use std::iter::IntoIterator; use std::os::raw::{c_int, c_void}; #[cfg(feature = "array")] use std::rc::Rc; use std::slice::from_raw_parts; use std::{fmt, mem, ptr, str}; use super::ffi; use super::{len_as_c_int, str_for_sqlite}; use super::{ AndThenRows, Connection, Error, MappedRows, Params, RawStatement, Result, Row, Rows, ValueRef, }; use crate::types::{ToSql, ToSqlOutput}; #[cfg(feature = "array")] use crate::vtab::array::{free_array, ARRAY_TYPE}; /// A prepared statement. pub struct Statement<'conn> { conn: &'conn Connection, pub(crate) stmt: RawStatement, } impl Statement<'_> { /// Execute the prepared statement. /// /// On success, returns the number of rows that were changed or inserted or /// deleted (via `sqlite3_changes`). /// /// ## Example /// /// ### Use with positional parameters /// /// ```rust,no_run /// # use rusqlite::{Connection, Result, params}; /// fn update_rows(conn: &Connection) -> Result<()> { /// let mut stmt = conn.prepare("UPDATE foo SET bar = ?1 WHERE qux = ?2")?; /// // For a single parameter, or a parameter where all the values have /// // the same type, just passing an array is simplest. /// stmt.execute([2i32])?; /// // The `rusqlite::params!` macro is mostly useful when the parameters do not /// // all have the same type, or if there are more than 32 parameters /// // at once, but it can be used in other cases. /// stmt.execute(params![1i32])?; /// // However, it's not required, many cases are fine as: /// stmt.execute(&[&2i32])?; /// // Or even: /// stmt.execute([2i32])?; /// // If you really want to, this is an option as well. /// stmt.execute((2i32,))?; /// Ok(()) /// } /// ``` /// /// #### Heterogeneous positional parameters /// /// ``` /// use rusqlite::{Connection, Result}; /// fn store_file(conn: &Connection, path: &str, data: &[u8]) -> Result<()> { /// # // no need to do it for real. /// # fn sha256(_: &[u8]) -> [u8; 32] { [0; 32] } /// let query = "INSERT OR REPLACE INTO files(path, hash, data) VALUES (?1, ?2, ?3)"; /// let mut stmt = conn.prepare_cached(query)?; /// let hash: [u8; 32] = sha256(data); /// // The easiest way to pass positional parameters of have several /// // different types is by using a tuple. /// stmt.execute((path, hash, data))?; /// // Using the `params!` macro also works, and supports longer parameter lists: /// stmt.execute(rusqlite::params![path, hash, data])?; /// Ok(()) /// } /// # let c = Connection::open_in_memory().unwrap(); /// # c.execute_batch("CREATE TABLE files(path TEXT PRIMARY KEY, hash BLOB, data BLOB)").unwrap(); /// # store_file(&c, "foo/bar.txt", b"bibble").unwrap(); /// # store_file(&c, "foo/baz.txt", b"bobble").unwrap(); /// ``` /// /// ### Use with named parameters /// /// ```rust,no_run /// # use rusqlite::{Connection, Result, named_params}; /// fn insert(conn: &Connection) -> Result<()> { /// let mut stmt = conn.prepare("INSERT INTO test (key, value) VALUES (:key, :value)")?; /// // The `rusqlite::named_params!` macro (like `params!`) is useful for heterogeneous /// // sets of parameters (where all parameters are not the same type), or for queries /// // with many (more than 32) statically known parameters. /// stmt.execute(named_params! { ":key": "one", ":val": 2 })?; /// // However, named parameters can also be passed like: /// stmt.execute(&[(":key", "three"), (":val", "four")])?; /// // Or even: (note that a &T is required for the value type, currently) /// stmt.execute(&[(":key", &100), (":val", &200)])?; /// Ok(()) /// } /// ``` /// /// ### Use without parameters /// /// ```rust,no_run /// # use rusqlite::{Connection, Result, params}; /// fn delete_all(conn: &Connection) -> Result<()> { /// let mut stmt = conn.prepare("DELETE FROM users")?; /// stmt.execute([])?; /// Ok(()) /// } /// ``` /// /// # Failure /// /// Will return `Err` if binding parameters fails, the executed statement /// returns rows (in which case `query` should be used instead), or the /// underlying SQLite call fails. #[inline] pub fn execute(&mut self, params: P) -> Result { params.