libmdbx/mdb.c

10631 lines
299 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/** @file mdb.c
* @brief Lightning memory-mapped database library
*
* A Btree-based database management library modeled loosely on the
* BerkeleyDB API, but much simplified.
*/
/*
* Copyright 2015-2017 Leonid Yuriev <leo@yuriev.ru>.
* Copyright 2011-2017 Howard Chu, Symas Corp.
* Copyright 2015,2016 Peter-Service R&D LLC.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* <http://www.OpenLDAP.org/license.html>.
*
* This code is derived from btree.c written by Martin Hedenfalk.
*
* Copyright (c) 2009, 2010 Martin Hedenfalk <martin@bzero.se>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef MDB_DEBUG
# define MDB_DEBUG 0
#endif
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif
/* LY: Please do not ask us for Windows support, just never!
* But you can make a fork for Windows, or become maintainer for FreeBSD... */
#ifndef __gnu_linux__
# warning "ReOpenMDBX supports only GNU Linux"
#endif
#include <features.h>
#if !defined(__GNUC__) || !__GNUC_PREREQ(4,2)
/* LY: Actualy ReOpenMDBX was not tested with compilers
* older than GCC 4.4 (from RHEL6).
* But you could remove this #error and try to continue at your own risk.
* In such case please don't rise up an issues related ONLY to old compilers.
*/
# warning "ReOpenMDBX required at least GCC 4.2 compatible C/C++ compiler."
#endif
#if !defined(__GNU_LIBRARY__) || !__GLIBC_PREREQ(2,12)
/* LY: Actualy ReOpenMDBX was not tested with something
* older than glibc 2.12 (from RHEL6).
* But you could remove this #error and try to continue at your own risk.
* In such case please don't rise up an issues related ONLY to old systems.
*/
# warning "ReOpenMDBX required at least GLIBC 2.12."
#endif
#include "./reopen.h"
#include "./barriers.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/param.h>
#include <sys/uio.h>
#include <sys/mman.h>
#ifdef HAVE_SYS_FILE_H
# include <sys/file.h>
#endif
#include <fcntl.h>
#include <errno.h>
#include <limits.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <malloc.h>
#include <pthread.h>
#if !(defined(BYTE_ORDER) || defined(__BYTE_ORDER))
# include <netinet/in.h>
# include <resolv.h> /* defines BYTE_ORDER on HPUX and Solaris */
#endif
#ifndef _POSIX_SYNCHRONIZED_IO
# define fdatasync fsync
#endif
#ifndef BYTE_ORDER
# if (defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)) && !(defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN))
/* Solaris just defines one or the other */
# define LITTLE_ENDIAN 1234
# define BIG_ENDIAN 4321
# ifdef _LITTLE_ENDIAN
# define BYTE_ORDER LITTLE_ENDIAN
# else
# define BYTE_ORDER BIG_ENDIAN
# endif
# else
# define BYTE_ORDER __BYTE_ORDER
# endif
#endif
#ifndef LITTLE_ENDIAN
# define LITTLE_ENDIAN __LITTLE_ENDIAN
#endif
#ifndef BIG_ENDIAN
# define BIG_ENDIAN __BIG_ENDIAN
#endif
#if defined(__i386) || defined(__x86_64) || defined(_M_IX86)
# define MISALIGNED_OK 1
#endif
#include "./lmdb.h"
#include "./midl.h"
#if ! MDBX_MODE_ENABLED
# define MDBX_COALESCE 0
# define MDBX_LIFORECLAIM 0
# define MDBX_DBG_ASSERT 0
# define MDBX_DBG_PRINT 0
# define MDBX_DBG_TRACE 0
# define MDBX_DBG_EXTRA 0
# define MDBX_DBG_AUDIT 0
# define MDBX_DBG_EDGE 0
# define mdb_runtime_flags 0
# define mdb_debug_logger ((void (*)(int, ...)) NULL)
# define MDBX_ONLY_FEATURE static
#else
# define MDBX_ONLY_FEATURE
#endif /* ! MDBX_MODE_ENABLED */
#if (BYTE_ORDER == LITTLE_ENDIAN) == (BYTE_ORDER == BIG_ENDIAN)
# error "Unknown or unsupported endianness (BYTE_ORDER)"
#elif (-6 & 5) || CHAR_BIT != 8 || UINT_MAX < 0xffffffff || ULONG_MAX % 0xFFFF
# error "Two's complement, reasonably sized integer types, please"
#endif
/** @defgroup internal LMDB Internals
* @{
*/
/** @defgroup compat Compatibility Macros
* A bunch of macros to minimize the amount of platform-specific ifdefs
* needed throughout the rest of the code. When the features this library
* needs are similar enough to POSIX to be hidden in a one-or-two line
* replacement, this macro approach is used.
* @{
*/
/** Features under development */
#ifndef MDB_DEVEL
# define MDB_DEVEL 0
#endif
/** Wrapper around __func__, which is a C99 feature */
#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
# define mdb_func_ __func__
#elif (defined(__GNUC__) && __GNUC__ >= 2) || defined(__clang__)
# define mdb_func_ __FUNCTION__
#else
/* If a debug message says <mdb_unknown>(), update the #if statements above */
# define mdb_func_ "<mdb_unknown>"
#endif
/** Some platforms define the EOWNERDEAD error code
* even though they don't support Robust Mutexes.
* Compile with -DMDB_USE_ROBUST=0.
*/
#ifndef MDB_USE_ROBUST
/* Howard Chu: Android currently lacks Robust Mutex support */
# if defined(EOWNERDEAD) && !defined(ANDROID) \
/* LY: glibc before 2.10 has a troubles with Robust Mutex too. */ \
&& __GLIBC_PREREQ(2,10)
# define MDB_USE_ROBUST 1
# else
# define MDB_USE_ROBUST 0
# endif
#endif /* MDB_USE_ROBUST */
/* Internal error codes, not exposed outside liblmdb */
#define MDB_NO_ROOT (MDB_LAST_ERRCODE + 10)
/** Mutex for the reader table (rw = r) or write transaction (rw = w).
*/
#define MDB_MUTEX(env, rw) \
(&(env)->me_txns->mti_##rw##mutex)
/** An abstraction for a file handle.
* On POSIX systems file handles are small integers. On Windows
* they're opaque pointers.
*/
#define HANDLE int
/** A value for an invalid file handle.
* Mainly used to initialize file variables and signify that they are
* unused.
*/
#define INVALID_HANDLE_VALUE (-1)
/** Get the size of a memory page for the system.
* This is the basic size that the platform's memory manager uses, and is
* fundamental to the use of memory-mapped files.
*/
#define GET_PAGESIZE(x) ((x) = sysconf(_SC_PAGE_SIZE))
/** @} */
static int mdb_mutex_lock(MDB_env *env, pthread_mutex_t *mutex);
static int mdb_mutex_failed(MDB_env *env, pthread_mutex_t *mutex, int rc);
static void mdb_mutex_unlock(MDB_env *env, pthread_mutex_t *mutex);
/** A page number in the database.
* Note that 64 bit page numbers are overkill, since pages themselves
* already represent 12-13 bits of addressable memory, and the OS will
* always limit applications to a maximum of 63 bits of address space.
*
* @note In the #MDB_node structure, we only store 48 bits of this value,
* which thus limits us to only 60 bits of addressable data.
*/
typedef MDB_ID pgno_t;
/** A transaction ID.
* See struct MDB_txn.mt_txnid for details.
*/
typedef MDB_ID txnid_t;
/** @defgroup debug Debug Macros
* @{
*/
/** Debuging output value of a cursor DBI: Negative in a sub-cursor. */
#define DDBI(mc) \
(((mc)->mc_flags & C_SUB) ? -(int)(mc)->mc_dbi : (int)(mc)->mc_dbi)
/** @} */
/** @brief The maximum size of a database page.
*
* It is 32k or 64k, since value-PAGEBASE must fit in
* #MDB_page.%mp_upper.
*
* LMDB will use database pages < OS pages if needed.
* That causes more I/O in write transactions: The OS must
* know (read) the whole page before writing a partial page.
*
* Note that we don't currently support Huge pages. On Linux,
* regular data files cannot use Huge pages, and in general
* Huge pages aren't actually pageable. We rely on the OS
* demand-pager to read our data and page it out when memory
* pressure from other processes is high. So until OSs have
* actual paging support for Huge pages, they're not viable.
*/
#define MAX_PAGESIZE (PAGEBASE ? 0x10000 : 0x8000)
/** The minimum number of keys required in a database page.
* Setting this to a larger value will place a smaller bound on the
* maximum size of a data item. Data items larger than this size will
* be pushed into overflow pages instead of being stored directly in
* the B-tree node. This value used to default to 4. With a page size
* of 4096 bytes that meant that any item larger than 1024 bytes would
* go into an overflow page. That also meant that on average 2-3KB of
* each overflow page was wasted space. The value cannot be lower than
* 2 because then there would no longer be a tree structure. With this
* value, items larger than 2KB will go into overflow pages, and on
* average only 1KB will be wasted.
*/
#define MDB_MINKEYS 2
/** A stamp that identifies a file as an LMDB file.
* There's nothing special about this value other than that it is easily
* recognizable, and it will reflect any byte order mismatches.
