Add From/ToSql impl. for chrono types.

This commit is contained in:
gwenn
2016-02-22 20:36:49 +01:00
parent 2cb6c59b3d
commit bdb9823b07
3 changed files with 271 additions and 0 deletions

267
src/types/chrono.rs Normal file
View File

@@ -0,0 +1,267 @@
//! Convert most of the [Time Strings](http://sqlite.org/lang_datefunc.html) to chrono types.
extern crate chrono;
use std::error;
use self::chrono::{NaiveDate, NaiveTime, NaiveDateTime, DateTime, TimeZone, UTC, Local};
use libc::c_int;
use {Error, Result};
use types::{FromSql, ToSql};
use ffi;
use ffi::sqlite3_stmt;
use ffi::sqlite3_column_type;
const JULIAN_DAY: f64 = 2440587.5; // 1970-01-01 00:00:00 is JD 2440587.5
const DAY_IN_SECONDS: f64 = 86400.0;
const JULIAN_DAY_GREGORIAN: f64 = 1721424.5; // Jan 1, 1 proleptic Gregorian calendar
/// ISO 8601 calendar date without timezone => "YYYY-MM-DD"
impl ToSql for NaiveDate {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
let date_str = self.format("%Y-%m-%d").to_string();
date_str.bind_parameter(stmt, col)
}
}
/// "YYYY-MM-DD" or Julian Day => ISO 8601 calendar date without timezone.
impl FromSql for NaiveDate {
unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<NaiveDate> {
match sqlite3_column_type(stmt, col) {
ffi::SQLITE_TEXT => {
let s = try!(String::column_result(stmt, col));
match NaiveDate::parse_from_str(&s, "%Y-%m-%d") {
Ok(dt) => Ok(dt),
Err(err) => Err(Error::FromSqlConversionFailure(Box::new(err))),
}
}
ffi::SQLITE_FLOAT => {
// if column affinity is REAL and an integer/unix timestamp is inserted => unexpected result
let mut jd = ffi::sqlite3_column_double(stmt, col);
jd -= JULIAN_DAY_GREGORIAN;
if jd < i32::min_value() as f64 || jd > i32::max_value() as f64 {
let err: Box<error::Error + Sync + Send> = "out-of-range date".into();
return Err(Error::FromSqlConversionFailure(err));
}
match NaiveDate::from_num_days_from_ce_opt(jd as i32) {
Some(dt) => Ok(dt),
None => {
let err: Box<error::Error + Sync + Send> = "out-of-range date".into();
Err(Error::FromSqlConversionFailure(err))
}
}
}
_ => Err(Error::InvalidColumnType),
}
}
unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool {
let sqlite_type = sqlite3_column_type(stmt, col);
sqlite_type == ffi::SQLITE_TEXT || sqlite_type == ffi::SQLITE_FLOAT
}
}
/// ISO 8601 time without timezone => "HH:MM:SS.SSS"
impl ToSql for NaiveTime {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
let date_str = self.format("%H:%M:%S.3f").to_string();
date_str.bind_parameter(stmt, col)
}
}
/// "HH:MM"/"HH:MM:SS"/"HH:MM:SS.SSS" => ISO 8601 time without timezone.
impl FromSql for NaiveTime {
unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<NaiveTime> {
match sqlite3_column_type(stmt, col) {
ffi::SQLITE_TEXT => {
let s = try!(String::column_result(stmt, col));
let fmt = match s.len() {
5 => "%H:%M",
8 => "%H:%M:%S",
_ => "%H:%M:%S%.3f",
};
match NaiveTime::parse_from_str(&s, fmt) {
Ok(dt) => Ok(dt),
Err(err) => Err(Error::FromSqlConversionFailure(Box::new(err))),
}
}
_ => Err(Error::InvalidColumnType),
}
}
unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool {
sqlite3_column_type(stmt, col) == ffi::SQLITE_TEXT
}
}
/// ISO 8601 combined date and time without timezone => "YYYY-MM-DD HH:MM:SS.SSS"
impl ToSql for NaiveDateTime {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
let date_str = self.format("%Y-%m-%d %H:%M:%S%.3f").to_string();
date_str.bind_parameter(stmt, col)
}
}
/// "YYYY-MM-DD HH:MM"/"YYYY-MM-DD HH:MM:SS"/"YYYY-MM-DD HH:MM:SS.SSS"/ Julian Day / Unix Time => ISO 8601 combined date and time without timezone.