__bind_in(self)?; self.execute_with_bound_parameters() } /// Execute an INSERT and return the ROWID. /// /// # Note /// /// This function is a convenience wrapper around /// [`execute()`](Statement::execute) intended for queries that insert a /// single item. It is possible to misuse this function in a way that it /// cannot detect, such as by calling it on a statement which _updates_ /// a single item rather than inserting one. Please don't do that. /// /// # Failure /// /// Will return `Err` if no row is inserted or many rows are inserted. #[inline] pub fn insert(&mut self, params: P) -> Result { let changes = self.execute(params)?; match changes { 1 => Ok(self.conn.last_insert_rowid()), _ => Err(Error::StatementChangedRows(changes)), } } /// Execute the prepared statement, returning a handle to the resulting /// rows. /// /// Due to lifetime restrictions, the rows handle returned by `query` does /// not implement the `Iterator` trait. Consider using /// [`query_map`](Statement::query_map) or /// [`query_and_then`](Statement::query_and_then) instead, which do. /// /// ## Example /// /// ### Use without parameters /// /// ```rust,no_run /// # use rusqlite::{Connection, Result}; /// fn get_names(conn: &Connection) -> Result> { /// let mut stmt = conn.prepare("SELECT name FROM people")?; /// let mut rows = stmt.query([])?; /// /// let mut names = Vec::new(); /// while let Some(row) = rows.next()? { /// names.push(row.get(0)?); /// } /// /// Ok(names) /// } /// ``` /// /// ### Use with positional parameters /// /// ```rust,no_run /// # use rusqlite::{Connection, Result}; /// fn query(conn: &Connection, name: &str) -> Result<()> { /// let mut stmt = conn.prepare("SELECT * FROM test where name = ?1")?; /// let mut rows = stmt.query(rusqlite::params![name])?; /// while let Some(row) = rows.next()? { /// // ... /// } /// Ok(()) /// } /// ``` /// /// Or, equivalently (but without the [`crate::params!`] macro). /// /// ```rust,no_run /// # use rusqlite::{Connection, Result}; /// fn query(conn: &Connection, name: &str) -> Result<()> { /// let mut stmt = conn.prepare("SELECT * FROM test where name = ?1")?; /// let mut rows = stmt.query([name])?; /// while let Some(row) = rows.next()? { /// // ... /// } /// Ok(()) /// } /// ``` /// /// ### Use with named parameters /// /// ```rust,no_run /// # use rusqlite::{Connection, Result}; /// fn query(conn: &Connection) -> Result<()> { /// let mut stmt = conn.prepare("SELECT * FROM test where name = :name")?; /// let mut rows = stmt.query(&[(":name", "one")])?; /// while let Some(row) = rows.next()? { /// // ... /// } /// Ok(()) /// } /// ``` /// /// Note, the `named_params!` macro is provided for syntactic convenience, /// and so the above example could also be written as: /// /// ```rust,no_run /// # use rusqlite::{Connection, Result, named_params}; /// fn query(conn: &Connection) -> Result<()> { /// let mut stmt = conn.prepare("SELECT * FROM test where name = :name")?; /// let mut rows = stmt.query(named_params! { ":name": "one" })?; /// while let Some(row) = rows.next()? { /// // ... /// } /// Ok(()) /// } /// ``` /// /// ## Failure /// /// Will return `Err` if binding parameters fails. #[inline] pub fn query(&mut self, params: P) -> Result> { params.__bind_in(self)?; Ok(Rows::new(self)) } /// Executes the prepared statement and maps a function over the resulting /// rows, returning an iterator over the mapped function results. /// /// `f` is used to transform the _streaming_ iterator into a _standard_ /// iterator. /// /// This is equivalent to `stmt.query(params)?.mapped(f)`. /// /// ## Example /// /// ### Use with positional params /// /// ```rust,no_run /// # use rusqlite::{Connection, Result}; /// fn get_names(conn: &Connection) -> Result> { /// let mut stmt = conn.prepare("SELECT name FROM people")?; /// let rows = stmt.query_map([], |row| row.get(0))?; /// /// let mut names = Vec::new(); /// for name_result in rows { /// names.push(name_result?); /// } /// /// Ok(names) /// } /// ``` /// /// ### Use with named params /// /// ```rust,no_run /// # use rusqlite::{Connection, Result}; /// fn get_names(conn: &Connection) -> Result> { /// let mut stmt = conn.prepare("SELECT name FROM people WHERE id = :id")?; /// let rows = stmt.query_map(&[(":id", &"one")], |row| row.get(0))?; /// /// let mut names = Vec::new(); /// for name_result in rows { /// names.push(name_result?); /// } /// /// Ok(names) /// } /// ``` /// ## Failure /// /// Will return `Err` if binding parameters fails. pub fn query_map(&mut self, params: P, f: F) -> Result> where P: Params, F: FnMut(&Row<'_>) -> Result, { self.query(params).map(|rows| rows.mapped(f)) } /// Executes the prepared statement and maps a function over the resulting /// rows, where the function returns a `Result` with `Error` type /// implementing `std::convert::From` (so errors can be unified). /// /// This is equivalent to `stmt.query(params)?.and_then(f)`. /// /// ## Example /// /// ### Use with named params /// /// ```rust,no_run /// # use rusqlite::{Connection, Result}; /// struct Person { /// name: String, /// }; /// /// fn name_to_person(name: String) -> Result { /// // ... check for valid name /// Ok(Person { name }) /// } /// /// fn get_names(conn: &Connection) -> Result> { /// let mut stmt = conn.prepare("SELECT name FROM people WHERE id = :id")?; /// let rows = stmt.query_and_then(&[(":id", "one")], |row| name_to_person(row.get(0)?))