//! Traits dealing with SQLite data types. //! //! SQLite uses a [dynamic type system](https://www.sqlite.org/datatype3.html). Implementations of //! the `ToSql` and `FromSql` traits are provided for the basic types that //! SQLite provides methods for: //! //! * Strings (`String` and `&str`) //! * Blobs (`Vec` and `&[u8]`) //! * Numbers //! //! The number situation is a little complicated due to the fact that all //! numbers in SQLite are stored as `INTEGER` (`i64`) or `REAL` (`f64`). //! //! `ToSql` cannot fail and is therefore implemented for all number types that //! can be losslessly converted to one of these types, i.e. `u8`, `u16`, `u32`, //! `i8`, `i16`, `i32`, `i64`, `isize`, `f32` and `f64`. It is *not* implemented //! for `u64` or `usize`. //! //! `FromSql` can fail, and is implemented for all primitive number types, //! however you may get a runtime error or rounding depending on the types //! and values. //! //! * `INTEGER` to integer: returns an `Error::IntegralValueOutOfRange` error //! if the value does not fit. //! * `REAL` to integer: always returns an `Error::InvalidColumnType` error. //! * `INTEGER` to float: casts using `as` operator. Never fails. //! * `REAL` to float: casts using `as` operator. Never fails. //! //! Additionally, if the `time` feature is enabled, implementations are //! provided for `time::OffsetDateTime` that use the RFC 3339 date/time format, //! `"%Y-%m-%dT%H:%M:%S.%fZ"`, to store time values as strings. These values //! can be parsed by SQLite's builtin //! [datetime](https://www.sqlite.org/lang_datefunc.html) functions. If you //! want different storage for datetimes, you can use a newtype. //! #![cfg_attr( feature = "time", doc = r##" For example, to store datetimes as `i64`s counting the number of seconds since the Unix epoch: ``` use rusqlite::types::{FromSql, FromSqlResult, ToSql, ToSqlOutput, ValueRef}; use rusqlite::Result; pub struct DateTimeSql(pub time::OffsetDateTime); impl FromSql for DateTimeSql { fn column_result(value: ValueRef) -> FromSqlResult { i64::column_result(value).map(|as_i64| { DateTimeSql(time::OffsetDateTime::from_unix_timestamp(as_i64)) }) } } impl ToSql for DateTimeSql { fn to_sql(&self) -> Result { Ok(self.0.timestamp().into()) } } ``` "## )] //! `ToSql` and `FromSql` are also implemented for `Option` where `T` //! implements `ToSql` or `FromSql` for the cases where you want to know if a //! value was NULL (which gets translated to `None`). pub use self::from_sql::{FromSql, FromSqlError, FromSqlResult}; pub use self::to_sql::{ToSql, ToSqlOutput}; pub use self::value::Value; pub use self::value_ref::ValueRef; use std::fmt; #[cfg(feature = "chrono")] mod chrono; mod from_sql; #[cfg(feature = "serde_json")] mod serde_json; #[cfg(feature = "time")] mod time; mod to_sql; #[cfg(feature = "url")] mod url; mod value; mod value_ref; /// Empty struct that can be used to fill in a query parameter as `NULL`. /// /// ## Example /// /// ```rust,no_run /// # use rusqlite::{Connection, Result}; /// # use rusqlite::types::{Null}; /// /// fn insert_null(conn: &Connection) -> Result { /// conn.execute("INSERT INTO people (name) VALUES (?)", &[Null]) /// } /// ``` #[derive(Copy, Clone)] pub struct Null; /// SQLite data types. /// See [Fundamental Datatypes](https://sqlite.org/c3ref/c_blob.html). #[derive(Clone, Debug, PartialEq)] pub enum Type { /// NULL Null, /// 64-bit signed integer Integer, /// 64-bit IEEE floating point number Real, /// String Text, /// BLOB Blob, } impl fmt::Display for Type { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { Type::Null => write!(f, "Null"), Type::Integer => write!(f, "Integer"), Type::Real => write!(f, "Real"), Type::Text => write!(f, "Text"), Type::Blob => write!(f, "Blob"), } } } #[cfg(test)] mod test { use super::Value; use crate::{params, Connection, Error, Statement, NO_PARAMS}; use std::f64::EPSILON; use std::os::raw::{c_double, c_int}; fn checked_memory_handle() -> Connection { let db = Connection::open_in_memory().unwrap(); db.execute_batch("CREATE TABLE foo (b BLOB, t TEXT, i INTEGER, f FLOAT, n)") .unwrap(); db } #[test] fn test_blob() { let db = checked_memory_handle(); let v1234 = vec![1u8, 2, 3, 4]; db.execute("INSERT INTO foo(b) VALUES (?)", &[&v1234]) .unwrap(); let v: Vec = db .query_row("SELECT b FROM foo", NO_PARAMS, |r| r.get(0)) .unwrap(); assert_eq!