*/
#define MDB_MAGIC 0xBEEFC0DE
/** The version number for a database's datafile format. */
#define MDB_DATA_VERSION ((MDB_DEVEL) ? 999 : 1)
/** The version number for a database's lockfile format. */
#define MDB_LOCK_VERSION ((MDB_DEVEL) ? 999 : 1)
/** @brief The max size of a key we can write, or 0 for computed max.
*
* This macro should normally be left alone or set to 0.
* Note that a database with big keys or dupsort data cannot be
* reliably modified by a liblmdb which uses a smaller max.
* The default is 511 for backwards compat, or 0 when #MDB_DEVEL.
*
* Other values are allowed, for backwards compat. However:
* A value bigger than the computed max can break if you do not
* know what you are doing, and liblmdb <= 0.9.10 can break when
* modifying a DB with keys/dupsort data bigger than its max.
*
* Data items in an #MDB_DUPSORT database are also limited to
* this size, since they're actually keys of a sub-DB. Keys and
* #MDB_DUPSORT data items must fit on a node in a regular page.
*/
#ifndef MDB_MAXKEYSIZE
# define MDB_MAXKEYSIZE ((MDB_DEVEL) ? 0 : 511)
#endif
/** The maximum size of a key we can write to the environment. */
#if MDB_MAXKEYSIZE
# define ENV_MAXKEY(env) (MDB_MAXKEYSIZE)
#else
# define ENV_MAXKEY(env) ((env)->me_maxkey_limit)
#endif /* MDB_MAXKEYSIZE */
/** @brief The maximum size of a data item.
*
* We only store a 32 bit value for node sizes.
*/
#define MAXDATASIZE 0xffffffffUL
/** Key size which fits in a #DKBUF.
* @ingroup debug
*/
#define DKBUF_MAXKEYSIZE ((MDB_MAXKEYSIZE) > 0 ? (MDB_MAXKEYSIZE) : 511)
/** A key buffer.
* @ingroup debug
* This is used for printing a hex dump of a key's contents.
*/
#define DKBUF char kbuf[DKBUF_MAXKEYSIZE*2+1]
/** Display a key in hex.
* @ingroup debug
* Invoke a function to display a key in hex.
*/
#define DKEY(x) mdb_dkey(x, kbuf)
/** An invalid page number.
* Mainly used to denote an empty tree.
*/
#define P_INVALID (~(pgno_t)0)
/** Test if the flags \b f are set in a flag word \b w. */
#define F_ISSET(w, f) (((w) & (f)) == (f))
/** Round \b n up to an even number. */
#define EVEN(n) (((n) + 1U) & -2) /* sign-extending -2 to match n+1U */
/** Used for offsets within a single page.
* Since memory pages are typically 4 or 8KB in size, 12-13 bits,
* this is plenty.
*/
typedef uint16_t indx_t;
/** Default size of memory map.
* This is certainly too small for any actual applications. Apps should always set
* the size explicitly using #mdb_env_set_mapsize().
*/
#define DEFAULT_MAPSIZE 1048576
/** @defgroup readers Reader Lock Table
* Readers don't acquire any locks for their data access. Instead, they
* simply record their transaction ID in the reader table. The reader
* mutex is needed just to find an empty slot in the reader table. The
* slot's address is saved in thread-specific data so that subsequent read
* transactions started by the same thread need no further locking to proceed.
*
* If #MDB_NOTLS is set, the slot address is not saved in thread-specific data.
*
* No reader table is used if the database is on a read-only filesystem, or
* if #MDB_NOLOCK is set.
*
* Since the database uses multi-version concurrency control, readers don't
* actually need any locking. This table is used to keep track of which
* readers are using data from which old transactions, so that we'll know
* when a particular old transaction is no longer in use. Old transactions
* that have discarded any data pages can then have those pages reclaimed
* for use by a later write transaction.
*
* The lock table is constructed such that reader slots are aligned with the
* processor's cache line size. Any slot is only ever used by one thread.
* This alignment guarantees that there will be no contention or cache
* thrashing as threads update their own slot info, and also eliminates
* any need for locking when accessing a slot.
*
* A writer thread will scan every slot in the table to determine the oldest
* outstanding reader transaction. Any freed pages older than this will be
* reclaimed by the writer. The writer doesn't use any locks when scanning
* this table. This means that there's no guarantee that the writer will
* see the most up-to-date reader info, but that's not required for correct
* operation - all we need is to know the upper bound on the oldest reader,
* we don't care at all about the newest reader. So the only consequence of
* reading stale information here is that old pages might hang around a
* while longer before being reclaimed. That's actually good anyway, because
* the longer we delay reclaiming old pages, the more likely it is that a
* string of contiguous pages can be found after coalescing old pages from
* many old transactions together.
* @{
*/
/** Number of slots in the reader table.
* This value was chosen somewhat arbitrarily. 126 readers plus a
* couple mutexes fit exactly into 8KB on my development machine.
* Applications should set the table size using #mdb_env_set_maxreaders().
*/
#define DEFAULT_READERS 126
/** The information we store in a single slot of the reader table.
* In addition to a transaction ID, we also record the process and
* thread ID that owns a slot, so that we can detect stale information,
* e.g. threads or processes that went away without cleaning up.
* @note We currently don't check for stale records. We simply re-init
* the table when we know that we're the only process opening the
* lock file.
*/
typedef struct MDB_rxbody {
/** Current Transaction ID when this transaction began, or (txnid_t)-1.
* Multiple readers that start at the same time will probably have the
* same ID here. Again, it's not important to exclude them from
* anything; all we need to know is which version of the DB they
* started from so we can avoid overwriting any data used in that
* particular version.
*/
volatile txnid_t mrb_txnid;
/** The process ID of the process owning this reader txn. */
volatile pid_t mrb_pid;
/** The thread ID of the thread owning this txn. */
volatile pthread_t mrb_tid;
} MDB_rxbody;
/** The actual reader record, with cacheline padding. */
typedef struct MDB_reader {
union {
MDB_rxbody mrx;
/** shorthand for mrb_txnid */
#define mr_txnid mru.mrx.mrb_txnid
#define mr_pid mru.mrx.mrb_pid
#define mr_tid mru.mrx.mrb_tid
/** cache line alignment */
char pad[(sizeof(MDB_rxbody)+CACHELINE_SIZE-1) & ~(CACHELINE_SIZE-1)];
} mru;
} MDB_reader;
/** The header for the reader table.
* The table resides in a memory-mapped file. (This is a different file
* than is used for the main database.)
*
* For POSIX the actual mutexes reside in the shared memory of this
* mapped file. On Windows, mutexes are named objects allocated by the
* kernel; we store the mutex names in this mapped file so that other
* processes can grab them. This same approach is also used on
* MacOSX/Darwin (using named semaphores) since MacOSX doesn't support
* process-shared POSIX mutexes. For these cases where a named object
* is used, the object name is derived from a 64 bit FNV hash of the
* environment pathname. As such, naming collisions are extremely
* unlikely. If a collision occurs, the results are unpredictable.
*/
typedef struct MDB_txbody {
/** Stamp identifying this as an LMDB file. It must be set
* to #MDB_MAGIC. */
uint32_t mtb_magic;
/** Format of this lock file. Must be set to #MDB_LOCK_FORMAT. */
uint32_t mtb_format;
/** Mutex protecting access to this table.
* This is the #MDB_MUTEX(env,r) reader table lock.
*/
pthread_mutex_t mtb_rmutex;
/** The ID of the last transaction committed to the database.
* This is recorded here only for convenience; the value can always
* be determined by reading the main database meta pages.
*/
volatile txnid_t mtb_txnid;
/** The number of slots that have been used in the reader table.
* This always records the maximum count, it is not decremented
* when readers release their slots.
*/
volatile unsigned mtb_numreaders;
} MDB_txbody;
/** The actual reader table definition. */
typedef struct MDB_txninfo {
union {
MDB_txbody mtb;
#define mti_magic mt1.mtb.mtb_magic
#define mti_format mt1.mtb.mtb_format
#define mti_rmutex mt1.mtb.mtb_rmutex
#define mti_rmname mt1.mtb.mtb_rmname
#define mti_txnid mt1.mtb.mtb_txnid
#define mti_numreaders mt1.mtb.mtb_numreaders
char pad[(sizeof(MDB_txbody)+CACHELINE_SIZE-1) & ~(CACHELINE_SIZE-1)];
} mt1;
union {
pthread_mutex_t mt2_wmutex;
# define mti_wmutex mt2.mt2_wmutex
char pad[(sizeof(pthread_mutex_t)+CACHELINE_SIZE-1) & ~(CACHELINE_SIZE-1)];
} mt2;
MDB_reader mti_readers[1];
} MDB_txninfo;
/** Lockfile format signature: version, features and field layout */
#define MDB_LOCK_FORMAT \
((uint32_t) \
((MDB_LOCK_VERSION) \
/* Flags which describe functionality */ \
+ (0 /* SYSV_SEM_FLAG */ << 18) \
+ (1 /* MDB_PIDLOCK */ << 16)))
/** @} */
/** Common header for all page types. The page type depends on #mp_flags.
*
* #P_BRANCH and #P_LEAF pages have unsorted '#MDB_node's at the end, with
* sorted #mp_ptrs[] entries referring to them. Exception: #P_LEAF2 pages
* omit mp_ptrs and pack sorted #MDB_DUPFIXED values after the page header.