?; /// /// let mut persons = Vec::new(); /// for person_result in rows { /// persons.push(person_result?); /// } /// /// Ok(persons) /// } /// ``` /// /// ### Use with positional params /// /// ```rust,no_run /// # use rusqlite::{Connection, Result}; /// fn get_names(conn: &Connection) -> Result> { /// let mut stmt = conn.prepare("SELECT name FROM people WHERE id = ?1")?; /// let rows = stmt.query_and_then(["one"], |row| row.get::<_, String>(0))?; /// /// let mut persons = Vec::new(); /// for person_result in rows { /// persons.push(person_result?); /// } /// /// Ok(persons) /// } /// ``` /// /// # Failure /// /// Will return `Err` if binding parameters fails. #[inline] pub fn query_and_then(&mut self, params: P, f: F) -> Result> where P: Params, E: From, F: FnMut(&Row<'_>) -> Result, { self.query(params).map(|rows| rows.and_then(f)) } /// Return `true` if a query in the SQL statement it executes returns one /// or more rows and `false` if the SQL returns an empty set. #[inline] pub fn exists(&mut self, params: P) -> Result { let mut rows = self.query(params)?; let exists = rows.next()?.is_some(); Ok(exists) } /// Convenience method to execute a query that is expected to return a /// single row. /// /// If the query returns more than one row, all rows except the first are /// ignored. /// /// Returns `Err(QueryReturnedNoRows)` if no results are returned. If the /// query truly is optional, you can call /// [`.optional()`](crate::OptionalExtension::optional) on the result of /// this to get a `Result>` (requires that the trait /// `rusqlite::OptionalExtension` is imported). /// /// # Failure /// /// Will return `Err` if the underlying SQLite call fails. pub fn query_row(&mut self, params: P, f: F) -> Result where P: Params, F: FnOnce(&Row<'_>) -> Result, { let mut rows = self.query(params)?; rows.get_expected_row().and_then(f) } /// Consumes the statement. /// /// Functionally equivalent to the `Drop` implementation, but allows /// callers to see any errors that occur. /// /// # Failure /// /// Will return `Err` if the underlying SQLite call fails. #[inline] pub fn finalize(mut self) -> Result<()> { self.finalize_() } /// Return the (one-based) index of an SQL parameter given its name. /// /// Note that the initial ":" or "$" or "@" or "?" used to specify the /// parameter is included as part of the name. /// /// ```rust,no_run /// # use rusqlite::{Connection, Result}; /// fn example(conn: &Connection) -> Result<()> { /// let stmt = conn.prepare("SELECT * FROM test WHERE name = :example")?; /// let index = stmt.parameter_index(":example")?; /// assert_eq!(index, Some(1)); /// Ok(()) /// } /// ``` /// /// # Failure /// /// Will return Err if `name` is invalid. Will return Ok(None) if the name /// is valid but not a bound parameter of this statement. #[inline] pub fn parameter_index(&self, name: &str) -> Result> { Ok(self.stmt.bind_parameter_index(name)) } /// Return the SQL parameter name given its (one-based) index (the inverse /// of [`Statement::parameter_index`]). /// /// ```rust,no_run /// # use rusqlite::{Connection, Result}; /// fn example(conn: &Connection) -> Result<()> { /// let stmt = conn.prepare("SELECT * FROM test WHERE name = :example")?; /// let index = stmt.parameter_name(1); /// assert_eq!(index, Some(":example")); /// Ok(()) /// } /// ``` /// /// # Failure /// /// Will return `None` if the column index is out of bounds or if the /// parameter is positional. /// /// # Panics /// /// Panics when parameter name is not valid UTF-8. #[inline] pub fn parameter_name(&self, index: usize) -> Option<&'_ str> { self.stmt.bind_parameter_name(index as i32).map(|name| { str::from_utf8(name.to_bytes()).expect("Invalid UTF-8 sequence in parameter name") }) } #[inline] pub(crate) fn bind_parameters