/// ("YYYY-MM-DDTHH:MM"/"YYYY-MM-DDTHH:MM:SS"/"YYYY-MM-DDTHH:MM:SS.SSS" also supported)
impl FromSql for NaiveDateTime {
unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<NaiveDateTime> {
match sqlite3_column_type(stmt, col) {
ffi::SQLITE_TEXT => {
let s = try!(String::column_result(stmt, col));
let fmt = match s.len() {
16 => {
match s.as_bytes()[10] {
b'T' => "%Y-%m-%dT%H:%M",
_ => "%Y-%m-%d %H:%M",
}
}
19 => {
match s.as_bytes()[10] {
b'T' => "%Y-%m-%dT%H:%M:%S",
_ => "%Y-%m-%d %H:%M:%S",
}
}
_ => {
match s.as_bytes()[10] {
b'T' => "%Y-%m-%dT%H:%M:%S%.3f",
_ => "%Y-%m-%d %H:%M:%S%.3f",
}
}
};
match NaiveDateTime::parse_from_str(&s, fmt) {
Ok(dt) => Ok(dt),
Err(err) => Err(Error::FromSqlConversionFailure(Box::new(err))),
}
}
ffi::SQLITE_INTEGER => {
match NaiveDateTime::from_timestamp_opt(ffi::sqlite3_column_int64(stmt, col), 0) {
Some(dt) => Ok(dt),
None => {
let err: Box<error::Error + Sync + Send> = "out-of-range number of seconds"
.into();
Err(Error::FromSqlConversionFailure(err))
}
}
}
ffi::SQLITE_FLOAT => {
// if column affinity is REAL and an integer/unix timestamp is inserted => unexpected result
let mut jd = ffi::sqlite3_column_double(stmt, col);
jd -= JULIAN_DAY;
jd *= DAY_IN_SECONDS;
let ns = jd.fract() * 10f64.powi(9);
match NaiveDateTime::from_timestamp_opt(jd as i64, ns as u32) {
Some(dt) => Ok(dt),
None => {
let err: Box<error::Error + Sync + Send> = "out-of-range number of \
seconds and/or invalid \
nanosecond"
.into();
Err(Error::FromSqlConversionFailure(err))
}
}
}
_ => Err(Error::InvalidColumnType),
}
}
unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool {
let sqlite_type = sqlite3_column_type(stmt, col);
sqlite_type == ffi::SQLITE_TEXT || sqlite_type == ffi::SQLITE_INTEGER ||
sqlite_type == ffi::SQLITE_FLOAT
}
}
/// ISO 8601 date and time with time zone => "YYYY-MM-DD HH:MM:SS.SSS[+-]HH:MM"
impl ToSql for DateTime<UTC> {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
let date_str = self.format("%Y-%m-%dT%H:%M:%S%.3f%:z").to_string();
date_str.bind_parameter(stmt, col)
}
}
/// "YYYY-MM-DD HH:MM:SS.SSS[+-]HH:MM"/"YYYY-MM-DD HH:MM"/"YYYY-MM-DD HH:MM:SS"/"YYYY-MM-DD HH:MM:SS.SSS"/ Julian Day / Unix Time => ISO 8601 date and time with time zone.