*
* #P_OVERFLOW records occupy one or more contiguous pages where only the
* first has a page header. They hold the real data of #F_BIGDATA nodes.
*
* #P_SUBP sub-pages are small leaf "pages" with duplicate data.
* A node with flag #F_DUPDATA but not #F_SUBDATA contains a sub-page.
* (Duplicate data can also go in sub-databases, which use normal pages.)
*
* #P_META pages contain #MDB_meta, the start point of an LMDB snapshot.
*
* Each non-metapage up to #MDB_meta.%mm_last_pg is reachable exactly once
* in the snapshot: Either used by a database or listed in a freeDB record.
*/
typedef struct MDB_page {
#define mp_pgno mp_p.p_pgno
#define mp_next mp_p.p_next
union {
pgno_t p_pgno; /**< page number */
struct MDB_page *p_next; /**< for in-memory list of freed pages */
} mp_p;
uint16_t mp_leaf2_ksize; /**< key size if this is a LEAF2 page */
/** @defgroup mdb_page Page Flags
* @ingroup internal
* Flags for the page headers.
* @{
*/
#define P_BRANCH 0x01 /**< branch page */
#define P_LEAF 0x02 /**< leaf page */
#define P_OVERFLOW 0x04 /**< overflow page */
#define P_META 0x08 /**< meta page */
#define P_DIRTY 0x10 /**< dirty page, also set for #P_SUBP pages */
#define P_LEAF2 0x20 /**< for #MDB_DUPFIXED records */
#define P_SUBP 0x40 /**< for #MDB_DUPSORT sub-pages */
#define P_LOOSE 0x4000 /**< page was dirtied then freed, can be reused */
#define P_KEEP 0x8000 /**< leave this page alone during spill */
/** @} */
uint16_t mp_flags; /**< @ref mdb_page */
#define mp_lower mp_pb.pb.pb_lower
#define mp_upper mp_pb.pb.pb_upper
#define mp_pages mp_pb.pb_pages
union {
struct {
indx_t pb_lower; /**< lower bound of free space */
indx_t pb_upper; /**< upper bound of free space */
} pb;
uint32_t pb_pages; /**< number of overflow pages */
} mp_pb;
indx_t mp_ptrs[1]; /**< dynamic size */
} MDB_page;
/** Size of the page header, excluding dynamic data at the end */
#define PAGEHDRSZ ((unsigned) offsetof(MDB_page, mp_ptrs))
/** Address of first usable data byte in a page, after the header */
#define PAGEDATA(p) ((void *)((char *)(p) + PAGEHDRSZ))
/** ITS#7713, change PAGEBASE to handle 65536 byte pages */
#define PAGEBASE ((MDB_DEVEL) ? PAGEHDRSZ : 0)
/** Number of nodes on a page */
#define NUMKEYS(p) (((p)->mp_lower - (PAGEHDRSZ-PAGEBASE)) >> 1)
/** The amount of space remaining in the page */
#define SIZELEFT(p) (indx_t)((p)->mp_upper - (p)->mp_lower)
/** The percentage of space used in the page, in tenths of a percent. */
#define PAGEFILL(env, p) (1000L * ((env)->me_psize - PAGEHDRSZ - SIZELEFT(p)) / \
((env)->me_psize - PAGEHDRSZ))
/** The minimum page fill factor, in tenths of a percent.
* Pages emptier than this are candidates for merging.
*/
#define FILL_THRESHOLD 250
/** Test if a page is a leaf page */
#define IS_LEAF(p) F_ISSET((p)->mp_flags, P_LEAF)
/** Test if a page is a LEAF2 page */
#define IS_LEAF2(p) F_ISSET((p)->mp_flags, P_LEAF2)
/** Test if a page is a branch page */
#define IS_BRANCH(p) F_ISSET((p)->mp_flags, P_BRANCH)
/** Test if a page is an overflow page */
#define IS_OVERFLOW(p) F_ISSET((p)->mp_flags, P_OVERFLOW)
/** Test if a page is a sub page */
#define IS_SUBP(p) F_ISSET((p)->mp_flags, P_SUBP)
/** The number of overflow pages needed to store the given size. */
#define OVPAGES(size, psize) ((PAGEHDRSZ-1 + (size)) / (psize) + 1)
/** Link in #MDB_txn.%mt_loose_pgs list.
* Kept outside the page header, which is needed when reusing the page.
*/
#define NEXT_LOOSE_PAGE(p) (*(MDB_page **)((p) + 2))
/** Header for a single key/data pair within a page.
* Used in pages of type #P_BRANCH and #P_LEAF without #P_LEAF2.
* We guarantee 2-byte alignment for 'MDB_node's.
*
* #mn_lo and #mn_hi are used for data size on leaf nodes, and for child
* pgno on branch nodes. On 64 bit platforms, #mn_flags is also used
* for pgno. (Branch nodes have no flags). Lo and hi are in host byte
* order in case some accesses can be optimized to 32-bit word access.
*
* Leaf node flags describe node contents. #F_BIGDATA says the node's
* data part is the page number of an overflow page with actual data.
* #F_DUPDATA and #F_SUBDATA can be combined giving duplicate data in
* a sub-page/sub-database, and named databases (just #F_SUBDATA).
*/
typedef struct MDB_node {
/** part of data size or pgno
* @{ */
#if BYTE_ORDER == LITTLE_ENDIAN
unsigned short mn_lo, mn_hi;
#else
unsigned short mn_hi, mn_lo;
#endif
/** @} */
/** @defgroup mdb_node Node Flags
* @ingroup internal
* Flags for node headers.
* @{
*/
#define F_BIGDATA 0x01 /**< data put on overflow page */
#define F_SUBDATA 0x02 /**< data is a sub-database */
#define F_DUPDATA 0x04 /**< data has duplicates */
/** valid flags for #mdb_node_add() */
#define NODE_ADD_FLAGS (F_DUPDATA|F_SUBDATA|MDB_RESERVE|MDB_APPEND)
/** @} */
unsigned short mn_flags; /**< @ref mdb_node */
unsigned short mn_ksize; /**< key size */
char mn_data[1]; /**< key and data are appended here */
} MDB_node;
/** Size of the node header, excluding dynamic data at the end */
#define NODESIZE offsetof(MDB_node, mn_data)
/** Bit position of top word in page number, for shifting mn_flags */
#define PGNO_TOPWORD ((pgno_t)-1 > 0xffffffffu ? 32 : 0)
/** Size of a node in a branch page with a given key.
* This is just the node header plus the key, there is no data.
*/
#define INDXSIZE(k) (NODESIZE + ((k) == NULL ? 0 : (k)->mv_size))
/** Size of a node in a leaf page with a given key and data.
* This is node header plus key plus data size.
*/
#define LEAFSIZE(k, d) (NODESIZE + (k)->mv_size + (d)->mv_size)
/** Address of node \b i in page \b p */
#define NODEPTR(p, i) ((MDB_node *)((char *)(p) + (p)->mp_ptrs[i] + PAGEBASE))
/** Address of the key for the node */
#define NODEKEY(node) (void *)((node)->mn_data)
/** Address of the data for a node */
#define NODEDATA(node) (void *)((char *)(node)->mn_data + (node)->mn_ksize)
/** Get the page number pointed to by a branch node */
#define NODEPGNO(node) \
((node)->mn_lo | ((pgno_t) (node)->mn_hi << 16) | \
(PGNO_TOPWORD ? ((pgno_t) (node)->mn_flags << PGNO_TOPWORD) : 0))
/** Set the page number in a branch node */
#define SETPGNO(node,pgno) do { \
(node)->mn_lo = (pgno) & 0xffff; (node)->mn_hi = (pgno) >> 16; \
if (PGNO_TOPWORD) (node)->mn_flags = (pgno) >> PGNO_TOPWORD; } while(0)
/** Get the size of the data in a leaf node */
#define NODEDSZ(node) ((node)->mn_lo | ((unsigned)(node)->mn_hi << 16))
/** Set the size of the data for a leaf node */
#define SETDSZ(node,size) do { \
(node)->mn_lo = (size) & 0xffff; (node)->mn_hi = (size) >> 16;} while(0)
/** The size of a key in a node */
#define NODEKSZ(node) ((node)->mn_ksize)
/** Copy a page number from src to dst */
#ifdef MISALIGNED_OK
# define COPY_PGNO(dst,src) dst = src
#elif SIZE_MAX > 4294967295UL
# define COPY_PGNO(dst,src) do { \
unsigned short *s, *d; \
s = (unsigned short *)&(src); \
d = (unsigned short *)&(dst); \
*d++ = *s++; \
*d++ = *s++; \
*d++ = *s++; \
*d = *s; \
} while (0)
#else
# define COPY_PGNO(dst,src) do { \
unsigned short *s, *d; \
s = (unsigned short *)&(src); \
d = (unsigned short *)&(dst); \
*d++ = *s++; \
*d = *s; \
} while (0)
#endif /* MISALIGNED_OK */
/** The address of a key in a LEAF2 page.
* LEAF2 pages are used for #MDB_DUPFIXED sorted-duplicate sub-DBs.
* There are no node headers, keys are stored contiguously.
