rusqlite/src/row.rs

586 lines
18 KiB
Rust
Raw Normal View History

2019-03-10 19:58:20 +08:00
use fallible_iterator::FallibleIterator;
use fallible_streaming_iterator::FallibleStreamingIterator;
use std::convert;
2019-03-10 19:58:20 +08:00
use super::{Error, Result, Statement};
2018-10-31 03:11:35 +08:00
use crate::types::{FromSql, FromSqlError, ValueRef};
/// An handle for the resulting rows of a query.
2020-09-02 14:15:25 +08:00
#[must_use = "Rows is lazy and will do nothing unless consumed"]
pub struct Rows<'stmt> {
pub(crate) stmt: Option<&'stmt Statement<'stmt>>,
row: Option<Row<'stmt>>,
}
impl<'stmt> Rows<'stmt> {
#[inline]
fn reset(&mut self) {
if let Some(stmt) = self.stmt.take() {
stmt.reset();
}
}
/// Attempt to get the next row from the query. Returns `Ok(Some(Row))` if
/// there is another row, `Err(...)` if there was an error
/// getting the next row, and `Ok(None)` if all rows have been retrieved.
///
/// ## Note
///
2018-08-17 00:29:46 +08:00
/// This interface is not compatible with Rust's `Iterator` trait, because
/// the lifetime of the returned row is tied to the lifetime of `self`.
/// This is a fallible "streaming iterator". For a more natural interface,
/// consider using [`query_map`](crate::Statement::query_map) or
/// [`query_and_then`](crate::Statement::query_and_then) instead, which
2018-08-17 00:29:46 +08:00
/// return types that implement `Iterator`.
2018-12-07 02:00:55 +08:00
#[allow(clippy::should_implement_trait)] // cannot implement Iterator
#[inline]
pub fn next(&mut self) -> Result<Option<&Row<'stmt>>> {
self.advance()?;
Ok((*self).get())
}
2019-03-10 19:58:20 +08:00
2020-05-17 17:21:10 +08:00
/// Map over this `Rows`, converting it to a [`Map`], which
/// implements `FallibleIterator`.
/// ```rust,no_run
/// use fallible_iterator::FallibleIterator;
/// # use rusqlite::{Result, Statement};
/// fn query(stmt: &mut Statement) -> Result<Vec<i64>> {
/// let rows = stmt.query([])?;
/// rows.map(|r| r.get(0)).collect()
/// }
/// ```
// FIXME Hide FallibleStreamingIterator::map
#[inline]
2019-03-10 19:58:20 +08:00
pub fn map<F, B>(self, f: F) -> Map<'stmt, F>
where
F: FnMut(&Row<'_>) -> Result<B>,
{
2019-03-22 02:13:55 +08:00
Map { rows: self, f }
2019-03-10 19:58:20 +08:00
}
/// Map over this `Rows`, converting it to a [`MappedRows`], which
/// implements `Iterator`.
#[inline]
pub fn mapped<F, B>(self, f: F) -> MappedRows<'stmt, F>
where
F: FnMut(&Row<'_>) -> Result<B>,
{
MappedRows { rows: self, map: f }
}
/// Map over this `Rows` with a fallible function, converting it to a
/// [`AndThenRows`], which implements `Iterator` (instead of
/// `FallibleStreamingIterator`).
#[inline]
pub fn and_then<F, T, E>(self, f: F) -> AndThenRows<'stmt, F>
where
F: FnMut(&Row<'_>) -> Result<T, E>,
{
AndThenRows { rows: self, map: f }
}
/// Give access to the underlying statement
2022-01-06 02:40:31 +08:00
#[must_use]
pub fn as_ref(&self) -> Option<&Statement<'stmt>> {
self.stmt
}
}
2018-08-01 04:17:17 +08:00
impl<'stmt> Rows<'stmt> {
#[inline]
2018-08-01 04:17:17 +08:00
pub(crate) fn new(stmt: &'stmt Statement<'stmt>) -> Rows<'stmt> {
Rows {
stmt: Some(stmt),
row: None,
}
}
#[inline]
pub(crate) fn get_expected_row(&mut self) -> Result<&Row<'stmt>> {
match self.next()? {
Some(row) => Ok(row),
None => Err(Error::QueryReturnedNoRows),
}
}
}
2019-02-03 18:02:38 +08:00
impl Drop for Rows<'_> {
#[inline]
fn drop(&mut self) {
self.reset();
}
}
2021-05-08 01:39:53 +08:00
/// `F` is used to transform the _streaming_ iterator into a _fallible_
/// iterator.