(v, v1234); } #[test] fn test_empty_blob() { let db = checked_memory_handle(); let empty = vec![]; db.execute("INSERT INTO foo(b) VALUES (?)", &[&empty]) .unwrap(); let v: Vec = db .query_row("SELECT b FROM foo", NO_PARAMS, |r| r.get(0)) .unwrap(); assert_eq!(v, empty); } #[test] fn test_str() { let db = checked_memory_handle(); let s = "hello, world!"; db.execute("INSERT INTO foo(t) VALUES (?)", &[&s]).unwrap(); let from: String = db .query_row("SELECT t FROM foo", NO_PARAMS, |r| r.get(0)) .unwrap(); assert_eq!(from, s); } #[test] fn test_string() { let db = checked_memory_handle(); let s = "hello, world!"; db.execute("INSERT INTO foo(t) VALUES (?)", &[s.to_owned()]) .unwrap(); let from: String = db .query_row("SELECT t FROM foo", NO_PARAMS, |r| r.get(0)) .unwrap(); assert_eq!(from, s); } #[test] fn test_value() { let db = checked_memory_handle(); db.execute("INSERT INTO foo(i) VALUES (?)", &[Value::Integer(10)]) .unwrap(); assert_eq!( 10i64, db.query_row::("SELECT i FROM foo", NO_PARAMS, |r| r.get(0)) .unwrap() ); } #[test] fn test_option() { let db = checked_memory_handle(); let s = Some("hello, world!"); let b = Some(vec![1u8, 2, 3, 4]); db.execute("INSERT INTO foo(t) VALUES (?)", &[&s]).unwrap(); db.execute("INSERT INTO foo(b) VALUES (?)", &[&b]).unwrap(); let mut stmt = db .prepare("SELECT t, b FROM foo ORDER BY ROWID ASC") .unwrap(); let mut rows = stmt.query(NO_PARAMS).unwrap(); { let row1 = rows.next().unwrap().unwrap(); let s1: Option = row1.get_unwrap(0); let b1: Option> = row1.get_unwrap(1); assert_eq!(s.unwrap(), s1.unwrap()); assert!(b1.is_none()); } { let row2 = rows.next().unwrap().unwrap(); let s2: Option = row2.get_unwrap(0); let b2: Option> = row2.get_unwrap(1); assert!(s2.is_none()); assert_eq!(b, b2); } } #[test] #[allow(clippy::cognitive_complexity)] fn test_mismatched_types() { fn is_invalid_column_type(err: Error) -> bool { matches!(err, Error::InvalidColumnType(..)) } let db = checked_memory_handle(); db.execute( "INSERT INTO foo(b, t, i, f) VALUES (X'0102', 'text', 1, 1.5)", NO_PARAMS, ) .unwrap(); let mut stmt = db.prepare("SELECT b, t, i, f, n FROM foo").unwrap(); let mut rows = stmt.query(NO_PARAMS).unwrap(); let row = rows.next().unwrap().unwrap(); // check the correct types come back as expected assert_eq!(vec![1, 2], row.get::<_, Vec>(0).unwrap()); assert_eq!("text", row.get::<_, String>(1).unwrap()); assert_eq!(1, row.get::<_, c_int>(2).unwrap()); assert!((1.5 - row.get::<_, c_double>(3).unwrap()).abs() < EPSILON); assert!(row.get::<_, Option>(4).unwrap().is_none()); assert!(row.get::<_, Option>(4).unwrap().is_none()); assert!(row.get::<_, Option>(4).unwrap().is_none()); // check some invalid types // 0 is actually a blob (Vec) assert!(is_invalid_column_type( row.get::<_, c_int>(0).err().unwrap() )); assert!(is_invalid_column_type( row.get::<_, c_int>(0).err().unwrap() )); assert!(is_invalid_column_type(row.get::<_, i64>(0).err().unwrap())); assert!(is_invalid_column_type( row.get::<_, c_double>(0).err().unwrap() )); assert!(is_invalid_column_type( row.get::<_, String>(0).err().unwrap() )); #[cfg(feature = "time")] assert!(is_invalid_column_type( row.get::<_, time::OffsetDateTime>(0).err().unwrap() )); assert!(is_invalid_column_type( row.get::<_, Option>(0).err().unwrap() )); // 1 is actually a text (String) assert!(is_invalid_column_type( row.get::<_, c_int>(1).err().unwrap() )); assert!(is_invalid_column_type(row.get::<_, i64>(1).err().unwrap())); assert!(is_invalid_column_type( row.get::<_, c_double>(1).err().unwrap() )); assert!(is_invalid_column_type( row.get::<_, Vec>(1).err().unwrap() )); assert!(is_invalid_column_type( row.get::<_, Option>(1).err().unwrap() )); // 2 is actually an integer assert!(is_invalid_column_type( row.get::<_, String>(2).err().unwrap() )); assert!(is_invalid_column_type( row.get::<_, Vec>(2).err().unwrap() )); assert!(is_invalid_column_type( row.get::<_, Option>(2).err().unwrap() )); // 3 is actually a float (c_double) assert!(is_invalid_column_type( row.get::<_, c_int>(3).err().unwrap() )); assert!