/// ("YYYY-MM-DDTHH:MM:SS.SSS[+-]HH:MM"/"YYYY-MM-DDTHH:MM"/"YYYY-MM-DDTHH:MM:SS"/"YYYY-MM-DDTHH:MM:SS.SSS" also supported)
/// When the timezone is not specified, UTC is used.
impl FromSql for DateTime<UTC> {
unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<DateTime<UTC>> {
match sqlite3_column_type(stmt, col) {
ffi::SQLITE_TEXT => {
let s = try!(String::column_result(stmt, col));
if s.len() > 23 {
let fmt = if s.as_bytes()[10] == b'T' {
"%Y-%m-%dT%H:%M:%S%.3f%:z"
} else {
"%Y-%m-%d %H:%M:%S%.3f%:z"
};
match UTC.datetime_from_str(fmt, &s) {
Ok(dt) => Ok(dt),
Err(err) => Err(Error::FromSqlConversionFailure(Box::new(err))),
}
} else {
NaiveDateTime::column_result(stmt, col).map(|dt| UTC.from_utc_datetime(&dt))
}
}
ffi::SQLITE_INTEGER => {
NaiveDateTime::column_result(stmt, col).map(|dt| UTC.from_utc_datetime(&dt))
}
ffi::SQLITE_FLOAT => {
NaiveDateTime::column_result(stmt, col).map(|dt| UTC.from_utc_datetime(&dt))
}
_ => Err(Error::InvalidColumnType),
}
}
unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool {
NaiveDateTime::column_has_valid_sqlite_type(stmt, col)
}
}
/// ISO 8601 date and time with time zone => "YYYY-MM-DD HH:MM:SS.SSS[+-]HH:MM"
impl ToSql for DateTime<Local> {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
let date_str = self.format("%Y-%m-%dT%H:%M:%S%.3f%:z").to_string();
date_str.bind_parameter(stmt, col)
}
}
/// "YYYY-MM-DD HH:MM:SS.SSS[+-]HH:MM"/"YYYY-MM-DD HH:MM"/"YYYY-MM-DD HH:MM:SS"/"YYYY-MM-DD HH:MM:SS.SSS"/ Julian Day / Unix Time => ISO 8601 date and time with time zone.
/// ("YYYY-MM-DDTHH:MM:SS.SSS[+-]HH:MM"/"YYYY-MM-DDTHH:MM"/"YYYY-MM-DDTHH:MM:SS"/"YYYY-MM-DDTHH:MM:SS.SSS" also supported)
/// When the timezone is not specified, Local is used.
impl FromSql for DateTime<Local> {
unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<DateTime<Local>> {
match sqlite3_column_type(stmt, col) {
ffi::SQLITE_TEXT => {
let s = try!(String::column_result(stmt, col));
if s.len() > 23 {
let fmt = if s.as_bytes()[10] == b'T' {
"%Y-%m-%dT%H:%M:%S%.3f%:z"
} else {
"%Y-%m-%d %H:%M:%S%.3f%:z"
};
match Local.datetime_from_str(fmt, &s) {
Ok(dt) => Ok(dt),
Err(err) => Err(Error::FromSqlConversionFailure(Box::new(err))),
}
} else {
NaiveDateTime::column_result(stmt, col).map(|dt| Local.from_utc_datetime(&dt))
}
}
ffi::SQLITE_INTEGER => {
NaiveDateTime::column_result(stmt, col).map(|dt| Local.from_utc_datetime(&dt))
}
ffi::SQLITE_FLOAT => {
NaiveDateTime::column_result(stmt, col).map(|dt| Local.from_utc_datetime(&dt))
}
_ => Err(Error::InvalidColumnType),
}
}
unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool {
NaiveDateTime::column_has_valid_sqlite_type(stmt, col)
}
}
// struct UnixTime(NaiveDateTime);
// struct JulianTime(NaiveDateTime)

499
src/types/mod.rs Normal file
View File

@@ -0,0 +1,499 @@
//! Traits dealing with SQLite data types.
//!
//! SQLite uses a [dynamic type system](https://www.sqlite.org/datatype3.html). Implementations of
//! the `ToSql` and `FromSql` traits are provided for the basic types that SQLite provides methods
//! for:
//!
//! * C integers and doubles (`c_int` and `c_double`)
//! * Strings (`String` and `&str`)
//! * Blobs (`Vec<u8>` and `&[u8]`)
//!