2020-09-02 14:15:25 +08:00
#[must_use = "iterators are lazy and do nothing unless consumed"]
2019-03-10 19:58:20 +08:00
pub struct Map<'stmt, F> {
rows: Rows<'stmt>,
f: F,
}
impl<F, B> FallibleIterator for Map<'_, F>
where
F: FnMut(&Row<'_>) -> Result<B>,
{
type Error = Error;
type Item = B;
#[inline]
2019-03-10 19:58:20 +08:00
fn next(&mut self) -> Result<Option<B>> {
match self.rows.next()? {
Some(v) => Ok(Some((self.f)(v)?)),
None => Ok(None),
}
}
}
/// An iterator over the mapped resulting rows of a query.
///
2021-05-08 01:39:53 +08:00
/// `F` is used to transform the _streaming_ iterator into a _standard_
/// iterator.
2020-09-02 14:15:25 +08:00
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct MappedRows<'stmt, F> {
rows: Rows<'stmt>,
map: F,
}
2019-02-03 18:02:38 +08:00
impl<T, F> Iterator for MappedRows<'_, F>
2018-08-11 18:48:21 +08:00
where
F: FnMut(&Row<'_>) -> Result<T>,
{
type Item = Result<T>;
#[inline]
fn next(&mut self) -> Option<Result<T>> {
let map = &mut self.map;
2017-04-08 01:43:24 +08:00
self.rows
.next()
.transpose()
2021-10-02 02:09:48 +08:00
.map(|row_result| row_result.and_then(map))
}
}
/// An iterator over the mapped resulting rows of a query, with an Error type
/// unifying with Error.
2020-09-02 14:15:25 +08:00
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct AndThenRows<'stmt, F> {
rows: Rows<'stmt>,
map: F,
}
2019-02-03 18:02:38 +08:00
impl<T, E, F> Iterator for AndThenRows<'_, F>
2018-08-11 18:48:21 +08:00
where
E: From<Error>,
F: FnMut(&Row<'_>) -> Result<T, E>,
{
type Item = Result<T, E>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let map = &mut self.map;
2017-04-08 01:43:24 +08:00
self.rows
.next()
.transpose()
2021-10-02 02:09:48 +08:00
.map(|row_result| row_result.map_err(E::from).and_then(map))
}
}
/// `FallibleStreamingIterator` differs from the standard library's `Iterator`
/// in two ways:
2022-01-06 02:19:13 +08:00
/// * each call to `next` (`sqlite3_step`) can fail.
/// * returned `Row` is valid until `next` is called again or `Statement` is
/// reset or finalized.
///
/// While these iterators cannot be used with Rust `for` loops, `while let`
/// loops offer a similar level of ergonomics:
/// ```rust,no_run
/// # use rusqlite::{Result, Statement};
/// fn query(stmt: &mut Statement) -> Result<()> {
/// let mut rows = stmt.query([])?;
/// while let Some(row) = rows.next()? {
/// // scan columns value
/// }
/// Ok(())
/// }
/// ```
impl<'stmt> FallibleStreamingIterator for Rows<'stmt> {
type Error = Error;
type Item = Row<'stmt>;
#[inline]
fn advance(&mut self) -> Result<()> {
2022-01-06 02:59:54 +08:00
if let Some(stmt) = self.stmt {
match stmt.step() {
Ok(true) => {
self.row = Some(Row { stmt });
Ok(())
}
Ok(false) => {
self.reset();
self.row = None;
Ok(())
}
Err(e) => {
self.reset();
self.row = None;
Err(e)
}
}
2022-01-06 02:59:54 +08:00
} else {
self.row = None;
Ok(())
}
}
#[inline]
fn get(&self) -> Option<&Row<'stmt>> {
self.row.as_ref()
}
}
/// A single result row of a query.
