteReturnedResults);
}
Ok(())
}
#[cfg(all(not(feature = "modern_sqlite"), feature = "extra_check"))]
#[inline]
fn check_update(&self) -> Result<()> {
// sqlite3_column_count works for DML but not for DDL (ie ALTER)
if self.column_count() > 0 {
return Err(Error::ExecuteReturnedResults);
}
Ok(())
}
#[cfg(not(feature = "extra_check"))]
#[inline]
fn check_update(&self) -> Result<()> {
Ok(())
}
/// Returns a string containing the SQL text of prepared statement with
/// bound parameters expanded.
#[cfg(feature = "modern_sqlite")]
pub fn expanded_sql(&self) -> Option<String> {
unsafe {
match self.stmt.expanded_sql() {
Some(s) => {
let sql = String::from_utf8_lossy(s.to_bytes()).to_string();
ffi::sqlite3_free(s.as_ptr() as *mut _);
Some(sql)
}
_ => None,
}
}
}
/// Get the value for one of the status counters for this statement.
pub fn get_status(&self, status: StatementStatus) -> i32 {
self.stmt.get_status(status, false)
}
/// Reset the value of one of the status counters for this statement,
/// returning the value it had before resetting.
pub fn reset_status(&self, status: StatementStatus) -> i32 {
self.stmt.get_status(status, true)
}
#[cfg(feature = "extra_check")]
pub(crate) fn check_no_tail(&self) -> Result<()> {
if self.stmt.has_tail() {
Err(Error::MultipleStatement)
} else {
Ok(())
}
}
#[cfg(not(feature = "extra_check"))]
#[inline]
pub(crate) fn check_no_tail(&self) -> Result<()> {
Ok(())
}
}
impl Into<RawStatement> for Statement<'_> {
fn into(mut self) -> RawStatement {
let mut stmt = unsafe { RawStatement::new(ptr::null_mut(), false) };
mem::swap(&mut stmt, &mut self.stmt);
stmt
}
}
impl fmt::Debug for Statement<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let sql = if self.stmt.is_null() {
Ok("")
} else {
str::from_utf8(self.stmt.sql().unwrap().to_bytes())
};
f.debug_struct("Statement")
.field("conn", self.conn)
.field("stmt", &self.stmt)
.field("sql", &sql)
.finish()
}
}
impl Drop for Statement<'_> {
#[allow(unused_must_use)]
fn drop(&mut self) {
self.finalize_();
}
}
impl Statement<'_> {
pub(crate) fn new(conn: &Connection, stmt: RawStatement) -> Statement<'_> {
Statement { conn, stmt }
}
pub(crate) fn value_ref(&self, col: usize) -> ValueRef<'_> {
let raw = unsafe { self.stmt.ptr() };
match self.stmt.column_type(col) {
ffi::SQLITE_NULL => ValueRef::Null,
ffi::SQLITE_INTEGER => {
ValueRef::Integer(unsafe { ffi::sqlite3_column_int64(raw, col as c_int) })
}
ffi::SQLITE_FLOAT => {
ValueRef::Real(unsafe { ffi::sqlite3_column_double(raw, col as c_int) })
}
ffi::SQLITE_TEXT => {
let s = unsafe {
// Quoting from "Using SQLite" book:
// To avoid problems, an application should first extract the desired type using
// a sqlite3_column_xxx() function, and then call the
// appropriate sqlite3_column_bytes() function.
let text = ffi::sqlite3_column_text(raw, col as c_int);
let len = ffi::sqlite3_column_bytes(raw, col as c_int);
assert!(
!text.is_null(),
"unexpected SQLITE_TEXT column type with NULL data"
);
from_raw_parts(text as *const u8, len as usize)
};
ValueRef::Text(s)
}
ffi::SQLITE_BLOB => {
let (blob, len) = unsafe {
(
ffi::sqlite3_column_blob(raw, col as c_int),
ffi::sqlite3_column_bytes(raw, col as c_int),
)
};
assert!(
len >= 0,
"unexpected negative return from sqlite3_column_bytes"
);
if len > 0 {
assert!(
!blob.is_null(),
"unexpected SQLITE_BLOB column type with NULL data"
);
ValueRef::Blob(unsafe { from_raw_parts(blob as *const u8, len as usize) })
} else {
// The return value from sqlite3_column_blob() for a zero-length BLOB
// is a NULL pointer.
