//! Traits dealing with SQLite data types. //! //! SQLite uses a [dynamic type system](https://www.sqlite.org/datatype3.html). Implementations of //! the `ToSql` and `FromSql` traits are provided for the basic types that SQLite provides methods //! for: //! //! * C integers and doubles (`c_int` and `c_double`) //! * Strings (`String` and `&str`) //! * Blobs (`Vec` and `&[u8]`) //! //! Additionally, because it is such a common data type, implementations are provided for //! `time::Timespec` that use a string for storage (using the same format string, //! `"%Y-%m-%d %H:%M:%S"`, as SQLite's builtin //! [datetime](https://www.sqlite.org/lang_datefunc.html) function. Note that this storage //! truncates timespecs to the nearest second. If you want different storage for timespecs, you can //! use a newtype. For example, to store timespecs as doubles: //! //! `ToSql` and `FromSql` are also implemented for `Option` where `T` implements `ToSql` or //! `FromSql` for the cases where you want to know if a value was NULL (which gets translated to //! `None`). If you get a value that was NULL in SQLite but you store it into a non-`Option` value //! in Rust, you will get a "sensible" zero value - 0 for numeric types (including timespecs), an //! empty string, or an empty vector of bytes. //! //! ```rust,ignore //! extern crate rusqlite; //! extern crate libc; //! //! use rusqlite::types::{FromSql, ToSql, sqlite3_stmt}; //! use rusqlite::{Result}; //! use libc::c_int; //! use time; //! //! pub struct TimespecSql(pub time::Timespec); //! //! impl FromSql for TimespecSql { //! unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) //! -> Result { //! let as_f64_result = FromSql::column_result(stmt, col); //! as_f64_result.map(|as_f64: f64| { //! TimespecSql(time::Timespec{ sec: as_f64.trunc() as i64, //! nsec: (as_f64.fract() * 1.0e9) as i32 }) //! }) //! } //! } //! //! impl ToSql for TimespecSql { //! unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int { //! let TimespecSql(ts) = *self; //! let as_f64 = ts.sec as f64 + (ts.nsec as f64) / 1.0e9; //! as_f64.bind_parameter(stmt, col) //! } //! } //! ``` extern crate time; use libc::{c_int, c_double, c_char}; use std::ffi::CStr; use std::mem; use std::str; use super::ffi; use super::{Result, Error, str_to_cstring}; pub use ffi::sqlite3_stmt; pub use ffi::sqlite3_column_type; pub use ffi::{SQLITE_INTEGER, SQLITE_FLOAT, SQLITE_TEXT, SQLITE_BLOB, SQLITE_NULL}; const SQLITE_DATETIME_FMT: &'static str = "%Y-%m-%d %H:%M:%S"; /// A trait for types that can be converted into SQLite values. pub trait ToSql { unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int; } /// A trait for types that can be created from a SQLite value. pub trait FromSql: Sized { unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result; /// FromSql types can implement this method and use sqlite3_column_type to check that /// the type reported by SQLite matches a type suitable for Self. This method is used /// by `Row::get_checked` to confirm that the column contains a valid type before /// attempting to retrieve the value. unsafe fn column_has_valid_sqlite_type(_: *mut sqlite3_stmt, _: c_int) -> bool { true } } macro_rules! raw_to_impl( ($t:ty, $f:ident) => ( impl ToSql for $t { unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int { ffi::$f(stmt, col, *self) } } ) ); raw_to_impl!(c_int, sqlite3_bind_int); raw_to_impl!(i64, sqlite3_bind_int64); raw_to_impl!(c_double, sqlite3_bind_double); impl ToSql for bool { unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int { match *self { true => ffi::sqlite3_bind_int(stmt, col, 1), _ => ffi::sqlite3_bind_int(stmt, col, 0), } } } impl<'a> ToSql for &'a str { unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int { let length = self.len(); if length > ::std::i32::MAX as usize { return ffi::SQLITE_TOOBIG; } match str_to_cstring(self) { Ok(c_str) => { ffi::sqlite3_bind_text(stmt, col, c_str.as_ptr(), length as c_int, ffi::SQLITE_TRANSIENT()) } Err(_) => ffi::SQLITE_MISUSE, } } } impl ToSql for String { unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int { (&self[..]).bind_parameter(stmt, col) } } impl<'a> ToSql for &'a [u8] { unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int { if self.len() > ::std::i32::MAX as usize { return ffi::SQLITE_TOOBIG; } ffi::sqlite3_bind_blob(stmt, col, mem::transmute(self.as_ptr()), self.len() as c_int, ffi::SQLITE_TRANSIENT()) } } impl ToSql for Vec { unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int { (&self[..]).bind_parameter(stmt, col) } } impl ToSql for time::Timespec { unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int { let time_str = time::at_utc(*self).strftime(SQLITE_DATETIME_FMT).unwrap().to_string(); time_str.bind_parameter(stmt, col) } } impl ToSql for Option { unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int { match *self { None => ffi::sqlite3_bind_null(stmt, col), Some(ref t) => t.bind_parameter(stmt, col), } } } /// Empty struct that can be used to fill in a query parameter as `NULL`. /// /// ## Example /// /// ```rust,no_run /// # extern crate libc; /// # extern crate rusqlite; /// # use rusqlite::{Connection, Result}; /// # use rusqlite::types::{Null}; /// # use libc::{c_int}; /// fn main() { /// } /// fn insert_null(conn: &Connection) -> Result { /// conn.execute("INSERT INTO people (name) VALUES (?)", &[&Null]) /// } /// ``` #[derive(Copy,Clone)] pub struct Null; impl ToSql for Null { unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int { ffi::sqlite3_bind_null(stmt, col) } } macro_rules! raw_from_impl( ($t:ty, $f:ident, $c:expr) => ( impl FromSql for $t { unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<$t> { Ok(ffi::$f(stmt, col)) } unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool { sqlite3_column_type(stmt, col) == $c } } ) ); raw_from_impl!(c_int, sqlite3_column_int, ffi::SQLITE_INTEGER); raw_from_impl!(i64, sqlite3_column_int64, ffi::SQLITE_INTEGER); raw_from_impl!(c_double, sqlite3_column_double, ffi::SQLITE_FLOAT); impl FromSql for bool { unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result { match ffi::sqlite3_column_int(stmt, col) { 0 => Ok(false), _ => Ok(true), } } unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool { sqlite3_column_type(stmt, col) == ffi::SQLITE_INTEGER } } impl FromSql for String { unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result { let c_text = ffi::sqlite3_column_text(stmt, col); if c_text.is_null() { Ok("".to_string()) } else { let c_slice = CStr::from_ptr(c_text as *const c_char).to_bytes(); let utf8_str = str::from_utf8(c_slice); utf8_str.map(|s| s.to_string()) .map_err(|e| { Error { code: 0, message: e.to_string(), } }) } } unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool { sqlite3_column_type(stmt, col) == ffi::SQLITE_TEXT } } impl FromSql for Vec { unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result> { use std::slice::from_raw_parts; let c_blob = ffi::sqlite3_column_blob(stmt, col); let len = ffi::sqlite3_column_bytes(stmt, col); // The documentation for sqlite3_column_bytes indicates it is always non-negative, // but we should assert here just to be sure. assert!(len >= 0, "unexpected negative return from sqlite3_column_bytes"); let len = len as usize; Ok(from_raw_parts(mem::transmute(c_blob), len).to_vec()) } unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool { sqlite3_column_type(stmt, col) == ffi::SQLITE_BLOB } } impl FromSql for time::Timespec { unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result { let col_str = FromSql::column_result(stmt, col); col_str.and_then(|txt: String| { time::strptime(&txt, SQLITE_DATETIME_FMT) .map(|tm| tm.to_timespec()) .map_err(|parse_error| { Error { code: ffi::SQLITE_MISMATCH, message: format!("{}", parse_error), } }) }) } unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool { String::column_has_valid_sqlite_type(stmt, col) } } impl FromSql for Option { unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result> { if sqlite3_column_type(stmt, col) == ffi::SQLITE_NULL { Ok(None) } else { FromSql::column_result(stmt, col).map(|t| Some(t)) } } unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool { sqlite3_column_type(stmt, col) == ffi::SQLITE_NULL || T::column_has_valid_sqlite_type(stmt, col) } } #[cfg(test)] mod test { use Connection; use ffi; use super::time; use libc::{c_int, c_double}; fn checked_memory_handle() -> Connection { let db = Connection::open_in_memory().unwrap(); db.execute_batch("CREATE TABLE foo (b BLOB, t TEXT, i INTEGER, f FLOAT, n)").unwrap(); db } #[test] fn test_blob() { let db = checked_memory_handle(); let v1234 = vec![1u8, 2, 3, 4]; db.execute("INSERT INTO foo(b) VALUES (?)", &[&v1234]).unwrap(); let v: Vec = db.query_row("SELECT b FROM foo", &[], |r| r.get(0)).unwrap(); assert_eq!