pub struct Row<'stmt> {
pub(crate) stmt: &'stmt Statement<'stmt>,
}
impl<'stmt> Row<'stmt> {
/// Get the value of a particular column of the result row.
///
/// ## Failure
///
/// Panics if calling [`row.get(idx)`](Row::get) would return an error,
2018-08-17 00:29:46 +08:00
/// including:
///
/// * If the underlying SQLite column type is not a valid type as a source
/// for `T`
2019-02-02 22:18:11 +08:00
/// * If the underlying SQLite integral value is outside the range
/// representable by `T`
/// * If `idx` is outside the range of columns in the returned query
pub fn get_unwrap<I: RowIndex, T: FromSql>(&self, idx: I) -> T {
self.get(idx).unwrap()
}
/// Get the value of a particular column of the result row.
///
/// ## Failure
///
/// Returns an `Error::InvalidColumnType` if the underlying SQLite column
/// type is not a valid type as a source for `T`.
///
2018-08-17 00:29:46 +08:00
/// Returns an `Error::InvalidColumnIndex` if `idx` is outside the valid
/// column range for this row.
///
2018-08-17 00:29:46 +08:00
/// Returns an `Error::InvalidColumnName` if `idx` is not a valid column
/// name for this row.
///
/// If the result type is i128 (which requires the `i128_blob` feature to be
/// enabled), and the underlying SQLite column is a blob whose size is not
/// 16 bytes, `Error::InvalidColumnType` will also be returned.
pub fn get<I: RowIndex, T: FromSql>(&self, idx: I) -> Result<T> {
2018-10-31 03:11:35 +08:00
let idx = idx.idx(self.stmt)?;
let value = self.stmt.value_ref(idx);
FromSql::column_result(value).map_err(|err| match err {
2019-08-31 18:17:48 +08:00
FromSqlError::InvalidType => Error::InvalidColumnType(
idx,
self.stmt.column_name_unwrap(idx).into(),
value.data_type(),
),
2018-08-11 18:48:21 +08:00
FromSqlError::OutOfRange(i) => Error::IntegralValueOutOfRange(idx, i),
FromSqlError::Other(err) => {
Error::FromSqlConversionFailure(idx, value.data_type(), err)
}
FromSqlError::InvalidBlobSize { .. } => {
Error::FromSqlConversionFailure(idx, value.data_type(), Box::new(err))
2022-01-02 16:57:06 +08:00
}
2018-08-11 18:48:21 +08:00
})
}
/// Get the value of a particular column of the result row as a `ValueRef`,
/// allowing data to be read out of a row without copying.
///
/// This `ValueRef` is valid only as long as this Row, which is enforced by
/// it's lifetime. This means that while this method is completely safe,
/// it can be somewhat difficult to use, and most callers will be better
/// served by [`get`](Row::get) or [`get_unwrap`](Row::get_unwrap).
///
/// ## Failure
///
/// Returns an `Error::InvalidColumnIndex` if `idx` is outside the valid
/// column range for this row.
///
/// Returns an `Error::InvalidColumnName` if `idx` is not a valid column
/// name for this row.
pub fn get_ref<I: RowIndex>(&self, idx: I) -> Result<ValueRef<'_>> {
let idx = idx.idx(self.stmt)?;
// Narrowing from `ValueRef<'stmt>` (which `self.stmt.value_ref(idx)`
// returns) to `ValueRef<'a>` is needed because it's only valid until
// the next call to sqlite3_step.
let val_ref = self.stmt.value_ref(idx);
Ok(val_ref)
}
/// Get the value of a particular column of the result row as a `ValueRef`,
/// allowing data to be read out of a row without copying.