//! Additionally, because it is such a common data type, implementations are provided for
//! `time::Timespec` that use a string for storage (using the same format string,
//! `"%Y-%m-%d %H:%M:%S"`, as SQLite's builtin
//! [datetime](https://www.sqlite.org/lang_datefunc.html) function. Note that this storage
//! truncates timespecs to the nearest second. If you want different storage for timespecs, you can
//! use a newtype. For example, to store timespecs as doubles:
//!
//! `ToSql` and `FromSql` are also implemented for `Option<T>` where `T` implements `ToSql` or
//! `FromSql` for the cases where you want to know if a value was NULL (which gets translated to
//! `None`). If you get a value that was NULL in SQLite but you store it into a non-`Option` value
//! in Rust, you will get a "sensible" zero value - 0 for numeric types (including timespecs), an
//! empty string, or an empty vector of bytes.
//!
//! ```rust,ignore
//! extern crate rusqlite;
//! extern crate libc;
//!
//! use rusqlite::types::{FromSql, ToSql, sqlite3_stmt};
//! use rusqlite::{Result};
//! use libc::c_int;
//! use time;
//!
//! pub struct TimespecSql(pub time::Timespec);
//!
//! impl FromSql for TimespecSql {
//! unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int)
//! -> Result<TimespecSql> {
//! let as_f64_result = FromSql::column_result(stmt, col);
//! as_f64_result.map(|as_f64: f64| {
//! TimespecSql(time::Timespec{ sec: as_f64.trunc() as i64,
//! nsec: (as_f64.fract() * 1.0e9) as i32 })
//! })
//! }
//! }
//!
//! impl ToSql for TimespecSql {
//! unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
//! let TimespecSql(ts) = *self;
//! let as_f64 = ts.sec as f64 + (ts.nsec as f64) / 1.0e9;
//! as_f64.bind_parameter(stmt, col)
//! }
//! }
//! ```
extern crate time;
use libc::{c_int, c_double, c_char};
use std::ffi::CStr;
use std::mem;
use std::str;
use super::ffi;
use super::{Result, Error, str_to_cstring};
pub use ffi::sqlite3_stmt;
pub use ffi::sqlite3_column_type;
pub use ffi::{SQLITE_INTEGER, SQLITE_FLOAT, SQLITE_TEXT, SQLITE_BLOB, SQLITE_NULL};
#[cfg(feature = "chrono")]
mod chrono;
const SQLITE_DATETIME_FMT: &'static str = "%Y-%m-%d %H:%M:%S";
/// A trait for types that can be converted into SQLite values.
pub trait ToSql {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int;
}
/// A trait for types that can be created from a SQLite value.
pub trait FromSql: Sized {
unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<Self>;
/// FromSql types can implement this method and use sqlite3_column_type to check that
/// the type reported by SQLite matches a type suitable for Self. This method is used
/// by `Row::get_checked` to confirm that the column contains a valid type before
/// attempting to retrieve the value.
unsafe fn column_has_valid_sqlite_type(_: *mut sqlite3_stmt, _: c_int) -> bool {
true
}
}
macro_rules! raw_to_impl(
($t:ty, $f:ident) => (
impl ToSql for $t {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
ffi::$f(stmt, col, *self)
}
}
)
);
raw_to_impl!(c_int, sqlite3_bind_int); // i32
raw_to_impl!(i64, sqlite3_bind_int64);
raw_to_impl!(c_double, sqlite3_bind_double);
impl ToSql for bool {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
match *self {
true => ffi::sqlite3_bind_int(stmt, col, 1),
_ => ffi::sqlite3_bind_int(stmt, col, 0),
}
}
}
impl<'a> ToSql for &'a str {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
let length = self.len();
if length > ::std::i32::MAX as usize {
return ffi::SQLITE_TOOBIG;
}
match str_to_cstring(self) {
Ok(c_str) => {
ffi::sqlite3_bind_text(stmt,
col,
c_str.as_ptr(),
length as c_int,
ffi::SQLITE_TRANSIENT())
}
Err(_) => ffi::SQLITE_MISUSE,
}
}
}
impl ToSql for String {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
(&self[..]).bind_parameter(stmt, col)
}
}
impl<'a> ToSql for &'a [u8] {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
if self.len() > ::std::i32::MAX as usize {
return ffi::SQLITE_TOOBIG;
}
ffi::sqlite3_bind_blob(stmt,
col,
mem::transmute(self.as_ptr()),
self.len() as c_int,
ffi::SQLITE_TRANSIENT())
}
}
impl ToSql for Vec<u8> {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
(&self[..]).bind_parameter(stmt, col)
}
}
impl ToSql for time::Timespec {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
let time_str = time::at_utc(*self).strftime(SQLITE_DATETIME_FMT).unwrap().to_string();
time_str.bind_parameter(stmt, col)
}
}
impl<T: ToSql> ToSql for Option<T> {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
match *self {
None => ffi::sqlite3_bind_null(stmt, col),
Some(ref t) => t.bind_parameter(stmt, col),
}
}
}
/// Empty struct that can be used to fill in a query parameter as `NULL`.