ValueRef::Blob(&[])
}
}
_ => unreachable!("sqlite3_column_type returned invalid value"),
}
}
pub(crate) fn step(&self) -> Result<bool> {
match self.stmt.step() {
ffi::SQLITE_ROW => Ok(true),
ffi::SQLITE_DONE => Ok(false),
code => Err(self.conn.decode_result(code).unwrap_err()),
}
}
pub(crate) fn reset(&self) -> c_int {
self.stmt.reset()
}
}
/// Prepared statement status counters.
///
/// See https://www.sqlite.org/c3ref/c_stmtstatus_counter.html
/// for explanations of each.
///
/// Note that depending on your version of SQLite, all of these
/// may not be available.
#[repr(i32)]
#[derive(Clone, Copy, PartialEq, Eq)]
#[non_exhaustive]
pub enum StatementStatus {
/// Equivalent to SQLITE_STMTSTATUS_FULLSCAN_STEP
FullscanStep = 1,
/// Equivalent to SQLITE_STMTSTATUS_SORT
Sort = 2,
/// Equivalent to SQLITE_STMTSTATUS_AUTOINDEX
AutoIndex = 3,
/// Equivalent to SQLITE_STMTSTATUS_VM_STEP
VmStep = 4,
/// Equivalent to SQLITE_STMTSTATUS_REPREPARE
RePrepare = 5,
/// Equivalent to SQLITE_STMTSTATUS_RUN
Run = 6,
/// Equivalent to SQLITE_STMTSTATUS_MEMUSED
MemUsed = 99,
}
#[cfg(test)]
mod test {
use crate::types::ToSql;
use crate::{Connection, Error, Result, NO_PARAMS};
#[test]
fn test_execute_named() {
let db = Connection::open_in_memory().unwrap();
db.execute_batch("CREATE TABLE foo(x INTEGER)").unwrap();
assert_eq!(
db.execute_named("INSERT INTO foo(x) VALUES (:x)", &[(":x", &1i32)])
.unwrap(),
1
);
assert_eq!(
db.execute_named("INSERT INTO foo(x) VALUES (:x)", &[(":x", &2i32)])
.unwrap(),
1
);
assert_eq!(
3i32,
db.query_row_named::<i32, _>(
"SELECT SUM(x) FROM foo WHERE x > :x",
&[(":x", &0i32)],
|r| r.get(0)
)
.unwrap()
);
}
#[test]
fn test_stmt_execute_named() {
let db = Connection::open_in_memory().unwrap();
let sql = "CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag \
INTEGER)";
db.execute_batch(sql).unwrap();
let mut stmt = db
.prepare("INSERT INTO test (name) VALUES (:name)")
.unwrap();
stmt.execute_named(&[(":name", &"one")]).unwrap();
let mut stmt = db
.prepare("SELECT COUNT(*) FROM test WHERE name = :name")
.unwrap();
assert_eq!(
1i32,
stmt.query_row_named::<i32, _>(&[(":name", &"one")], |r| r.get(0))
.unwrap()
);
}
#[test]
fn test_query_named() {
let db = Connection::open_in_memory().unwrap();
let sql = r#"
CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag INTEGER);
INSERT INTO test(id, name) VALUES (1, "one");
"#;
db.execute_batch(sql).unwrap();
let mut stmt = db
.prepare("SELECT id FROM test where name = :name")
.unwrap();
let mut rows = stmt.query_named(&[(":name", &"one")]).unwrap();
let id: Result<i32> = rows.next().unwrap().unwrap().get(0);
assert_eq!(Ok(1), id);
}
#[test]
fn test_query_map_named() {
let db = Connection::open_in_memory().unwrap();
let sql = r#"
CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag INTEGER);
INSERT INTO test(id, name) VALUES (1, "one");
"#;
db.execute_batch(sql).unwrap();
let mut stmt = db
.prepare("SELECT id FROM test where name = :name")
.unwrap();
let mut rows = stmt