///
/// This `ValueRef` is valid only as long as this Row, which is enforced by
/// it's lifetime. This means that while this method is completely safe,
/// it can be difficult to use, and most callers will be better served by
/// [`get`](Row::get) or [`get_unwrap`](Row::get_unwrap).
///
/// ## Failure
///
/// Panics if calling [`row.get_ref(idx)`](Row::get_ref) would return an
/// error, including:
///
2019-02-02 22:18:11 +08:00
/// * If `idx` is outside the range of columns in the returned query.
/// * If `idx` is not a valid column name for this row.
pub fn get_ref_unwrap<I: RowIndex>(&self, idx: I) -> ValueRef<'_> {
self.get_ref(idx).unwrap()
}
}
impl<'stmt> AsRef<Statement<'stmt>> for Row<'stmt> {
fn as_ref(&self) -> &Statement<'stmt> {
self.stmt
}
}
2022-10-09 17:43:02 +08:00
/// Debug `Row` like an ordered `Map<Result<&str>, Result<(Type, ValueRef)>>`
/// with column name as key except that for `Type::Blob` only its size is
/// printed (not its content).
impl<'stmt> std::fmt::Debug for Row<'stmt> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut dm = f.debug_map();
for c in 0..self.stmt.column_count() {
let name = self.stmt.column_name(c);
dm.key(&name);
let value = self.get_ref(c);
match value {
Ok(value) => {
let dt = value.data_type();
match value {
ValueRef::Null => {
dm.value(&(dt, ()));
}
ValueRef::Integer(i) => {
dm.value(&(dt, i));
}
ValueRef::Real(f) => {
dm.value(&(dt, f));
}
ValueRef::Text(s) => {
dm.value(&(dt, String::from_utf8_lossy(s)));
}
ValueRef::Blob(b) => {
dm.value(&(dt, b.len()));
}
}
}
Err(ref _err) => {
dm.value(&value);
}
}
}
dm.finish()
}
}
mod sealed {
/// This trait exists just to ensure that the only impls of `trait Params`
/// that are allowed are ones in this crate.
pub trait Sealed {}
impl Sealed for usize {}
impl Sealed for &str {}
}
/// A trait implemented by types that can index into columns of a row.
///
/// It is only implemented for `usize` and `&str`.
pub trait RowIndex: sealed::Sealed {
/// Returns the index of the appropriate column, or `None` if no such
/// column exists.
2018-12-08 04:57:04 +08:00
fn idx(&self, stmt: &Statement<'_>) -> Result<usize>;
}
impl RowIndex for usize {
#[inline]
2018-12-08 04:57:04 +08:00
fn idx(&self, stmt: &Statement<'_>) -> Result<usize> {
if *self >= stmt.column_count() {
Err(Error::InvalidColumnIndex(*self))
} else {
Ok(*self)
}
}
}
2019-02-03 18:02:38 +08:00
impl RowIndex for &'_ str {
#[inline]
2018-12-08 04:57:04 +08:00
fn idx(&self, stmt: &Statement<'_>) -> Result<usize> {
2022-07-31 13:00:37 +08:00
stmt.column_index(self)
}
}
macro_rules! tuple_try_from_row {
($($field:ident),*) => {
impl<'a, $($field,)*> convert::TryFrom<&'a Row<'a>> for ($($field,)*) where $($field: FromSql,)* {
type Error = crate::Error;
// we end with index += 1, which rustc warns about
// unused_variables and unused_mut are allowed for ()
#[allow(unused_assignments, unused_variables, unused_mut)]
fn try_from(row: &'a Row<'a>) -> Result<Self> {
let mut index = 0;
$(
#[allow(non_snake_case)]
let $field = row.get::<_, $field>(index)?;
index += 1;
)*