*/
#define LEAF2KEY(p, i, ks) ((char *)(p) + PAGEHDRSZ + ((i)*(ks)))
/** Set the \b node's key into \b keyptr, if requested. */
#define MDB_GET_KEY(node, keyptr) { if ((keyptr) != NULL) { \
(keyptr)->mv_size = NODEKSZ(node); (keyptr)->mv_data = NODEKEY(node); } }
/** Set the \b node's key into \b key. */
#define MDB_GET_KEY2(node, key) { key.mv_size = NODEKSZ(node); key.mv_data = NODEKEY(node); }
/** Information about a single database in the environment. */
typedef struct MDB_db {
uint32_t md_xsize; /**< also ksize for LEAF2 pages */
uint16_t md_flags; /**< @ref mdb_dbi_open */
uint16_t md_depth; /**< depth of this tree */
pgno_t md_branch_pages; /**< number of internal pages */
pgno_t md_leaf_pages; /**< number of leaf pages */
pgno_t md_overflow_pages; /**< number of overflow pages */
size_t md_entries; /**< number of data items */
pgno_t md_root; /**< the root page of this tree */
} MDB_db;
#define MDB_VALID 0x8000 /**< DB handle is valid, for me_dbflags */
#define PERSISTENT_FLAGS (0xffff & ~(MDB_VALID))
/** #mdb_dbi_open() flags */
#define VALID_FLAGS (MDB_REVERSEKEY|MDB_DUPSORT|MDB_INTEGERKEY|MDB_DUPFIXED|\
MDB_INTEGERDUP|MDB_REVERSEDUP|MDB_CREATE)
/** Handle for the DB used to track free pages. */
#define FREE_DBI 0
/** Handle for the default DB. */
#define MAIN_DBI 1
/** Number of DBs in metapage (free and main) - also hardcoded elsewhere */
#define CORE_DBS 2
/** Number of meta pages - also hardcoded elsewhere */
#define NUM_METAS 2
/** Meta page content.
* A meta page is the start point for accessing a database snapshot.
* Pages 0-1 are meta pages. Transaction N writes meta page #(N % 2).
*/
typedef struct MDB_meta {
/** Stamp identifying this as an LMDB file. It must be set
* to #MDB_MAGIC. */
uint32_t mm_magic;
/** Version number of this file. Must be set to #MDB_DATA_VERSION. */
uint32_t mm_version;
void *mm_address; /**< address for fixed mapping */
size_t mm_mapsize; /**< size of mmap region */
MDB_db mm_dbs[CORE_DBS]; /**< first is free space, 2nd is main db */
/** The size of pages used in this DB */
#define mm_psize mm_dbs[FREE_DBI].md_xsize
/** Any persistent environment flags. @ref mdb_env */
#define mm_flags mm_dbs[FREE_DBI].md_flags
/** Last used page in the datafile.
* Actually the file may be shorter if the freeDB lists the final pages.
*/
pgno_t mm_last_pg;
volatile txnid_t mm_txnid; /**< txnid that committed this page */
#define MDB_DATASIGN_NONE 0
#define MDB_DATASIGN_WEAK 1
volatile uint64_t mm_datasync_sign;
#define META_IS_WEAK(meta) ((meta)->mm_datasync_sign == MDB_DATASIGN_WEAK)
#define META_IS_STEADY(meta) ((meta)->mm_datasync_sign > MDB_DATASIGN_WEAK)
#if MDBX_MODE_ENABLED
volatile mdbx_canary mm_canary;
#endif
} MDB_meta;
/** Buffer for a stack-allocated meta page.
* The members define size and alignment, and silence type
* aliasing warnings. They are not used directly; that could
* mean incorrectly using several union members in parallel.
*/
typedef union MDB_metabuf {
MDB_page mb_page;
struct {
char mm_pad[PAGEHDRSZ];
MDB_meta mm_meta;
} mb_metabuf;
} MDB_metabuf;
/** Auxiliary DB info.
* The information here is mostly static/read-only. There is
* only a single copy of this record in the environment.
*/
typedef struct MDB_dbx {
MDB_val md_name; /**< name of the database */
MDB_cmp_func *md_cmp; /**< function for comparing keys */
MDB_cmp_func *md_dcmp; /**< function for comparing data items */
MDB_rel_func *md_rel; /**< user relocate function */
void *md_relctx; /**< user-provided context for md_rel */
} MDB_dbx;
#if MDBX_MODE_ENABLED
# define MDBX_MODE_SALT 0
#else
# define MDBX_MODE_SALT 1115449266
#endif
/** A database transaction.
* Every operation requires a transaction handle.
*/
struct MDB_txn {
#define MDBX_MT_SIGNATURE (0x93D53A31^MDBX_MODE_SALT)
unsigned mt_signature;
MDB_txn *mt_parent; /**< parent of a nested txn */
/** Nested txn under this txn, set together with flag #MDB_TXN_HAS_CHILD */
MDB_txn *mt_child;
pgno_t mt_next_pgno; /**< next unallocated page */
/** The ID of this transaction. IDs are integers incrementing from 1.
* Only committed write transactions increment the ID. If a transaction
* aborts, the ID may be re-used by the next writer.
*/
txnid_t mt_txnid;
MDB_env *mt_env; /**< the DB environment */
/** The list of reclaimed txns from freeDB */
MDB_IDL mt_lifo_reclaimed;
/** The list of pages that became unused during this transaction.
*/
MDB_IDL mt_free_pgs;
/** The list of loose pages that became unused and may be reused
* in this transaction, linked through #NEXT_LOOSE_PAGE(page).
*/
MDB_page *mt_loose_pgs;
/** Number of loose pages (#mt_loose_pgs) */
int mt_loose_count;
/** The sorted list of dirty pages we temporarily wrote to disk
* because the dirty list was full. page numbers in here are
* shifted left by 1, deleted slots have the LSB set.
*/
MDB_IDL mt_spill_pgs;
union {
/** For write txns: Modified pages. Sorted when not MDB_WRITEMAP. */
MDB_ID2L dirty_list;
/** For read txns: This thread/txn's reader table slot, or NULL. */
MDB_reader *reader;
} mt_u;
/** Array of records for each DB known in the environment. */
MDB_dbx *mt_dbxs;
/** Array of MDB_db records for each known DB */
MDB_db *mt_dbs;
/** Array of sequence numbers for each DB handle */
unsigned *mt_dbiseqs;
/** @defgroup mt_dbflag Transaction DB Flags
* @ingroup internal
* @{
*/
#define DB_DIRTY 0x01 /**< DB was written in this txn */
#define DB_STALE 0x02 /**< Named-DB record is older than txnID */
#define DB_NEW 0x04 /**< Named-DB handle opened in this txn */
#define DB_VALID 0x08 /**< DB handle is valid, see also #MDB_VALID */
#define DB_USRVALID 0x10 /**< As #DB_VALID, but not set for #FREE_DBI */
#define DB_DUPDATA 0x20 /**< DB is #MDB_DUPSORT data */
/** @} */
/** In write txns, array of cursors for each DB */
MDB_cursor **mt_cursors;
/** Array of flags for each DB */
unsigned char *mt_dbflags;
/** Number of DB records in use, or 0 when the txn is finished.
* This number only ever increments until the txn finishes; we
* don't decrement it when individual DB handles are closed.
*/
MDB_dbi mt_numdbs;
/** @defgroup mdb_txn Transaction Flags
* @ingroup internal
* @{
*/
/** #mdb_txn_begin() flags */
#define MDB_TXN_BEGIN_FLAGS (MDB_NOMETASYNC|MDB_NOSYNC|MDB_RDONLY)
#define MDB_TXN_NOMETASYNC MDB_NOMETASYNC /**< don't sync meta for this txn on commit */
#define MDB_TXN_NOSYNC MDB_NOSYNC /**< don't sync this txn on commit */
#define MDB_TXN_RDONLY MDB_RDONLY /**< read-only transaction */
/* internal txn flags */
#define MDB_TXN_WRITEMAP MDB_WRITEMAP /**< copy of #MDB_env flag in writers */
#define MDB_TXN_FINISHED 0x01 /**< txn is finished or never began */
#define MDB_TXN_ERROR 0x02 /**< txn is unusable after an error */
#define MDB_TXN_DIRTY 0x04 /**< must write, even if dirty list is empty */
#define MDB_TXN_SPILLS 0x08 /**< txn or a parent has spilled pages */
#define MDB_TXN_HAS_CHILD 0x10 /**< txn has an #MDB_txn.%mt_child */
/** most operations on the txn are currently illegal */
#define MDB_TXN_BLOCKED (MDB_TXN_FINISHED|MDB_TXN_ERROR|MDB_TXN_HAS_CHILD)
/** @} */
unsigned mt_flags; /**< @ref mdb_txn */
/** #dirty_list room: Array size - \#dirty pages visible to this txn.
* Includes ancestor txns' dirty pages not hidden by other txns'
* dirty/spilled pages. Thus commit(nested txn) has room to merge
* dirty_list into mt_parent after freeing hidden mt_parent pages.
*/
unsigned mt_dirty_room;
#if MDBX_MODE_ENABLED
mdbx_canary mt_canary;
#endif
};
/** Enough space for 2^32 nodes with minimum of 2 keys per node. I.e., plenty.
* At 4 keys per node, enough for 2^64 nodes, so there's probably no need to
* raise this on a 64 bit machine.