(&mut self, params: P) -> Result<()> where P: IntoIterator, P::Item: ToSql, { let expected = self.stmt.bind_parameter_count(); let mut index = 0; for p in params { index += 1; // The leftmost SQL parameter has an index of 1. if index > expected { break; } self.bind_parameter(&p, index)?; } if index != expected { Err(Error::InvalidParameterCount(index, expected)) } else { Ok(()) } } #[inline] pub(crate) fn ensure_parameter_count(&self, n: usize) -> Result<()> { let count = self.parameter_count(); if count != n { Err(Error::InvalidParameterCount(n, count)) } else { Ok(()) } } #[inline] pub(crate) fn bind_parameters_named( &mut self, params: &[(&str, &T)], ) -> Result<()> { for &(name, value) in params { if let Some(i) = self.parameter_index(name)? { let ts: &dyn ToSql = &value; self.bind_parameter(ts, i)?; } else { return Err(Error::InvalidParameterName(name.into())); } } Ok(()) } /// Return the number of parameters that can be bound to this statement. #[inline] pub fn parameter_count(&self) -> usize { self.stmt.bind_parameter_count() } /// Low level API to directly bind a parameter to a given index. /// /// Note that the index is one-based, that is, the first parameter index is /// 1 and not 0. This is consistent with the SQLite API and the values given /// to parameters bound as `?NNN`. /// /// The valid values for `one_based_col_index` begin at `1`, and end at /// [`Statement::parameter_count`], inclusive. /// /// # Caveats /// /// This should not generally be used, but is available for special cases /// such as: /// /// - binding parameters where a gap exists. /// - binding named and positional parameters in the same query. /// - separating parameter binding from query execution. /// /// In general, statements that have had *any* parameters bound this way /// should have *all* parameters bound this way, and be queried or executed /// by [`Statement::raw_query`] or [`Statement::raw_execute`], other usage /// is unsupported and will likely, probably in surprising ways. /// /// That is: Do not mix the "raw" statement functions with the rest of the /// API, or the results may be surprising, and may even change in future /// versions without comment. /// /// # Example /// /// ```rust,no_run /// # use rusqlite::{Connection, Result}; /// fn query(conn: &Connection) -> Result<()> { /// let mut stmt = conn.prepare("SELECT * FROM test WHERE name = :name AND value > ?2")?; /// let name_index = stmt.parameter_index(":name")?.expect("No such parameter"); /// stmt.raw_bind_parameter(name_index, "foo")?; /// stmt.raw_bind_parameter(2, 100)?; /// let mut rows = stmt.raw_query(); /// while let Some(row) = rows.next()? { /// // ... /// } /// Ok(()) /// } /// ``` #[inline] pub fn raw_bind_parameter( &mut self, one_based_col_index: usize, param: T, ) -> Result<()> { // This is the same as `bind_parameter` but slightly more ergonomic and // correctly takes `&mut self`. self.bind_parameter(¶m, one_based_col_index) } /// Low level API to execute a statement given that all parameters were /// bound explicitly with the [`Statement::raw_bind_parameter`] API. /// /// # Caveats /// /// Any unbound parameters will have `NULL` as their value. /// /// This should not generally be used outside of special cases, and /// functions in the [`Statement::execute`] family should be preferred. /// /// # Failure /// /// Will return `Err` if the executed statement returns rows (in which case /// `query` should be used instead), or the underlying SQLite call fails. #[inline] pub fn raw_execute(&mut self) -> Result { self.execute_with_bound_parameters() } /// Low level API to get `Rows` for this query given that all parameters /// were bound explicitly with the [`Statement::raw_bind_parameter`] API. /// /// # Caveats /// /// Any unbound parameters will have `NULL` as their value. /// /// This should not generally be used outside of special cases, and /// functions in the [`Statement::query`] family should be preferred. /// /// Note that if the SQL does not return results, [`Statement::raw_execute`] /// should be used instead. #[inline] pub fn raw_query(&mut self) -> Rows<'_> { Rows::new(self) } // generic because many of these branches can constant fold away. fn bind_parameter(&self, param: &P, col: usize) -> Result<()> { let value = param.to_sql()?; let ptr = unsafe { self.stmt.ptr() }; let value = match value { ToSqlOutput::Borrowed(v) => v, ToSqlOutput::Owned(ref v) => ValueRef::from(v), #[cfg(feature = "blob")] ToSqlOutput::ZeroBlob(len) => { // TODO sqlite3_bind_zeroblob64 // 3.8.11 return self .conn .decode_result(unsafe { ffi::sqlite3_bind_zeroblob(ptr, col as c_int, len) }); } #[cfg(feature = "array")] ToSqlOutput::Array(a) => { return self.conn.decode_result(unsafe { ffi::sqlite3_bind_pointer( ptr, col as c_int, Rc::into_raw(a) as *mut c_void, ARRAY_TYPE, Some(free_array), ) }); } }; self.conn.decode_result(match value { ValueRef::Null => unsafe { ffi::sqlite3_bind_null(ptr, col as c_int) }, ValueRef::Integer(i) => unsafe { ffi::sqlite3_bind_int64(ptr, col as c_int, i) }, ValueRef::Real(r) => unsafe { ffi::sqlite3_bind_double(ptr, col as c_int, r) }, ValueRef::Text(s) => unsafe { let (c_str, len, destructor) = str_for_sqlite(s)?; // TODO sqlite3_bind_text64 // 3.8.7 ffi::sqlite3_bind_text(ptr, col as c_int, c_str, len, destructor) }, ValueRef::Blob(b) => unsafe { let length = len_as_c_int(b.len())?; if length == 0 { ffi::sqlite3_bind_zeroblob(ptr, col as c_int, 0) } else { // TODO sqlite3_bind_blob64 // 3.8.7 ffi::sqlite3_bind_blob( ptr, col as c_int, b.as_ptr().cast::(), length, ffi::SQLITE_TRANSIENT(), ) } }, }) } #[inline] fn execute_with_bound_parameters(&mut self) -> Result { self.check_update()?; let r = self.stmt.step(); let rr = self.stmt.reset(); match r { ffi::SQLITE_DONE => match rr { ffi::SQLITE_OK => Ok(self.conn.changes() as usize), _ => Err(self.conn.decode_result(rr).unwrap_err()), }, ffi::SQLITE_ROW => Err(Error::ExecuteReturnedResults), _ => Err(self.conn.decode_result(r).unwrap_err()), } } #[inline] fn finalize_(&mut self) -> Result<()> { let mut stmt = unsafe { RawStatement::new(ptr::null_mut(), 0) }; mem::swap(&mut stmt, &mut self.stmt); self.conn.decode_result(stmt.finalize()) } #[cfg(feature = "extra_check")] #[inline] fn check_update(&self) -> Result<()> { // sqlite3_column_count works for DML but not for DDL (ie ALTER) if self.column_count() > 0 && self.stmt.readonly() { return Err(Error::ExecuteReturnedResults); } Ok(()) } #[cfg(not(feature = "extra_check"))] #[inline] #[allow(clippy::unnecessary_wraps)] fn check_update(&self) -> Result<()> { Ok(()) } /// Returns a string containing the SQL text of prepared statement with /// bound parameters expanded. pub fn expanded_sql(&self) -> Option { self.stmt .expanded_sql() .map(|s| s.to_string_lossy().to_string()) } /// Get the value for one of the status counters for this statement. #[inline] pub fn get_status(&self, status: StatementStatus) -> i32 { self.stmt.get_status(status, false) } /// Reset the value of one of the status counters for this statement, #[inline] /// returning the value it had before resetting. pub fn reset_status(&self, status: StatementStatus) -> i32 { self.stmt.get_status(status, true) } /// Returns 1 if the prepared statement is an EXPLAIN statement, /// or 2 if the statement is an EXPLAIN QUERY PLAN, /// or 0 if it is an ordinary statement or a NULL pointer. #[inline] #[cfg(feature = "modern_sqlite")] // 3.28.0 #[cfg_attr(docsrs, doc(cfg(feature = "modern_sqlite")))] pub fn is_explain(&self) -> i32 { self.stmt.is_explain() } /// Returns true if the statement is read only. #[inline] pub fn readonly(&self) -> bool { self.stmt.readonly() } #[cfg(feature = "extra_check")] #[inline] pub(crate) fn check_no_tail(&self) -> Result<()> { if self.stmt.has_tail() { Err(Error::MultipleStatement) } else { Ok(()) } } #[cfg(not(feature = "extra_check"))] #[inline] #[allow(clippy::unnecessary_wraps)] pub(crate) fn check_no_tail(&self) -> Result<()> { Ok(()) } /// Safety: This is unsafe, because using `sqlite3_stmt` after the /// connection has closed is illegal, but `RawStatement` does not enforce /// this, as it loses our protective `'conn` lifetime bound. #[inline] pub(crate) unsafe fn into_raw(mut self) -> RawStatement { let mut stmt = RawStatement::new(ptr::null_mut(), 0); mem::swap(&mut stmt, &mut self.stmt); stmt } /// Reset all bindings pub fn clear_bindings(&mut self) { self.stmt.clear_bindings(); } } impl fmt::Debug for Statement<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let sql = if self.stmt.is_null() { Ok("") } else { str::from_utf8(self.stmt.sql().unwrap().to_bytes()) }; f.debug_struct("Statement") .field("conn", self.conn) .field("stmt", &self.stmt) .field("sql", &sql) .finish() } } impl Drop for Statement<'_> { #[allow(unused_must_use)] #[inline] fn drop(&mut self) { self.finalize_(); } } impl Statement<'_> { #[inline] pub(super) fn new(conn: &Connection, stmt: RawStatement) -> Statement<'_> { Statement { conn, stmt } } pub(super) fn value_ref(&self, col: usize) -> ValueRef<'_> { let raw = unsafe { self.stmt.ptr() }; match self.stmt.column_type(col) { ffi::SQLITE_NULL => ValueRef::Null, ffi::SQLITE_INTEGER => { ValueRef::Integer(unsafe { ffi::sqlite3_column_int64(raw, col as c_int) }) } ffi::SQLITE_FLOAT => { ValueRef::Real(unsafe { ffi::sqlite3_column_double(raw, col as c_int) }) } ffi::SQLITE_TEXT => { let s = unsafe { // Quoting from "Using SQLite" book: // To avoid problems, an application should first extract the desired type using // a sqlite3_column_xxx() function, and then call the // appropriate sqlite3_column_bytes() function. let text = ffi::sqlite3_column_text(raw, col as c_int); let len = ffi::sqlite3_column_bytes(raw, col as c_int); assert!