///
/// ## Example
///
/// ```rust,no_run
/// # extern crate libc;
/// # extern crate rusqlite;
/// # use rusqlite::{Connection, Result};
/// # use rusqlite::types::{Null};
/// # use libc::{c_int};
/// fn main() {
/// }
/// fn insert_null(conn: &Connection) -> Result<c_int> {
/// conn.execute("INSERT INTO people (name) VALUES (?)", &[&Null])
/// }
/// ```
#[derive(Copy,Clone)]
pub struct Null;
impl ToSql for Null {
unsafe fn bind_parameter(&self, stmt: *mut sqlite3_stmt, col: c_int) -> c_int {
ffi::sqlite3_bind_null(stmt, col)
}
}
macro_rules! raw_from_impl(
($t:ty, $f:ident, $c:expr) => (
impl FromSql for $t {
unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<$t> {
Ok(ffi::$f(stmt, col))
}
unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool {
sqlite3_column_type(stmt, col) == $c
}
}
)
);
raw_from_impl!(c_int, sqlite3_column_int, ffi::SQLITE_INTEGER); // i32
raw_from_impl!(i64, sqlite3_column_int64, ffi::SQLITE_INTEGER);
raw_from_impl!(c_double, sqlite3_column_double, ffi::SQLITE_FLOAT); // f64
impl FromSql for bool {
unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<bool> {
match ffi::sqlite3_column_int(stmt, col) {
0 => Ok(false),
_ => Ok(true),
}
}
unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool {
sqlite3_column_type(stmt, col) == ffi::SQLITE_INTEGER
}
}
impl FromSql for String {
unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<String> {
let c_text = ffi::sqlite3_column_text(stmt, col);
if c_text.is_null() {
Ok("".to_string())
} else {
let c_slice = CStr::from_ptr(c_text as *const c_char).to_bytes();
let utf8_str = try!(str::from_utf8(c_slice));
Ok(utf8_str.into())
}
}
unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool {
sqlite3_column_type(stmt, col) == ffi::SQLITE_TEXT
}
}
impl FromSql for Vec<u8> {
unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<Vec<u8>> {
use std::slice::from_raw_parts;
let c_blob = ffi::sqlite3_column_blob(stmt, col);
let len = ffi::sqlite3_column_bytes(stmt, col);
// The documentation for sqlite3_column_bytes indicates it is always non-negative,
// but we should assert here just to be sure.