*/
#define CURSOR_STACK 32
struct MDB_xcursor;
/** Cursors are used for all DB operations.
* A cursor holds a path of (page pointer, key index) from the DB
* root to a position in the DB, plus other state. #MDB_DUPSORT
* cursors include an xcursor to the current data item. Write txns
* track their cursors and keep them up to date when data moves.
* Exception: An xcursor's pointer to a #P_SUBP page can be stale.
* (A node with #F_DUPDATA but no #F_SUBDATA contains a subpage).
*/
struct MDB_cursor {
#define MDBX_MC_SIGNATURE (0xFE05D5B1^MDBX_MODE_SALT)
unsigned mc_signature;
/** Next cursor on this DB in this txn */
MDB_cursor *mc_next;
/** Backup of the original cursor if this cursor is a shadow */
MDB_cursor *mc_backup;
/** Context used for databases with #MDB_DUPSORT, otherwise NULL */
struct MDB_xcursor *mc_xcursor;
/** The transaction that owns this cursor */
MDB_txn *mc_txn;
/** The database handle this cursor operates on */
MDB_dbi mc_dbi;
/** The database record for this cursor */
MDB_db *mc_db;
/** The database auxiliary record for this cursor */
MDB_dbx *mc_dbx;
/** The @ref mt_dbflag for this database */
unsigned char *mc_dbflag;
unsigned short mc_snum; /**< number of pushed pages */
unsigned short mc_top; /**< index of top page, normally mc_snum-1 */
/** @defgroup mdb_cursor Cursor Flags
* @ingroup internal
* Cursor state flags.
* @{
*/
#define C_INITIALIZED 0x01 /**< cursor has been initialized and is valid */
#define C_EOF 0x02 /**< No more data */
#define C_SUB 0x04 /**< Cursor is a sub-cursor */
#define C_DEL 0x08 /**< last op was a cursor_del */
#define C_UNTRACK 0x40 /**< Un-track cursor when closing */
#define C_RECLAIMING 0x80 /**< FreeDB lookup is prohibited */
/** @} */
unsigned mc_flags; /**< @ref mdb_cursor */
MDB_page *mc_pg[CURSOR_STACK]; /**< stack of pushed pages */
indx_t mc_ki[CURSOR_STACK]; /**< stack of page indices */
};
/** Context for sorted-dup records.
* We could have gone to a fully recursive design, with arbitrarily
* deep nesting of sub-databases. But for now we only handle these
* levels - main DB, optional sub-DB, sorted-duplicate DB.
*/
typedef struct MDB_xcursor {
/** A sub-cursor for traversing the Dup DB */
MDB_cursor mx_cursor;
/** The database record for this Dup DB */
MDB_db mx_db;
/** The auxiliary DB record for this Dup DB */
MDB_dbx mx_dbx;
/** The @ref mt_dbflag for this Dup DB */
unsigned char mx_dbflag;
} MDB_xcursor;
/** Check if there is an inited xcursor, so #XCURSOR_REFRESH() is proper */
#define XCURSOR_INITED(mc) \
((mc)->mc_xcursor && ((mc)->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED))
/** Update sub-page pointer, if any, in \b mc->mc_xcursor. Needed
* when the node which contains the sub-page may have moved. Called
* with \b mp = mc->mc_pg[mc->mc_top], \b ki = mc->mc_ki[mc->mc_top].
*/
#define XCURSOR_REFRESH(mc, mp, ki) do { \
MDB_page *xr_pg = (mp); \
MDB_node *xr_node = NODEPTR(xr_pg, ki); \
if ((xr_node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) \
(mc)->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(xr_node); \
} while (0)
/** State of FreeDB old pages, stored in the MDB_env */
typedef struct MDB_pgstate {
pgno_t *mf_pghead; /**< Reclaimed freeDB pages, or NULL before use */
txnid_t mf_pglast; /**< ID of last used record, or 0 if !mf_pghead */
} MDB_pgstate;
/** Context for deferred cleanup of reader's threads.
* to avoid https://github.com/ReOpen/ReOpenLDAP/issues/48 */
typedef struct MDBX_rthc {
struct MDBX_rthc *rc_next;
pthread_t rc_thread;
MDB_reader *rc_reader;
} MDBX_rthc;
static MDBX_rthc* mdbx_rthc_get(pthread_key_t key);
/** The database environment. */
struct MDB_env {
#define MDBX_ME_SIGNATURE (0x9A899641^MDBX_MODE_SALT)
unsigned me_signature;
HANDLE me_fd; /**< The main data file */
HANDLE me_lfd; /**< The lock file */
/** Failed to update the meta page. Probably an I/O error. */
#define MDB_FATAL_ERROR 0x80000000U
/** Some fields are initialized. */
#define MDB_ENV_ACTIVE 0x20000000U
/** me_txkey is set */
#define MDB_ENV_TXKEY 0x10000000U
uint32_t me_flags; /**< @ref mdb_env */
unsigned me_psize; /**< DB page size, inited from me_os_psize */
unsigned me_os_psize; /**< OS page size, from #GET_PAGESIZE */
unsigned me_maxreaders; /**< size of the reader table */
/** Max #MDB_txninfo.%mti_numreaders of interest to #mdb_env_close() */
unsigned me_close_readers;
MDB_dbi me_numdbs; /**< number of DBs opened */
MDB_dbi me_maxdbs; /**< size of the DB table */
pid_t me_pid; /**< process ID of this env */
char *me_path; /**< path to the DB files */
char *me_map; /**< the memory map of the data file */
MDB_txninfo *me_txns; /**< the memory map of the lock file, never NULL */
void *me_pbuf; /**< scratch area for DUPSORT put() */
MDB_txn *me_txn; /**< current write transaction */
MDB_txn *me_txn0; /**< prealloc'd write transaction */
size_t me_mapsize; /**< size of the data memory map */
pgno_t me_maxpg; /**< me_mapsize / me_psize */
MDB_dbx *me_dbxs; /**< array of static DB info */
uint16_t *me_dbflags; /**< array of flags from MDB_db.md_flags */
unsigned *me_dbiseqs; /**< array of dbi sequence numbers */
pthread_key_t me_txkey; /**< thread-key for readers */
txnid_t me_pgoldest; /**< ID of oldest reader last time we looked */
MDB_pgstate me_pgstate; /**< state of old pages from freeDB */
# define me_pglast me_pgstate.mf_pglast
# define me_pghead me_pgstate.mf_pghead
MDB_page *me_dpages; /**< list of malloc'd blocks for re-use */
/** IDL of pages that became unused in a write txn */
MDB_IDL me_free_pgs;
/** ID2L of pages written during a write txn. Length MDB_IDL_UM_SIZE. */
MDB_ID2L me_dirty_list;
/** Max number of freelist items that can fit in a single overflow page */
unsigned me_maxfree_1pg;
/** Max size of a node on a page */
unsigned me_nodemax;
unsigned me_maxkey_limit; /**< max size of a key */
int me_live_reader; /**< have liveness lock in reader table */
void *me_userctx; /**< User-settable context */
#if MDB_DEBUG
MDB_assert_func *me_assert_func; /**< Callback for assertion failures */
#endif
uint64_t me_sync_pending; /**< Total dirty/commited bytes since the last mdb_env_sync() */
uint64_t me_sync_threshold; /**< Treshold of above to force synchronous flush */
#if MDBX_MODE_ENABLED
MDBX_oom_func *me_oom_func; /**< Callback for kicking laggard readers */
#endif
#ifdef USE_VALGRIND
int me_valgrind_handle;
#endif
};
/** Nested transaction */
typedef struct MDB_ntxn {
MDB_txn mnt_txn; /**< the transaction */
MDB_pgstate mnt_pgstate; /**< parent transaction's saved freestate */
} MDB_ntxn;
/** max number of pages to commit in one writev() call */
#define MDB_COMMIT_PAGES 64
#if defined(IOV_MAX) && IOV_MAX < MDB_COMMIT_PAGES
# undef MDB_COMMIT_PAGES
# define MDB_COMMIT_PAGES IOV_MAX
#endif
/** max bytes to write in one call */
#define MAX_WRITE (0x80000000U >> (sizeof(ssize_t) == 4))
/** Check \b txn and \b dbi arguments to a function */
#define TXN_DBI_EXIST(txn, dbi, validity) \
((dbi)<(txn)->mt_numdbs && ((txn)->mt_dbflags[dbi] & (validity)))
/** Check for misused \b dbi handles */
#define TXN_DBI_CHANGED(txn, dbi) \
((txn)->mt_dbiseqs[dbi] != (txn)->mt_env->me_dbiseqs[dbi])
#define METAPAGE_1(env) \
(&((MDB_metabuf*) (env)->me_map)->mb_metabuf.mm_meta)
#define METAPAGE_2(env) \
(&((MDB_metabuf*) ((env)->me_map + env->me_psize))->mb_metabuf.mm_meta)
static int mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp, int flags);
static int mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp);
static int mdb_page_touch(MDB_cursor *mc);
static int mdb_cursor_touch(MDB_cursor *mc);
#define MDB_END_NAMES {"committed", "empty-commit", "abort", "reset", \
"reset-tmp", "fail-begin", "fail-beginchild"}
enum {
/* mdb_txn_end operation number, for logging */
MDB_END_COMMITTED, MDB_END_EMPTY_COMMIT, MDB_END_ABORT, MDB_END_RESET,
MDB_END_RESET_TMP, MDB_END_FAIL_BEGIN, MDB_END_FAIL_BEGINCHILD
};
#define MDB_END_OPMASK 0x0F /**< mask for #mdb_txn_end() operation number */
#define MDB_END_UPDATE 0x10 /**< update env state (DBIs) */