( !text.is_null(), "unexpected SQLITE_TEXT column type with NULL data" ); from_raw_parts(text.cast::(), len as usize) }; ValueRef::Text(s) } ffi::SQLITE_BLOB => { let (blob, len) = unsafe { ( ffi::sqlite3_column_blob(raw, col as c_int), ffi::sqlite3_column_bytes(raw, col as c_int), ) }; assert!( len >= 0, "unexpected negative return from sqlite3_column_bytes" ); if len > 0 { assert!( !blob.is_null(), "unexpected SQLITE_BLOB column type with NULL data" ); ValueRef::Blob(unsafe { from_raw_parts(blob.cast::(), len as usize) }) } else { // The return value from sqlite3_column_blob() for a zero-length BLOB // is a NULL pointer. ValueRef::Blob(&[]) } } _ => unreachable!("sqlite3_column_type returned invalid value"), } } #[inline] pub(super) fn step(&self) -> Result { match self.stmt.step() { ffi::SQLITE_ROW => Ok(true), ffi::SQLITE_DONE => Ok(false), code => Err(self.conn.decode_result(code).unwrap_err()), } } #[inline] pub(super) fn reset(&self) -> Result<()> { match self.stmt.reset() { ffi::SQLITE_OK => Ok(()), code => Err(self.conn.decode_result(code).unwrap_err()), } } } /// Prepared statement status counters. /// /// See `https://www.sqlite.org/c3ref/c_stmtstatus_counter.html` /// for explanations of each. /// /// Note that depending on your version of SQLite, all of these /// may not be available. #[repr(i32)] #[derive(Clone, Copy, PartialEq, Eq)] #[non_exhaustive] pub enum StatementStatus { /// Equivalent to SQLITE_STMTSTATUS_FULLSCAN_STEP FullscanStep = 1, /// Equivalent to SQLITE_STMTSTATUS_SORT Sort = 2, /// Equivalent to SQLITE_STMTSTATUS_AUTOINDEX AutoIndex = 3, /// Equivalent to SQLITE_STMTSTATUS_VM_STEP VmStep = 4, /// Equivalent to SQLITE_STMTSTATUS_REPREPARE (3.20.0) RePrepare = 5, /// Equivalent to SQLITE_STMTSTATUS_RUN (3.20.0) Run = 6, /// Equivalent to SQLITE_STMTSTATUS_FILTER_MISS FilterMiss = 7, /// Equivalent to SQLITE_STMTSTATUS_FILTER_HIT FilterHit = 8, /// Equivalent to SQLITE_STMTSTATUS_MEMUSED (3.20.0) MemUsed = 99, } #[cfg(test)] mod test { use crate::types::ToSql; use crate::{params_from_iter, Connection, Error, Result}; #[test] fn test_execute_named() -> Result<()> { let db = Connection::open_in_memory()?; db.execute_batch("CREATE TABLE foo(x INTEGER)")?; assert_eq!( db.execute("INSERT INTO foo(x) VALUES (:x)", &[(":x", &1i32)])?, 1 ); assert_eq!( db.execute("INSERT INTO foo(x) VALUES (:x)", &[(":x", &2i32)])?, 1 ); assert_eq!( db.execute( "INSERT INTO foo(x) VALUES (:x)", crate::named_params! {":x": 3i32} )?, 1 ); assert_eq!( 6i32, db.query_row::( "SELECT SUM(x) FROM foo WHERE x > :x", &[(":x", &0i32)], |r| r.get(0) )? ); assert_eq!( 5i32, db.query_row::( "SELECT SUM(x) FROM foo WHERE x > :x", &[(":x", &1i32)], |r| r.get(0) )? ); Ok(()) } #[test] fn test_stmt_execute_named() -> Result<()> { let db = Connection::open_in_memory()?; let sql = "CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag \ INTEGER)"; db.execute_batch(sql)?; let mut stmt = db.prepare("INSERT INTO test (name) VALUES (:name)")?; stmt.execute(&[(":name", &"one")])?; let mut stmt = db.prepare("SELECT COUNT(*) FROM test WHERE name = :name")?; assert_eq!( 1i32, stmt.query_row::(&[(":name", "one")], |r| r.get(0))? ); Ok(()) } #[test] fn test_query_named() -> Result<()> { let db = Connection::open_in_memory()?; let sql = r#" CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag INTEGER); INSERT INTO test(id, name) VALUES (1, "one"); "#; db.execute_batch(sql)?; let mut stmt = db.prepare("SELECT id FROM test where name = :name")?; let mut rows = stmt.query(&[(":name", "one")])?; let id: Result = rows.next()?.unwrap().get(0); assert_eq!(Ok(1), id); Ok(()) } #[test] fn test_query_map_named() -> Result<()> { let db = Connection::open_in_memory()?; let sql = r#" CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag INTEGER); INSERT INTO test(id, name) VALUES (1, "one"); "#; db.execute_batch(sql)?; let mut stmt = db.prepare("SELECT id FROM test where name = :name")?; let mut rows = stmt.query_map(&[(":name", "one")], |row| { let id: Result = row.get(0); id.map(|i| 2 * i) })?; let doubled_id: i32 = rows.next().unwrap()?; assert_eq!(2, doubled_id); Ok(()) } #[test] fn test_query_and_then_by_name() -> Result<()> { let db = Connection::open_in_memory()?; let sql = r#" CREATE TABLE test (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, flag INTEGER); INSERT INTO test(id, name) VALUES (1, "one"); INSERT INTO test(id, name) VALUES (2, "one"); "#; db.execute_batch(sql)?; let mut stmt = db.prepare("SELECT id FROM test where name = :name ORDER BY id ASC")?; let mut rows = stmt.query_and_then(&[(":name", "one")], |row| { let id: i32 = row.get(0)?; if id == 1 { Ok(id) } else { Err(Error::SqliteSingleThreadedMode) } })?; // first row should be Ok let doubled_id: i32 = rows.next().unwrap()?; assert_eq!