.query_map_named(&[(":name", &"one")], |row| {
let id: Result<i32> = row.get(0);
id.map(|i| 2 * i)
})
.unwrap();
let doubled_id: i32 = rows.next().unwrap().unwrap();
assert_eq!(2, doubled_id);
}
#[test]
fn test_query_and_then_named() {
let db = Connection::open_in_memory().unwrap();
let sql = r#"
CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag INTEGER);
INSERT INTO test(id, name) VALUES (1, "one");
INSERT INTO test(id, name) VALUES (2, "one");
"#;
db.execute_batch(sql).unwrap();
let mut stmt = db
.prepare("SELECT id FROM test where name = :name ORDER BY id ASC")
.unwrap();
let mut rows = stmt
.query_and_then_named(&[(":name", &"one")], |row| {
let id: i32 = row.get(0)?;
if id == 1 {
Ok(id)
} else {
Err(Error::SqliteSingleThreadedMode)
}
})
.unwrap();
// first row should be Ok
let doubled_id: i32 = rows.next().unwrap().unwrap();
assert_eq!(1, doubled_id);
// second row should be Err
#[allow(clippy::match_wild_err_arm)]
match rows.next().unwrap() {
Ok(_) => panic!("invalid Ok"),
Err(Error::SqliteSingleThreadedMode) => (),
Err(_) => panic!("invalid Err"),
}
}
#[test]
fn test_unbound_parameters_are_null() {
let db = Connection::open_in_memory().unwrap();
let sql = "CREATE TABLE test (x TEXT, y TEXT)";
db.execute_batch(sql).unwrap();
let mut stmt = db
.prepare("INSERT INTO test (x, y) VALUES (:x, :y)")
.unwrap();
stmt.execute_named(&[(":x", &"one")]).unwrap();
let result: Option<String> = db
.query_row("SELECT y FROM test WHERE x = 'one'", NO_PARAMS, |row| {
row.get(0)
})
.unwrap();
assert!(result.is_none());
}
#[test]
fn test_raw_binding() -> Result<()> {
let db = Connection::open_in_memory().unwrap();
db.execute_batch("CREATE TABLE test (name TEXT, value INTEGER)")?;
{
let mut stmt = db.prepare("INSERT INTO test (name, value) VALUES (:name, ?3)")?;
let name_idx = stmt.parameter_index(":name")?.unwrap();
stmt.raw_bind_parameter(name_idx, "example")?;
stmt.raw_bind_parameter(3, 50i32)?;
let n = stmt.raw_execute()?;
assert_eq!(n, 1);
}
{
let mut stmt = db.prepare("SELECT name, value FROM test WHERE value = ?2")?;
stmt.raw_bind_parameter(2, 50)?;
let mut rows = stmt.raw_query();
{
let row = rows.next()?.unwrap();
let name: String = row.get(0)?;
assert_eq!(name, "example");
let value: i32 = row.get(1)?;
assert_eq!(value, 50);
}
assert!(rows.next()?.is_none());
}
Ok(())
}
#[test]
fn test_unbound_parameters_are_reused() {
let db = Connection::open_in_memory().unwrap();
let sql = "CREATE TABLE test (x TEXT, y TEXT)";
db.execute_batch(sql).unwrap();
let mut stmt = db
.prepare("INSERT INTO test (x, y) VALUES (:x, :y)")
.unwrap();
stmt.execute_named(&[(":x", &"one")]).unwrap();
stmt.execute_named(&[(":y", &"two")]).unwrap();
let result: String = db
.query_row("SELECT x FROM test WHERE y = 'two'", NO_PARAMS, |row| {
row.get(0)
})
.unwrap();
assert_eq!(result, "one");
}
#[test]
fn test_insert() {
let db = Connection::open_in_memory().unwrap();
db.execute_batch("CREATE TABLE foo(x INTEGER UNIQUE)")
.unwrap();
let mut stmt = db
.prepare("INSERT OR IGNORE INTO foo (x) VALUES (?)")