Ok(($($field,)*))
}
}
}
}
macro_rules! tuples_try_from_row {
() => {
// not very useful, but maybe some other macro users will find this helpful
tuple_try_from_row!();
};
($first:ident $(, $remaining:ident)*) => {
tuple_try_from_row!($first $(, $remaining)*);
tuples_try_from_row!($($remaining),*);
};
}
tuples_try_from_row!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P);
#[cfg(test)]
mod tests {
#![allow(clippy::redundant_closure)] // false positives due to lifetime issues; clippy issue #5594
2020-11-06 05:14:00 +08:00
use crate::{Connection, Result};
#[test]
2020-11-06 05:14:00 +08:00
fn test_try_from_row_for_tuple_1() -> Result<()> {
use crate::ToSql;
use std::convert::TryFrom;
2020-11-06 05:14:00 +08:00
let conn = Connection::open_in_memory()?;
conn.execute(
"CREATE TABLE test (a INTEGER)",
crate::params_from_iter(std::iter::empty::<&dyn ToSql>()),
2020-11-06 05:14:00 +08:00
)?;
conn.execute("INSERT INTO test VALUES (42)", [])?;
let val = conn.query_row("SELECT a FROM test", [], |row| <(u32,)>::try_from(row))?;
assert_eq!(val, (42,));
let fail = conn.query_row("SELECT a FROM test", [], |row| <(u32, u32)>::try_from(row));
2022-07-31 13:00:37 +08:00
fail.unwrap_err();
2020-11-06 05:14:00 +08:00
Ok(())
}
#[test]
2020-11-06 05:14:00 +08:00
fn test_try_from_row_for_tuple_2() -> Result<()> {
use std::convert::TryFrom;
2020-11-06 05:14:00 +08:00
let conn = Connection::open_in_memory()?;
conn.execute("CREATE TABLE test (a INTEGER, b INTEGER)", [])?;
conn.execute("INSERT INTO test VALUES (42, 47)", [])?;
let val = conn.query_row("SELECT a, b FROM test", [], |row| {
<(u32, u32)>::try_from(row)
})?;
assert_eq!(val, (42, 47));
let fail = conn.query_row("SELECT a, b FROM test", [], |row| {
<(u32, u32, u32)>::try_from(row)
});
2022-07-31 13:00:37 +08:00
fail.unwrap_err();
2020-11-06 05:14:00 +08:00
Ok(())
}
#[test]
2020-11-06 05:14:00 +08:00
fn test_try_from_row_for_tuple_16() -> Result<()> {
use std::convert::TryFrom;
let create_table = "CREATE TABLE test (
a INTEGER,
b INTEGER,
c INTEGER,
d INTEGER,
e INTEGER,
f INTEGER,
g INTEGER,
h INTEGER,
i INTEGER,
j INTEGER,
k INTEGER,
l INTEGER,
m INTEGER,
n INTEGER,
o INTEGER,
p INTEGER
)";
let insert_values = "INSERT INTO test VALUES (
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
)";
type BigTuple = (
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
u32,
);
2020-11-06 05:14:00 +08:00
let conn = Connection::open_in_memory()?;
conn.execute(create_table, [])?;
conn.execute(insert_values, [])?;
let val = conn.query_row("SELECT * FROM test", [], |row| BigTuple::try_from(row))?;
// Debug is not implemented for tuples of 16
assert_eq!(val.0, 0);
assert_eq!(val.1, 1);
assert_eq!(val.2, 2);
assert_eq!(val.3, 3);
assert_eq!(val.4, 4);
assert_eq!(val.5, 5);
assert_eq!(val.6, 6);
assert_eq!(val.7, 7);
assert_eq!(val.8, 8);
assert_eq!(val.9, 9);
assert_eq!(val.10, 10);
assert_eq!(val.11, 11);
assert_eq!(val.12, 12);
assert_eq!(val.13, 13);
assert_eq!(val.14, 14);
assert_eq!(val.15, 15);
// We don't test one bigger because it's unimplemented
2020-11-06 05:14:00 +08:00
Ok(())
}
}