(1, doubled_id); // second row should be Err #[allow(clippy::match_wild_err_arm)] match rows.next().unwrap() { Ok(_) => panic!("invalid Ok"), Err(Error::SqliteSingleThreadedMode) => (), Err(_) => panic!("invalid Err"), } Ok(()) } #[test] fn test_unbound_parameters_are_null() -> Result<()> { let db = Connection::open_in_memory()?; let sql = "CREATE TABLE test (x TEXT, y TEXT)"; db.execute_batch(sql)?; let mut stmt = db.prepare("INSERT INTO test (x, y) VALUES (:x, :y)")?; stmt.execute(&[(":x", &"one")])?; let result: Option = db.one_column("SELECT y FROM test WHERE x = 'one'")?; assert!(result.is_none()); Ok(()) } #[test] fn test_raw_binding() -> Result<()> { let db = Connection::open_in_memory()?; db.execute_batch("CREATE TABLE test (name TEXT, value INTEGER)")?; { let mut stmt = db.prepare("INSERT INTO test (name, value) VALUES (:name, ?3)")?; let name_idx = stmt.parameter_index(":name")?.unwrap(); stmt.raw_bind_parameter(name_idx, "example")?; stmt.raw_bind_parameter(3, 50i32)?; let n = stmt.raw_execute()?; assert_eq!(n, 1); } { let mut stmt = db.prepare("SELECT name, value FROM test WHERE value = ?2")?; stmt.raw_bind_parameter(2, 50)?; let mut rows = stmt.raw_query(); { let row = rows.next()?.unwrap(); let name: String = row.get(0)?; assert_eq!(name, "example"); let value: i32 = row.get(1)?; assert_eq!(value, 50); } assert!(rows.next()?.is_none()); } Ok(()) } #[test] fn test_unbound_parameters_are_reused() -> Result<()> { let db = Connection::open_in_memory()?; let sql = "CREATE TABLE test (x TEXT, y TEXT)"; db.execute_batch(sql)?; let mut stmt = db.prepare("INSERT INTO test (x, y) VALUES (:x, :y)")?; stmt.execute(&[(":x", "one")])?; stmt.execute(&[(":y", "two")])?; let result: String = db.one_column("SELECT x FROM test WHERE y = 'two'")?; assert_eq!(result, "one"); Ok(()) } #[test] fn test_insert() -> Result<()> { let db = Connection::open_in_memory()?; db.execute_batch("CREATE TABLE foo(x INTEGER UNIQUE)")?; let mut stmt = db.prepare("INSERT OR IGNORE INTO foo (x) VALUES (?1)")?; assert_eq!(stmt.insert([1i32])?, 1); assert_eq!(stmt.insert([2i32])?, 2); match stmt.insert([1i32]).unwrap_err() { Error::StatementChangedRows(0) => (), err => panic!("Unexpected error {err}"), } let mut multi = db.prepare("INSERT INTO foo (x) SELECT 3 UNION ALL SELECT 4")?; match multi.insert([]).unwrap_err() { Error::StatementChangedRows(2) => (), err => panic!("Unexpected error {err}"), } Ok(()) } #[test] fn test_insert_different_tables() -> Result<()> { // Test for https://github.com/rusqlite/rusqlite/issues/171 let db = Connection::open_in_memory()?; db.execute_batch( r" CREATE TABLE foo(x INTEGER); CREATE TABLE bar(x INTEGER); ", )?; assert_eq!(db.prepare("INSERT INTO foo VALUES (10)")?.insert([])?, 1); assert_eq!(db.prepare("INSERT INTO bar VALUES (10)")?.insert([])?, 1); Ok(()) } #[test] fn test_exists() -> Result<()> { let db = Connection::open_in_memory()?; let sql = "BEGIN; CREATE TABLE foo(x INTEGER); INSERT INTO foo VALUES(1); INSERT INTO foo VALUES(2); END;"; db.execute_batch(sql)?; let mut stmt = db.prepare("SELECT 1 FROM foo WHERE x = ?1")?; assert!(stmt.exists([1i32])?); assert!(stmt.exists([2i32])?); assert!(!stmt.exists([0i32])?); Ok(()) } #[test] fn test_tuple_params() -> Result<()> { let db = Connection::open_in_memory()?; let s = db.query_row("SELECT printf('[%s]', ?1)", ("abc",), |r| { r.get::<_, String>(0) })?; assert_eq!(s, "[abc]"); let s = db.query_row( "SELECT printf('%d %s %d', ?1, ?2, ?3)", (1i32, "abc", 2i32), |r| r.get::<_, String>(0), )?; assert_eq!(s, "1 abc 2"); let s = db.query_row( "SELECT printf('%d %s %d %d', ?1, ?2, ?3, ?4)", (1, "abc", 2i32, 4i64), |r| r.get::<_, String>(0), )?; assert_eq!(s, "1 abc 2 4"); #[rustfmt::skip] let bigtup = ( 0, "a", 1, "b", 2, "c", 3, "d", 4, "e", 5, "f", 6, "g", 7, "h", ); let query = "SELECT printf( '%d %s | %d %s | %d %s | %d %s || %d %s | %d %s | %d %s | %d %s', ?1, ?2, ?3, ?4, ?5, ?6, ?7, ?8, ?9, ?10, ?11, ?12, ?13, ?14, ?15, ?16 )"; let s = db.query_row(query, bigtup, |r| r.get::<_, String>(0))?; assert_eq!(s, "0 a | 1 b | 2 c | 3 d || 4 e | 5 f | 6 g | 7 h"); Ok(()) } #[test] fn test_query_row() -> Result<()> { let db = Connection::open_in_memory()?; let sql = "BEGIN; CREATE TABLE foo(x INTEGER, y INTEGER); INSERT INTO foo VALUES(1, 3); INSERT INTO foo VALUES(2, 4); END;"; db.execute_batch(sql)?; let mut stmt = db.prepare("SELECT y FROM foo WHERE x = ?1")?; let y: Result = stmt.query_row([1i32], |r| r.get(0)); assert_eq!