.unwrap();
assert_eq!(stmt.insert(&[1i32]).unwrap(), 1);
assert_eq!(stmt.insert(&[2i32]).unwrap(), 2);
match stmt.insert(&[1i32]).unwrap_err() {
Error::StatementChangedRows(0) => (),
err => panic!("Unexpected error {}", err),
}
let mut multi = db
.prepare("INSERT INTO foo (x) SELECT 3 UNION ALL SELECT 4")
.unwrap();
match multi.insert(NO_PARAMS).unwrap_err() {
Error::StatementChangedRows(2) => (),
err => panic!("Unexpected error {}", err),
}
}
#[test]
fn test_insert_different_tables() {
// Test for https://github.com/rusqlite/rusqlite/issues/171
let db = Connection::open_in_memory().unwrap();
db.execute_batch(
r"
CREATE TABLE foo(x INTEGER);
CREATE TABLE bar(x INTEGER);
",
)
.unwrap();
assert_eq!(
db.prepare("INSERT INTO foo VALUES (10)")
.unwrap()
.insert(NO_PARAMS)
.unwrap(),
1
);
assert_eq!(
db.prepare("INSERT INTO bar VALUES (10)")
.unwrap()
.insert(NO_PARAMS)
.unwrap(),
1
);
}
#[test]
fn test_exists() {
let db = Connection::open_in_memory().unwrap();
let sql = "BEGIN;
CREATE TABLE foo(x INTEGER);
INSERT INTO foo VALUES(1);
INSERT INTO foo VALUES(2);
END;";
db.execute_batch(sql).unwrap();
let mut stmt = db.prepare("SELECT 1 FROM foo WHERE x = ?").unwrap();
assert!(stmt.exists(&[1i32]).unwrap());
assert!(stmt.exists(&[2i32]).unwrap());
assert!(!stmt.exists(&[0i32]).unwrap());
}
#[test]
fn test_query_row() {
let db = Connection::open_in_memory().unwrap();
let sql = "BEGIN;
CREATE TABLE foo(x INTEGER, y INTEGER);
INSERT INTO foo VALUES(1, 3);
INSERT INTO foo VALUES(2, 4);
END;";
db.execute_batch(sql).unwrap();
let mut stmt = db.prepare("SELECT y FROM foo WHERE x = ?").unwrap();
let y: Result<i64> = stmt.query_row(&[1i32], |r| r.get(0));
assert_eq!(3i64, y.unwrap());
}
#[test]
fn test_query_by_column_name() {
let db = Connection::open_in_memory().unwrap();
let sql = "BEGIN;
CREATE TABLE foo(x INTEGER, y INTEGER);
INSERT INTO foo VALUES(1, 3);
END;";
db.execute_batch(sql).unwrap();
let mut stmt = db.prepare("SELECT y FROM foo").unwrap();
let y: Result<i64> = stmt.query_row(NO_PARAMS, |r| r.get("y"));
assert_eq!(3i64, y.unwrap());
}
#[test]
fn test_query_by_column_name_ignore_case() {
let db = Connection::open_in_memory().unwrap();
let sql = "BEGIN;
CREATE TABLE foo(x INTEGER, y INTEGER);
INSERT INTO foo VALUES(1, 3);
END;";
db.execute_batch(sql).unwrap();
let mut stmt = db.prepare("SELECT y as Y FROM foo").unwrap();
let y: Result<i64> = stmt.query_row(NO_PARAMS, |r| r.get("y"));
assert_eq!(3i64, y.unwrap());
}
#[test]
#[cfg(feature = "modern_sqlite")]
fn test_expanded_sql() {
let db = Connection::open_in_memory().unwrap();