#define MDB_END_FREE 0x20 /**< free txn unless it is #MDB_env.%me_txn0 */
#define MDB_END_SLOT MDB_NOTLS /**< release any reader slot if #MDB_NOTLS */
static int mdb_txn_end(MDB_txn *txn, unsigned mode);
static int mdb_page_get(MDB_cursor *mc, pgno_t pgno, MDB_page **mp, int *lvl);
static int mdb_page_search_root(MDB_cursor *mc,
MDB_val *key, int modify);
#define MDB_PS_MODIFY 1
#define MDB_PS_ROOTONLY 2
#define MDB_PS_FIRST 4
#define MDB_PS_LAST 8
static int mdb_page_search(MDB_cursor *mc,
MDB_val *key, int flags);
static int mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst);
#define MDB_SPLIT_REPLACE MDB_APPENDDUP /**< newkey is not new */
static int mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata,
pgno_t newpgno, unsigned nflags);
static int mdb_env_read_header(MDB_env *env, MDB_meta *meta);
static int mdb_env_sync0(MDB_env *env, unsigned flags, MDB_meta *pending);
static void mdb_env_close0(MDB_env *env);
static MDB_node *mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp);
static int mdb_node_add(MDB_cursor *mc, indx_t indx,
MDB_val *key, MDB_val *data, pgno_t pgno, unsigned flags);
static void mdb_node_del(MDB_cursor *mc, int ksize);
static void mdb_node_shrink(MDB_page *mp, indx_t indx);
static int mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst, int fromleft);
static int mdb_node_read(MDB_cursor *mc, MDB_node *leaf, MDB_val *data);
static size_t mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data);
static size_t mdb_branch_size(MDB_env *env, MDB_val *key);
static int mdb_rebalance(MDB_cursor *mc);
static int mdb_update_key(MDB_cursor *mc, MDB_val *key);
static void mdb_cursor_pop(MDB_cursor *mc);
static int mdb_cursor_push(MDB_cursor *mc, MDB_page *mp);
static int mdb_cursor_del0(MDB_cursor *mc);
static int mdb_del0(MDB_txn *txn, MDB_dbi dbi, MDB_val *key, MDB_val *data, unsigned flags);
static int mdb_cursor_sibling(MDB_cursor *mc, int move_right);
static int mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op);
static int mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op);
static int mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op,
int *exactp);
static int mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data);
static int mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data);
static void mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx);
static void mdb_xcursor_init0(MDB_cursor *mc);
static void mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node);
static void mdb_xcursor_init2(MDB_cursor *mc, MDB_xcursor *src_mx, int force);
static int mdb_drop0(MDB_cursor *mc, int subs);
static void mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi);
static int mdb_reader_check0(MDB_env *env, int rlocked, int *dead);
/** @cond */
static MDB_cmp_func mdb_cmp_memn, mdb_cmp_memnr, mdb_cmp_int_ai, mdb_cmp_int_a2, mdb_cmp_int_ua;
/** @endcond */
#ifdef __SANITIZE_THREAD__
static pthread_mutex_t tsan_mutex = PTHREAD_MUTEX_INITIALIZER;
#endif
/** Return the library version info. */
char * __cold
mdb_version(int *major, int *minor, int *patch)
{
if (major) *major = MDB_VERSION_MAJOR;
if (minor) *minor = MDB_VERSION_MINOR;
if (patch) *patch = MDB_VERSION_PATCH;
return MDB_VERSION_STRING;
}
/** Table of descriptions for LMDB @ref errors */
static char *const mdb_errstr[] = {
"MDB_KEYEXIST: Key/data pair already exists",
"MDB_NOTFOUND: No matching key/data pair found",
"MDB_PAGE_NOTFOUND: Requested page not found",
"MDB_CORRUPTED: Located page was wrong type",
"MDB_PANIC: Update of meta page failed or environment had fatal error",
"MDB_VERSION_MISMATCH: Database environment version mismatch",
"MDB_INVALID: File is not an LMDB file",
"MDB_MAP_FULL: Environment mapsize limit reached",
"MDB_DBS_FULL: Environment maxdbs limit reached",
"MDB_READERS_FULL: Environment maxreaders limit reached",
"MDB_TLS_FULL: Thread-local storage keys full - too many environments open",
"MDB_TXN_FULL: Transaction has too many dirty pages - transaction too big",
"MDB_CURSOR_FULL: Internal error - cursor stack limit reached",
"MDB_PAGE_FULL: Internal error - page has no more space",
"MDB_MAP_RESIZED: Database contents grew beyond environment mapsize",
"MDB_INCOMPATIBLE: Operation and DB incompatible, or DB flags changed",
"MDB_BAD_RSLOT: Invalid reuse of reader locktable slot",
"MDB_BAD_TXN: Transaction must abort, has a child, or is invalid",
"MDB_BAD_VALSIZE: Unsupported size of key/DB name/data, or wrong DUPFIXED size",
"MDB_BAD_DBI: The specified DBI handle was closed/changed unexpectedly",
"MDB_PROBLEM: Unexpected problem - txn should abort",
};
char * __cold
mdb_strerror(int err)
{
int i;
if (!err)
return ("Successful return: 0");
if (err >= MDB_KEYEXIST && err <= MDB_LAST_ERRCODE) {
i = err - MDB_KEYEXIST;
return mdb_errstr[i];
}
return strerror(err);
}
#if MDBX_MODE_ENABLED
static txnid_t mdbx_oomkick(MDB_env *env, txnid_t oldest);
#endif /* MDBX_MODE_ENABLED */
static void mdb_debug_log(int type, const char *function, int line, const char *fmt, ...)
__attribute__((format(printf, 4, 5)));
#if MDB_DEBUG
static txnid_t mdb_debug_edge;
static void __cold
mdb_assert_fail(MDB_env *env, const char *msg,
const char *func, int line)
{
if (env && env->me_assert_func)
env->me_assert_func(env, msg, func, line);
else {
if (mdb_debug_logger)
mdb_debug_log(MDBX_DBG_ASSERT, func, line, "assert: %s\n", msg);
__assert_fail(msg, __FILE__, line, func);
}
}
# define mdb_assert_enabled() \
unlikely(mdb_runtime_flags & MDBX_DBG_ASSERT)
# define mdb_audit_enabled() \
unlikely(mdb_runtime_flags & MDBX_DBG_AUDIT)
# define mdb_debug_enabled(type) \
unlikely(mdb_runtime_flags & \
(type & (MDBX_DBG_TRACE | MDBX_DBG_EXTRA)))
#else
# ifndef NDEBUG
# define mdb_debug_enabled(type) (1)
# else
# define mdb_debug_enabled(type) (0)
# endif
# define mdb_audit_enabled() (0)
# define mdb_assert_enabled() (0)
# define mdb_assert_fail(env, msg, func, line) \
__assert_fail(msg, __FILE__, line, func)
#endif /* MDB_DEBUG */
static void __cold
mdb_debug_log(int type, const char *function, int line, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
if (mdb_debug_logger)
mdb_debug_logger(type, function, line, fmt, args);
else {
if (function && line > 0)
fprintf(stderr, "%s:%d ", function, line);
else if (function)
fprintf(stderr, "%s: ", function);
else if (line > 0)
fprintf(stderr, "%d: ", line);
vfprintf(stderr, fmt, args);
}
va_end(args);
}
#define mdb_print(fmt, ...) \
mdb_debug_log(MDBX_DBG_PRINT, NULL, 0, fmt, ##__VA_ARGS__)
#define mdb_debug(fmt, ...) do { \
if (mdb_debug_enabled(MDBX_DBG_TRACE)) \
mdb_debug_log(MDBX_DBG_TRACE, __FUNCTION__, __LINE__, fmt "\n", ##__VA_ARGS__); \
} while(0)
#define mdb_debug_print(fmt, ...) do { \
if (mdb_debug_enabled(MDBX_DBG_TRACE)) \
mdb_debug_log(MDBX_DBG_TRACE, NULL, 0, fmt, ##__VA_ARGS__); \
} while(0)
#define mdb_debug_extra(fmt, ...) do { \
if (mdb_debug_enabled(MDBX_DBG_EXTRA)) \
mdb_debug_log(MDBX_DBG_EXTRA, __FUNCTION__, __LINE__, fmt, ##__VA_ARGS__); \
} while(0)
#define mdb_debug_extra_print(fmt, ...) do { \
if (mdb_debug_enabled(MDBX_DBG_EXTRA)) \
mdb_debug_log(MDBX_DBG_EXTRA, NULL, 0, fmt, ##__VA_ARGS__); \
} while(0)
#define mdb_ensure_msg(env, expr, msg) \
do { \
if (unlikely(!(expr))) \
mdb_assert_fail(env, msg, __FUNCTION__, __LINE__); \
} while(0)
#define mdb_ensure(env, expr) \
mdb_ensure_msg(env, expr, #expr)
/** assert(3) variant in environment context */
#define mdb_assert(env, expr) \
do { \
if (mdb_assert_enabled()) \
mdb_ensure(env, expr); \
} while(0)
/** assert(3) variant in cursor context */
#define mdb_cassert(mc, expr) \
mdb_assert((mc)->mc_txn->mt_env, expr)
/** assert(3) variant in transaction context */
#define mdb_tassert(txn, expr) \
mdb_assert((txn)->mt_env, expr)
/** Return the page number of \b mp which may be sub-page, for debug output */
static MDBX_INLINE pgno_t
mdb_dbg_pgno(MDB_page *mp)
{
pgno_t ret;
COPY_PGNO(ret, mp->mp_pgno);
return ret;
}
/** Display a key in hexadecimal and return the address of the result.