assert!(len >= 0,
"unexpected negative return from sqlite3_column_bytes");
let len = len as usize;
Ok(from_raw_parts(mem::transmute(c_blob), len).to_vec())
}
unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool {
sqlite3_column_type(stmt, col) == ffi::SQLITE_BLOB
}
}
impl FromSql for time::Timespec {
unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<time::Timespec> {
let col_str = FromSql::column_result(stmt, col);
col_str.and_then(|txt: String| {
match time::strptime(&txt, SQLITE_DATETIME_FMT) {
Ok(tm) => Ok(tm.to_timespec()),
Err(err) => Err(Error::FromSqlConversionFailure(Box::new(err))),
}
})
}
unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool {
String::column_has_valid_sqlite_type(stmt, col)
}
}
impl<T: FromSql> FromSql for Option<T> {
unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<Option<T>> {
if sqlite3_column_type(stmt, col) == ffi::SQLITE_NULL {
Ok(None)
} else {
FromSql::column_result(stmt, col).map(|t| Some(t))
}
}
unsafe fn column_has_valid_sqlite_type(stmt: *mut sqlite3_stmt, col: c_int) -> bool {
sqlite3_column_type(stmt, col) == ffi::SQLITE_NULL ||
T::column_has_valid_sqlite_type(stmt, col)
}
}
/// Dynamic type value (http://sqlite.org/datatype3.html)
/// Value's type is dictated by SQLite (not by the caller).
#[derive(Clone,Debug,PartialEq)]
pub enum Value {
/// The value is a `NULL` value.
Null,
/// The value is a signed integer.
Integer(i64),
/// The value is a floating point number.
Real(f64),
/// The value is a text string.
Text(String),
/// The value is a blob of data
Blob(Vec<u8>),
}
impl FromSql for Value {
unsafe fn column_result(stmt: *mut sqlite3_stmt, col: c_int) -> Result<Value> {
match sqlite3_column_type(stmt, col) {
ffi::SQLITE_TEXT => FromSql::column_result(stmt, col).map(|t| Value::Text(t)),
ffi::SQLITE_INTEGER => Ok(Value::Integer(ffi::sqlite3_column_int64(stmt, col))),
ffi::SQLITE_FLOAT => Ok(Value::Real(ffi::sqlite3_column_double(stmt, col))),
ffi::SQLITE_NULL => Ok(Value::Null),
ffi::SQLITE_BLOB => FromSql::column_result(stmt, col).map(|t| Value::Blob(t)),
_ => Err(Error::InvalidColumnType),
}
}
unsafe fn column_has_valid_sqlite_type(_: *mut sqlite3_stmt, _: c_int) -> bool {
true
}
}
#[cfg(test)]
mod test {
use Connection;
use super::time;
use Error;
use libc::{c_int, c_double};
fn checked_memory_handle() -> Connection {
let db = Connection::open_in_memory().unwrap();
db.execute_batch("CREATE TABLE foo (b BLOB, t TEXT, i INTEGER, f FLOAT, n)").unwrap();
db
}
#[test]
fn test_blob() {
let db = checked_memory_handle();
let v1234 = vec![1u8, 2, 3, 4];
db.execute("INSERT INTO foo(b) VALUES (?)", &[&v1234]).unwrap();
let v: Vec<u8> = db.query_row("SELECT b FROM foo", &[], |r| r.get(0)).unwrap();
assert_eq!(v, v1234);
}
#[test]
fn test_str() {
let db = checked_memory_handle();
let s = "hello, world!";
db.execute("INSERT INTO foo(t) VALUES (?)", &[&s.to_string()]).unwrap();
let from: String = db.query_row("SELECT t FROM foo", &[], |r| r.get(0)).unwrap();
assert_eq!(from, s);
}
#[test]
fn test_timespec() {
let db = checked_memory_handle();
let ts = time::Timespec {
sec: 10_000,
nsec: 0,
};
db.execute("INSERT INTO foo(t) VALUES (?)", &[&ts]).unwrap();
let from: time::Timespec = db.query_row("SELECT t FROM foo", &[], |r| r.get(0)).unwrap();
assert_eq!(from, ts);
}
#[test]
fn test_option() {
let db = checked_memory_handle();
let s = Some("hello, world!");
let b = Some(vec![1u8, 2, 3, 4]);
db.execute("INSERT INTO foo(t) VALUES (?)", &[&s]).unwrap();
db.execute("INSERT INTO foo(b) VALUES (?)", &[&b]).unwrap();
let mut stmt = db.prepare("SELECT t, b FROM foo ORDER BY ROWID ASC").unwrap();
let mut rows = stmt.query(&[]).unwrap();
let row1 = rows.next().unwrap().unwrap();
let s1: Option<String> = row1.get(0);
let b1: Option<Vec<u8>> = row1.get(1);
assert_eq!(s.unwrap(), s1.unwrap());
assert!(b1.is_none());
let row2 = rows.next().unwrap().unwrap();
let s2: Option<String> = row2.get(0);
let b2: Option<Vec<u8>> = row2.get(1);