let stmt = db.prepare("SELECT ?").unwrap();
stmt.bind_parameter(&1, 1).unwrap();
assert_eq!(Some("SELECT 1".to_owned()), stmt.expanded_sql());
}
#[test]
fn test_bind_parameters() {
let db = Connection::open_in_memory().unwrap();
// dynamic slice:
db.query_row(
"SELECT ?1, ?2, ?3",
&[&1u8 as &dyn ToSql, &"one", &Some("one")],
|row| row.get::<_, u8>(0),
)
.unwrap();
// existing collection:
let data = vec![1, 2, 3];
db.query_row("SELECT ?1, ?2, ?3", &data, |row| row.get::<_, u8>(0))
.unwrap();
db.query_row("SELECT ?1, ?2, ?3", data.as_slice(), |row| {
row.get::<_, u8>(0)
})
.unwrap();
db.query_row("SELECT ?1, ?2, ?3", data, |row| row.get::<_, u8>(0))
.unwrap();
use std::collections::BTreeSet;
let data: BTreeSet<String> = ["one", "two", "three"]
.iter()
.map(|s| (*s).to_string())
.collect();
db.query_row("SELECT ?1, ?2, ?3", &data, |row| row.get::<_, String>(0))
.unwrap();
let data = [0; 3];
db.query_row("SELECT ?1, ?2, ?3", &data, |row| row.get::<_, u8>(0))
.unwrap();
db.query_row("SELECT ?1, ?2, ?3", data.iter(), |row| row.get::<_, u8>(0))
.unwrap();
}
#[test]
fn test_empty_stmt() {
let conn = Connection::open_in_memory().unwrap();
let mut stmt = conn.prepare("").unwrap();
assert_eq!(0, stmt.column_count());
assert!(stmt.parameter_index("test").is_ok());
assert!(stmt.step().is_err());
stmt.reset();
assert!(stmt.execute(NO_PARAMS).is_err());
}
#[test]
fn test_comment_stmt() {
let conn = Connection::open_in_memory().unwrap();
conn.prepare("/*SELECT 1;*/").unwrap();
}
#[test]
fn test_comment_and_sql_stmt() {
let conn = Connection::open_in_memory().unwrap();
let stmt = conn.prepare("/*...*/ SELECT 1;").unwrap();
assert_eq!(1, stmt.column_count());
}
#[test]
fn test_semi_colon_stmt() {
let conn = Connection::open_in_memory().unwrap();
let stmt = conn.prepare(";").unwrap();
assert_eq!(0, stmt.column_count());
}
#[test]
fn test_utf16_conversion() {
let db = Connection::open_in_memory().unwrap();
db.pragma_update(None, "encoding", &"UTF-16le").unwrap();
let encoding: String = db
.pragma_query_value(None, "encoding", |row| row.get(0))
.unwrap();
assert_eq!("UTF-16le", encoding);
db.execute_batch("CREATE TABLE foo(x TEXT)").unwrap();
let expected = "テスト";
db.execute("INSERT INTO foo(x) VALUES (?)", &[&expected])
.unwrap();
let actual: String = db
.query_row("SELECT x FROM foo", NO_PARAMS, |row| row.get(0))
.unwrap();
assert_eq!(expected, actual);
}
#[test]
fn test_nul_byte() {
let db = Connection::open_in_memory().unwrap();
let expected = "a\x00b";
let actual: String = db
.query_row("SELECT ?", &[&expected], |row| row.get(0))
.unwrap();
assert_eq!(expected, actual);
}
}