* @param[in] key the key to display
* @param[in] buf the buffer to write into. Should always be #DKBUF.
* @return The key in hexadecimal form.
*/
char *
mdb_dkey(MDB_val *key, char *buf)
{
char *ptr = buf;
unsigned i;
if (!key)
return "";
if (key->mv_size > DKBUF_MAXKEYSIZE)
return "MDB_MAXKEYSIZE";
/* may want to make this a dynamic check: if the key is mostly
* printable characters, print it as-is instead of converting to hex. */
#if 1
buf[0] = '\0';
for (i=0; i<key->mv_size; i++)
ptr += sprintf(ptr, "%02x", ((unsigned char*) key->mv_data)[i]);
#else
sprintf(buf, "%.*s", key->mv_size, key->mv_data);
#endif
return buf;
}
#if 0 /* LY: debug stuff */
static const char *
mdb_leafnode_type(MDB_node *n)
{
static char *const tp[2][2] = {{"", ": DB"}, {": sub-page", ": sub-DB"}};
return F_ISSET(n->mn_flags, F_BIGDATA) ? ": overflow page" :
tp[F_ISSET(n->mn_flags, F_DUPDATA)][F_ISSET(n->mn_flags, F_SUBDATA)];
}
/** Display all the keys in the page. */
static void
mdb_page_list(MDB_page *mp)
{
pgno_t pgno = mdb_dbg_pgno(mp);
const char *type, *state = (mp->mp_flags & P_DIRTY) ? ", dirty" : "";
MDB_node *node;
unsigned i, nkeys, nsize, total = 0;
MDB_val key;
DKBUF;
switch (mp->mp_flags & (P_BRANCH|P_LEAF|P_LEAF2|P_META|P_OVERFLOW|P_SUBP)) {
case P_BRANCH: type = "Branch page"; break;
case P_LEAF: type = "Leaf page"; break;
case P_LEAF|P_SUBP: type = "Sub-page"; break;
case P_LEAF|P_LEAF2: type = "LEAF2 page"; break;
case P_LEAF|P_LEAF2|P_SUBP: type = "LEAF2 sub-page"; break;
case P_OVERFLOW:
mdb_print("Overflow page %zu pages %u%s\n",
pgno, mp->mp_pages, state);
return;
case P_META:
mdb_print("Meta-page %zu txnid %zu\n",
pgno, ((MDB_meta *)PAGEDATA(mp))->mm_txnid);
return;
default:
mdb_print("Bad page %zu flags 0x%X\n", pgno, mp->mp_flags);
return;
}
nkeys = NUMKEYS(mp);
mdb_print("%s %zu numkeys %u%s\n", type, pgno, nkeys, state);
for (i=0; i<nkeys; i++) {
if (IS_LEAF2(mp)) { /* LEAF2 pages have no mp_ptrs[] or node headers */
key.mv_size = nsize = mp->mp_leaf2_ksize;
key.mv_data = LEAF2KEY(mp, i, nsize);
total += nsize;
mdb_print("key %u: nsize %u, %s\n", i, nsize, DKEY(&key));
continue;
}
node = NODEPTR(mp, i);
key.mv_size = node->mn_ksize;
key.mv_data = node->mn_data;
nsize = NODESIZE + key.mv_size;
if (IS_BRANCH(mp)) {
mdb_print("key %u: page %zu, %s\n", i, NODEPGNO(node), DKEY(&key));
total += nsize;
} else {
if (F_ISSET(node->mn_flags, F_BIGDATA))
nsize += sizeof(pgno_t);
else
nsize += NODEDSZ(node);
total += nsize;
nsize += sizeof(indx_t);
mdb_print("key %u: nsize %u, %s%s\n",
i, nsize, DKEY(&key), mdb_leafnode_type(node));
}
total = EVEN(total);
}
mdb_print("Total: header %u + contents %u + unused %u\n",
IS_LEAF2(mp) ? PAGEHDRSZ : PAGEBASE + mp->mp_lower, total, SIZELEFT(mp));
}
static void
mdb_cursor_chk(MDB_cursor *mc)
{
unsigned i;
MDB_node *node;
MDB_page *mp;
if (!mc->mc_snum || !(mc->mc_flags & C_INITIALIZED)) return;
for (i=0; i<mc->mc_top; i++) {
mp = mc->mc_pg[i];
node = NODEPTR(mp, mc->mc_ki[i]);
if (unlikely(NODEPGNO(node) != mc->mc_pg[i+1]->mp_pgno))
mdb_print("oops!\n");
}
if (unlikely(mc->mc_ki[i] >= NUMKEYS(mc->mc_pg[i])))
mdb_print("ack!\n");
if (XCURSOR_INITED(mc)) {
node = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
if (((node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) &&
mc->mc_xcursor->mx_cursor.mc_pg[0] != NODEDATA(node)) {
mdb_print("blah!\n");
}
}
}
#endif /* 0 */
/** Count all the pages in each DB and in the freelist
* and make sure it matches the actual number of pages
* being used.
* All named DBs must be open for a correct count.
*/
static void mdb_audit(MDB_txn *txn)
{
MDB_cursor mc;
MDB_val key, data;
MDB_ID freecount, count;
MDB_dbi i;
int rc;
freecount = 0;
mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
while ((rc = mdb_cursor_get(&mc, &key, &data, MDB_NEXT)) == 0)
freecount += *(MDB_ID *)data.mv_data;
mdb_tassert(txn, rc == MDB_NOTFOUND);
count = 0;
for (i = 0; i<txn->mt_numdbs; i++) {
MDB_xcursor mx;
if (!(txn->mt_dbflags[i] & DB_VALID))
continue;
mdb_cursor_init(&mc, txn, i, &mx);
if (txn->mt_dbs[i].md_root == P_INVALID)
continue;
count += txn->mt_dbs[i].md_branch_pages +
txn->mt_dbs[i].md_leaf_pages +
txn->mt_dbs[i].md_overflow_pages;
if (txn->mt_dbs[i].md_flags & MDB_DUPSORT) {
rc = mdb_page_search(&mc, NULL, MDB_PS_FIRST);
for (; rc == MDB_SUCCESS; rc = mdb_cursor_sibling(&mc, 1)) {
unsigned j;
MDB_page *mp;
mp = mc.mc_pg[mc.mc_top];
for (j=0; j<NUMKEYS(mp); j++) {
MDB_node *leaf = NODEPTR(mp, j);
if (leaf->mn_flags & F_SUBDATA) {
MDB_db db;
memcpy(&db, NODEDATA(leaf), sizeof(db));
count += db.md_branch_pages + db.md_leaf_pages +
db.md_overflow_pages;
}
}
}
mdb_tassert(txn, rc == MDB_NOTFOUND);
}
}
if (freecount + count + NUM_METAS != txn->mt_next_pgno) {
mdb_print("audit: %lu freecount: %lu count: %lu total: %lu next_pgno: %lu\n",
txn->mt_txnid, freecount, count+NUM_METAS,
freecount+count+NUM_METAS, txn->mt_next_pgno);
}
}
int
mdb_cmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b)
{
mdb_ensure(NULL, txn->mt_signature == MDBX_MT_SIGNATURE);
return txn->mt_dbxs[dbi].md_cmp(a, b);
}
int
mdb_dcmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b)
{
mdb_ensure(NULL, txn->mt_signature == MDBX_MT_SIGNATURE);
return txn->mt_dbxs[dbi].md_dcmp(a, b);
}
/** Allocate memory for a page.
* Re-use old malloc'd pages first for singletons, otherwise just malloc.
* Set #MDB_TXN_ERROR on failure.
*/
static MDB_page *
mdb_page_malloc(MDB_txn *txn, unsigned num)
{
MDB_env *env = txn->mt_env;
size_t size = env->me_psize;
MDB_page *np = env->me_dpages;
if (likely(num == 1 && np)) {
ASAN_UNPOISON_MEMORY_REGION(np, size);
VALGRIND_MEMPOOL_ALLOC(env, np, size);
VALGRIND_MAKE_MEM_DEFINED(&np->mp_next, sizeof(np->mp_next));
env->me_dpages = np->mp_next;
} else {
size *= num;
np = malloc(size);
if (unlikely(! np)) {
txn->mt_flags |= MDB_TXN_ERROR;
return np;
}
VALGRIND_MEMPOOL_ALLOC(env, np, size);
}
if ((env->me_flags & MDB_NOMEMINIT) == 0) {
/* For a single page alloc, we init everything after the page header.