assert!(s2.is_none());
assert_eq!(b, b2);
}
#[test]
fn test_mismatched_types() {
fn is_invalid_column_type(err: Error) -> bool {
match err {
Error::InvalidColumnType => true,
_ => false,
}
}
let db = checked_memory_handle();
db.execute("INSERT INTO foo(b, t, i, f) VALUES (X'0102', 'text', 1, 1.5)",
&[])
.unwrap();
let mut stmt = db.prepare("SELECT b, t, i, f, n FROM foo").unwrap();
let mut rows = stmt.query(&[]).unwrap();
let row = rows.next().unwrap().unwrap();
// check the correct types come back as expected
assert_eq!(vec![1, 2], row.get_checked::<i32, Vec<u8>>(0).unwrap());
assert_eq!("text", row.get_checked::<i32, String>(1).unwrap());
assert_eq!(1, row.get_checked::<i32, c_int>(2).unwrap());
assert_eq!(1.5, row.get_checked::<i32, c_double>(3).unwrap());
assert!(row.get_checked::<i32, Option<c_int>>(4).unwrap().is_none());
assert!(row.get_checked::<i32, Option<c_double>>(4).unwrap().is_none());
assert!(row.get_checked::<i32, Option<String>>(4).unwrap().is_none());
// check some invalid types
// 0 is actually a blob (Vec<u8>)
assert!(is_invalid_column_type(row.get_checked::<i32, c_int>(0).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, c_int>(0).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, i64>(0).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, c_double>(0).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, String>(0).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, time::Timespec>(0).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, Option<c_int>>(0).err().unwrap()));
// 1 is actually a text (String)
assert!(is_invalid_column_type(row.get_checked::<i32, c_int>(1).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, i64>(1).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, c_double>(1).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, Vec<u8>>(1).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, Option<c_int>>(1).err().unwrap()));
// 2 is actually an integer
assert!(is_invalid_column_type(row.get_checked::<i32, c_double>(2).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, String>(2).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, Vec<u8>>(2).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, time::Timespec>(2).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, Option<c_double>>(2).err().unwrap()));
// 3 is actually a float (c_double)
assert!(is_invalid_column_type(row.get_checked::<i32, c_int>(3).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, i64>(3).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, String>(3).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, Vec<u8>>(3).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, time::Timespec>(3).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, Option<c_int>>(3).err().unwrap()));
// 4 is actually NULL
assert!(is_invalid_column_type(row.get_checked::<i32, c_int>(4).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, i64>(4).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, c_double>(4).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, String>(4).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, Vec<u8>>(4).err().unwrap()));
assert!(is_invalid_column_type(row.get_checked::<i32, time::Timespec>(4).err().unwrap()));
}
#[test]
fn test_dynamic_type() {
use super::Value;
let db = checked_memory_handle();
db.execute("INSERT INTO foo(b, t, i, f) VALUES (X'0102', 'text', 1, 1.5)",
&[])
.unwrap();
let mut stmt = db.prepare("SELECT b, t, i, f, n FROM foo").unwrap();
let mut rows = stmt.query(&[]).unwrap();
let row = rows.next().unwrap().unwrap();
assert_eq!(Value::Blob(vec![1, 2]),
row.get_checked::<i32, Value>(0).unwrap());
assert_eq!(Value::Text(String::from("text")),
row.get_checked::<i32, Value>(1).unwrap());
assert_eq!(Value::Integer(1), row.get_checked::<i32, Value>(2).unwrap());
assert_eq!(Value::Real(1.5), row.get_checked::<i32, Value>(3).unwrap());
assert_eq!(Value::Null, row.get_checked::<i32, Value>(4).unwrap());
}
}