(3i64, y?); Ok(()) } #[test] fn test_query_by_column_name() -> Result<()> { let db = Connection::open_in_memory()?; let sql = "BEGIN; CREATE TABLE foo(x INTEGER, y INTEGER); INSERT INTO foo VALUES(1, 3); END;"; db.execute_batch(sql)?; let mut stmt = db.prepare("SELECT y FROM foo")?; let y: Result = stmt.query_row([], |r| r.get("y")); assert_eq!(3i64, y?); Ok(()) } #[test] fn test_query_by_column_name_ignore_case() -> Result<()> { let db = Connection::open_in_memory()?; let sql = "BEGIN; CREATE TABLE foo(x INTEGER, y INTEGER); INSERT INTO foo VALUES(1, 3); END;"; db.execute_batch(sql)?; let mut stmt = db.prepare("SELECT y as Y FROM foo")?; let y: Result = stmt.query_row([], |r| r.get("y")); assert_eq!(3i64, y?); Ok(()) } #[test] fn test_expanded_sql() -> Result<()> { let db = Connection::open_in_memory()?; let stmt = db.prepare("SELECT ?1")?; stmt.bind_parameter(&1, 1)?; assert_eq!(Some("SELECT 1".to_owned()), stmt.expanded_sql()); Ok(()) } #[test] fn test_bind_parameters() -> Result<()> { let db = Connection::open_in_memory()?; // dynamic slice: db.query_row( "SELECT ?1, ?2, ?3", [&1u8 as &dyn ToSql, &"one", &Some("one")], |row| row.get::<_, u8>(0), )?; // existing collection: let data = vec![1, 2, 3]; db.query_row("SELECT ?1, ?2, ?3", params_from_iter(&data), |row| { row.get::<_, u8>(0) })?; db.query_row( "SELECT ?1, ?2, ?3", params_from_iter(data.as_slice()), |row| row.get::<_, u8>(0), )?; db.query_row("SELECT ?1, ?2, ?3", params_from_iter(data), |row| { row.get::<_, u8>(0) })?; use std::collections::BTreeSet; let data: BTreeSet = ["one", "two", "three"] .iter() .map(|s| (*s).to_string()) .collect(); db.query_row("SELECT ?1, ?2, ?3", params_from_iter(&data), |row| { row.get::<_, String>(0) })?; let data = [0; 3]; db.query_row("SELECT ?1, ?2, ?3", params_from_iter(&data), |row| { row.get::<_, u8>(0) })?; db.query_row("SELECT ?1, ?2, ?3", params_from_iter(data.iter()), |row| { row.get::<_, u8>(0) })?; Ok(()) } #[test] fn test_parameter_name() -> Result<()> { let db = Connection::open_in_memory()?; db.execute_batch("CREATE TABLE test (name TEXT, value INTEGER)")?; let stmt = db.prepare("INSERT INTO test (name, value) VALUES (:name, ?3)")?; assert_eq!(stmt.parameter_name(0), None); assert_eq!(stmt.parameter_name(1), Some(":name")); assert_eq!(stmt.parameter_name(2), None); Ok(()) } #[test] fn test_empty_stmt() -> Result<()> { let conn = Connection::open_in_memory()?; let mut stmt = conn.prepare("")?; assert_eq!(0, stmt.column_count()); stmt.parameter_index("test").unwrap(); stmt.step().unwrap_err(); stmt.reset().unwrap(); // SQLITE_OMIT_AUTORESET = false stmt.execute([]).unwrap_err(); Ok(()) } #[test] fn test_comment_stmt() -> Result<()> { let conn = Connection::open_in_memory()?; conn.prepare("/*SELECT 1;*/")?; Ok(()) } #[test] fn test_comment_and_sql_stmt() -> Result<()> { let conn = Connection::open_in_memory()?; let stmt = conn.prepare("/*...*/ SELECT 1;")?; assert_eq!(1, stmt.column_count()); Ok(()) } #[test] fn test_semi_colon_stmt() -> Result<()> { let conn = Connection::open_in_memory()?; let stmt = conn.prepare(";")?; assert_eq!(0, stmt.column_count()); Ok(()) } #[test] fn test_utf16_conversion() -> Result<()> { let db = Connection::open_in_memory()?; db.pragma_update(None, "encoding", "UTF-16le")?; let encoding: String = db.pragma_query_value(None, "encoding", |row| row.get(0))?; assert_eq!("UTF-16le", encoding); db.execute_batch("CREATE TABLE foo(x TEXT)")?; let expected = "ใƒ†ใ‚นใƒˆ"; db.execute("INSERT INTO foo(x) VALUES (?1)", [&expected])?; let actual: String = db.one_column("SELECT x FROM foo")?; assert_eq!(expected, actual); Ok(()) } #[test] fn test_nul_byte() -> Result<()> { let db = Connection::open_in_memory()?; let expected = "a\x00b"; let actual: String = db.query_row("SELECT ?1", [expected], |row| row.get(0))?; assert_eq!(expected, actual); Ok(()) } #[test] #[cfg(feature = "modern_sqlite")] fn is_explain() -> Result<()> { let db = Connection::open_in_memory()?; let stmt = db.prepare("SELECT 1;")?; assert_eq!(0, stmt.is_explain()); Ok(()) } #[test] fn readonly() -> Result<()> { let db = Connection::open_in_memory()?; let stmt = db.prepare("SELECT 1;")?; assert!(stmt.readonly()); Ok(()) } #[test] #[cfg(feature = "modern_sqlite")] // SQLite >= 3.38.0 fn test_error_offset() -> Result<()> { use crate::ffi::ErrorCode; let db = Connection::open_in_memory()?; let r = db.execute_batch("SELECT CURRENT_TIMESTANP;"); match r.unwrap_err() { Error::SqlInputError { error, offset, .. } => { assert_eq!(error.code, ErrorCode::Unknown); assert_eq!(offset, 7); } err => panic!("Unexpected error {err}"), } Ok(()) } }