(v, v1234); } #[test] fn test_str() { let db = checked_memory_handle(); let s = "hello, world!"; db.execute("INSERT INTO foo(t) VALUES (?)", &[&s.to_string()]).unwrap(); let from: String = db.query_row("SELECT t FROM foo", &[], |r| r.get(0)).unwrap(); assert_eq!(from, s); } #[test] fn test_timespec() { let db = checked_memory_handle(); let ts = time::Timespec { sec: 10_000, nsec: 0, }; db.execute("INSERT INTO foo(t) VALUES (?)", &[&ts]).unwrap(); let from: time::Timespec = db.query_row("SELECT t FROM foo", &[], |r| r.get(0)).unwrap(); assert_eq!(from, ts); } #[test] fn test_option() { let db = checked_memory_handle(); let s = Some("hello, world!"); let b = Some(vec![1u8, 2, 3, 4]); db.execute("INSERT INTO foo(t) VALUES (?)", &[&s]).unwrap(); db.execute("INSERT INTO foo(b) VALUES (?)", &[&b]).unwrap(); let mut stmt = db.prepare("SELECT t, b FROM foo ORDER BY ROWID ASC").unwrap(); let mut rows = stmt.query(&[]).unwrap(); let row1 = rows.next().unwrap().unwrap(); let s1: Option = row1.get(0); let b1: Option> = row1.get(1); assert_eq!(s.unwrap(), s1.unwrap()); assert!(b1.is_none()); let row2 = rows.next().unwrap().unwrap(); let s2: Option = row2.get(0); let b2: Option> = row2.get(1); assert!(s2.is_none()); assert_eq!(b, b2); } #[test] fn test_mismatched_types() { let db = checked_memory_handle(); db.execute("INSERT INTO foo(b, t, i, f) VALUES (X'0102', 'text', 1, 1.5)", &[]) .unwrap(); let mut stmt = db.prepare("SELECT b, t, i, f, n FROM foo").unwrap(); let mut rows = stmt.query(&[]).unwrap(); let row = rows.next().unwrap().unwrap(); // check the correct types come back as expected assert_eq!(vec![1, 2], row.get_checked::>(0).unwrap()); assert_eq!("text", row.get_checked::(1).unwrap()); assert_eq!(1, row.get_checked::(2).unwrap()); assert_eq!(1.5, row.get_checked::(3).unwrap()); assert!(row.get_checked::>(4).unwrap().is_none()); assert!(row.get_checked::>(4).unwrap().is_none()); assert!(row.get_checked::>(4).unwrap().is_none()); // check some invalid types // 0 is actually a blob (Vec) assert_eq!(row.get_checked::(0).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(0).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(0).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(0).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(0).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::>(0).err().unwrap().code, ffi::SQLITE_MISMATCH); // 1 is actually a text (String) assert_eq!(row.get_checked::(1).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(1).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(1).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::>(1).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::>(1).err().unwrap().code, ffi::SQLITE_MISMATCH); // 2 is actually an integer assert_eq!(row.get_checked::(2).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(2).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::>(2).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(2).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::>(2).err().unwrap().code, ffi::SQLITE_MISMATCH); // 3 is actually a float (c_double) assert_eq!(row.get_checked::(3).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(3).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(3).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::>(3).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(3).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::>(3).err().unwrap().code, ffi::SQLITE_MISMATCH); // 4 is actually NULL assert_eq!(row.get_checked::(4).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(4).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(4).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(4).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::>(4).err().unwrap().code, ffi::SQLITE_MISMATCH); assert_eq!(row.get_checked::(4).err().unwrap().code, ffi::SQLITE_MISMATCH); } }