(is_invalid_column_type(row.get::<_, i64>(3).err().unwrap())); assert!(is_invalid_column_type( row.get::<_, String>(3).err().unwrap() )); assert!(is_invalid_column_type( row.get::<_, Vec>(3).err().unwrap() )); assert!(is_invalid_column_type( row.get::<_, Option>(3).err().unwrap() )); // 4 is actually NULL assert!(is_invalid_column_type( row.get::<_, c_int>(4).err().unwrap() )); assert!(is_invalid_column_type(row.get::<_, i64>(4).err().unwrap())); assert!(is_invalid_column_type( row.get::<_, c_double>(4).err().unwrap() )); assert!(is_invalid_column_type( row.get::<_, String>(4).err().unwrap() )); assert!(is_invalid_column_type( row.get::<_, Vec>(4).err().unwrap() )); #[cfg(feature = "time")] assert!(is_invalid_column_type( row.get::<_, time::OffsetDateTime>(4).err().unwrap() )); } #[test] fn test_dynamic_type() { use super::Value; let db = checked_memory_handle(); db.execute( "INSERT INTO foo(b, t, i, f) VALUES (X'0102', 'text', 1, 1.5)", NO_PARAMS, ) .unwrap(); let mut stmt = db.prepare("SELECT b, t, i, f, n FROM foo").unwrap(); let mut rows = stmt.query(NO_PARAMS).unwrap(); let row = rows.next().unwrap().unwrap(); assert_eq!(Value::Blob(vec![1, 2]), row.get::<_, Value>(0).unwrap()); assert_eq!( Value::Text(String::from("text")), row.get::<_, Value>(1).unwrap() ); assert_eq!(Value::Integer(1), row.get::<_, Value>(2).unwrap()); match row.get::<_, Value>(3).unwrap() { Value::Real(val) => assert!((1.5 - val).abs() < EPSILON), x => panic!("Invalid Value {:?}", x), } assert_eq!(Value::Null, row.get::<_, Value>(4).unwrap()); } macro_rules! test_conversion { ($db_etc:ident, $insert_value:expr, $get_type:ty, expect $expected_value:expr) => { $db_etc .insert_statement .execute(params![$insert_value]) .unwrap(); let res = $db_etc .query_statement .query_row(NO_PARAMS, |row| row.get::<_, $get_type>(0)); assert_eq!(res.unwrap(), $expected_value); $db_etc.delete_statement.execute(NO_PARAMS).unwrap(); }; ($db_etc:ident, $insert_value:expr, $get_type:ty, expect_error) => { $db_etc .insert_statement .execute(params![$insert_value]) .unwrap(); let res = $db_etc .query_statement .query_row(NO_PARAMS, |row| row.get::<_, $get_type>(0)); res.unwrap_err(); $db_etc.delete_statement.execute(NO_PARAMS).unwrap(); }; } #[test] fn test_numeric_conversions() { // Test what happens when we store an f32 and retrieve an i32 etc. let db = Connection::open_in_memory().unwrap(); db.execute_batch("CREATE TABLE foo (x)").unwrap(); // SQLite actually ignores the column types, so we just need to test // different numeric values. struct DbEtc<'conn> { insert_statement: Statement<'conn>, query_statement: Statement<'conn>, delete_statement: Statement<'conn>, } let mut db_etc = DbEtc { insert_statement: db.prepare("INSERT INTO foo VALUES (?1)").unwrap(), query_statement: db.prepare("SELECT x FROM foo").unwrap(), delete_statement: db.prepare("DELETE FROM foo").unwrap(), }; // Basic non-converting test. test_conversion!(db_etc, 0u8, u8, expect 0u8); // In-range integral conversions. test_conversion!(db_etc, 100u8, i8, expect 100i8); test_conversion!(db_etc, 200u8, u8, expect 200u8); test_conversion!(db_etc, 100u16, i8, expect 100i8); test_conversion!(db_etc, 200u16, u8, expect 200u8); test_conversion!(db_etc, u32::MAX, u64, expect u32::MAX as u64); test_conversion!(db_etc, i64::MIN, i64, expect i64::MIN); test_conversion!(db_etc, i64::MAX, i64, expect i64::MAX); test_conversion!(db_etc, i64::MAX, u64, expect i64::MAX as u64); // Out-of-range integral conversions. test_conversion!(db_etc, 200u8, i8, expect_error); test_conversion!(db_etc, 400u16, i8, expect_error); test_conversion!(db_etc, 400u16, u8, expect_error); test_conversion!(db_etc, -1i8, u8, expect_error); test_conversion!(db_etc, i64::MIN, u64, expect_error); // Integer to float, always works. test_conversion!(db_etc, i64::MIN, f32, expect i64::MIN as f32); test_conversion!(db_etc, i64::MAX, f32, expect i64::MAX as f32); test_conversion!(db_etc, i64::MIN, f64, expect i64::MIN as f64); test_conversion!(db_etc, i64::MAX, f64, expect i64::MAX as f64); // Float to int conversion, never works even if the actual value is an // integer. test_conversion!(db_etc, 0f64, i64, expect_error); } }