* For multi-page, we init the final page; if the caller needed that
* many pages they will be filling in at least up to the last page. */
size_t skip = PAGEHDRSZ;
if (num > 1)
skip += (num - 1) * env->me_psize;
memset((char *) np + skip, 0, size - skip);
}
VALGRIND_MAKE_MEM_UNDEFINED(np, size);
np->mp_flags = 0;
np->mp_pages = num;
return np;
}
/** Free a single page.
* Saves single pages to a list, for future reuse.
* (This is not used for multi-page overflow pages.)
*/
static MDBX_INLINE void
mdb_page_free(MDB_env *env, MDB_page *mp)
{
mp->mp_next = env->me_dpages;
VALGRIND_MEMPOOL_FREE(env, mp);
env->me_dpages = mp;
}
/** Free a dirty page */
static void
mdb_dpage_free(MDB_env *env, MDB_page *dp)
{
if (!IS_OVERFLOW(dp) || dp->mp_pages == 1) {
mdb_page_free(env, dp);
} else {
/* large pages just get freed directly */
VALGRIND_MEMPOOL_FREE(env, dp);
free(dp);
}
}
/** Return all dirty pages to dpage list */
static void
mdb_dlist_free(MDB_txn *txn)
{
MDB_env *env = txn->mt_env;
MDB_ID2L dl = txn->mt_u.dirty_list;
unsigned i, n = dl[0].mid;
for (i = 1; i <= n; i++) {
mdb_dpage_free(env, dl[i].mptr);
}
dl[0].mid = 0;
}
static void __cold
mdb_kill_page(MDB_env *env, pgno_t pgno)
{
const size_t offs = env->me_psize * pgno;
const size_t shift = offsetof(MDB_page, mp_pb);
if (env->me_flags & MDB_WRITEMAP) {
MDB_page *mp = (MDB_page *)(env->me_map + offs);
memset(&mp->mp_pb, 0x6F /* 'o', 111 */, env->me_psize - shift);
VALGRIND_MAKE_MEM_NOACCESS(&mp->mp_pb, env->me_psize - shift);
ASAN_POISON_MEMORY_REGION(&mp->mp_pb, env->me_psize - shift);
} else {
struct iovec iov[1];
iov[0].iov_len = env->me_psize - shift;
iov[0].iov_base = alloca(iov[0].iov_len);
memset(iov[0].iov_base, 0x6F /* 'o', 111 */, iov[0].iov_len);
ssize_t rc = pwritev(env->me_fd, iov, 1, offs + shift);
assert(rc == (ssize_t) iov[0].iov_len);
(void) rc;
}
}
/** Loosen or free a single page.
* Saves single pages to a list for future reuse
* in this same txn. It has been pulled from the freeDB
* and already resides on the dirty list, but has been
* deleted. Use these pages first before pulling again
* from the freeDB.
*
* If the page wasn't dirtied in this txn, just add it
* to this txn's free list.
*/
static int
mdb_page_loose(MDB_cursor *mc, MDB_page *mp)
{
int loose = 0;
pgno_t pgno = mp->mp_pgno;
MDB_txn *txn = mc->mc_txn;
if ((mp->mp_flags & P_DIRTY) && mc->mc_dbi != FREE_DBI) {
if (txn->mt_parent) {
MDB_ID2 *dl = txn->mt_u.dirty_list;
/* If txn has a parent, make sure the page is in our
* dirty list. */
if (dl[0].mid) {
unsigned x = mdb_mid2l_search(dl, pgno);
if (x <= dl[0].mid && dl[x].mid == pgno) {
if (unlikely(mp != dl[x].mptr)) { /* bad cursor? */
mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
txn->mt_flags |= MDB_TXN_ERROR;
return MDB_PROBLEM;
}
/* ok, it's ours */
loose = 1;
}
}
} else {
/* no parent txn, so it's just ours */
loose = 1;
}
}
if (loose) {
mdb_debug("loosen db %d page %zu", DDBI(mc), mp->mp_pgno);
MDB_page **link = &NEXT_LOOSE_PAGE(mp);
if (unlikely(txn->mt_env->me_flags & MDBX_PAGEPERTURB)) {
mdb_kill_page(txn->mt_env, pgno);
VALGRIND_MAKE_MEM_UNDEFINED(link, sizeof(MDB_page*));
ASAN_UNPOISON_MEMORY_REGION(link, sizeof(MDB_page*));
}
*link = txn->mt_loose_pgs;
txn->mt_loose_pgs = mp;
txn->mt_loose_count++;
mp->mp_flags |= P_LOOSE;
} else {
int rc = mdb_midl_append(&txn->mt_free_pgs, pgno);
if (unlikely(rc))
return rc;
}
return MDB_SUCCESS;
}
/** Set or clear P_KEEP in dirty, non-overflow, non-sub pages watched by txn.
* @param[in] mc A cursor handle for the current operation.
* @param[in] pflags Flags of the pages to update:
* P_DIRTY to set P_KEEP, P_DIRTY|P_KEEP to clear it.
* @param[in] all No shortcuts. Needed except after a full #mdb_page_flush().
* @return 0 on success, non-zero on failure.
*/
static int
mdb_pages_xkeep(MDB_cursor *mc, unsigned pflags, int all)
{
enum { Mask = P_SUBP|P_DIRTY|P_LOOSE|P_KEEP };
MDB_txn *txn = mc->mc_txn;
MDB_cursor *m3, *m0 = mc;
MDB_xcursor *mx;
MDB_page *dp, *mp;
MDB_node *leaf;
unsigned i, j;
int rc = MDB_SUCCESS, level;
/* Mark pages seen by cursors: First m0, then tracked cursors */
for (i = txn->mt_numdbs;; ) {
if (mc->mc_flags & C_INITIALIZED) {
for (m3 = mc;; m3 = &mx->mx_cursor) {
mp = NULL;
for (j=0; j<m3->mc_snum; j++) {
mp = m3->mc_pg[j];
if ((mp->mp_flags & Mask) == pflags)
mp->mp_flags ^= P_KEEP;
}
mx = m3->mc_xcursor;
/* Proceed to mx if it is at a sub-database */
if (! (mx && (mx->mx_cursor.mc_flags & C_INITIALIZED)))
break;
if (! (mp && (mp->mp_flags & P_LEAF)))
break;
leaf = NODEPTR(mp, m3->mc_ki[j-1]);
if (!(leaf->mn_flags & F_SUBDATA))
break;
}
}
mc = mc->mc_next;
for (; !mc || mc == m0; mc = txn->mt_cursors[--i])
if (i == 0)
goto mark_done;
}
mark_done:
if (all) {
/* Mark dirty root pages */
for (i=0; i<txn->mt_numdbs; i++) {
if (txn->mt_dbflags[i] & DB_DIRTY) {
pgno_t pgno = txn->mt_dbs[i].md_root;
if (pgno == P_INVALID)
continue;
if (unlikely((rc = mdb_page_get(m0, pgno, &dp, &level)) != MDB_SUCCESS))
break;
if ((dp->mp_flags & Mask) == pflags && level <= 1)
dp->mp_flags ^= P_KEEP;
}
}
}
return rc;
}
static int mdb_page_flush(MDB_txn *txn, int keep);
/** Spill pages from the dirty list back to disk.
* This is intended to prevent running into #MDB_TXN_FULL situations,
* but note that they may still occur in a few cases:
* 1) our estimate of the txn size could be too small. Currently this
* seems unlikely, except with a large number of #MDB_MULTIPLE items.
* 2) child txns may run out of space if their parents dirtied a
* lot of pages and never spilled them. TODO: we probably should do
* a preemptive spill during #mdb_txn_begin() of a child txn, if
* the parent's dirty_room is below a given threshold.
*
* Otherwise, if not using nested txns, it is expected that apps will
* not run into #MDB_TXN_FULL any more. The pages are flushed to disk
* the same way as for a txn commit, e.g. their P_DIRTY flag is cleared.
* If the txn never references them again, they can be left alone.
* If the txn only reads them, they can be used without any fuss.
* If the txn writes them again, they can be dirtied immediately without
* going thru all of the work of #mdb_page_touch(). Such references are
* handled by #mdb_page_unspill().
*
* Also note, we never spill DB root pages, nor pages of active cursors,
* because we'll need these back again soon anyway. And in nested txns,
* we can't spill a page in a child txn if it was already spilled in a
* parent txn. That would alter the parent txns' data even though
* the child hasn't committed yet, and we'd have no way to undo it if
* the child aborted.
*
* @param[in] m0 cursor A cursor handle identifying the transaction and
* database for which we are checking space.
* @param[in] key For a put operation, the key being stored.
* @param[in] data For a put operation, the data being stored.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_spill(MDB_cursor *m0, MDB_val *key, MDB_val *data)
{
MDB_txn *txn = m0->mc_txn;
MDB_page *dp;
MDB_ID2L dl = txn->mt_u.dirty_list;
unsigned i, j, need;
int rc;
if (m0->mc_flags & C_SUB)
return MDB_SUCCESS;
/* Estimate how much space this op will take */
i = m0->mc_db->md_depth;
/* Named DBs also dirty the main DB */
if (m0->mc_dbi >= CORE_DBS)
i += txn->mt_dbs[MAIN_DBI].md_depth;
/* For puts, roughly factor in the key+data size */
if (key)
i += (LEAFSIZE(key, data) + txn->mt_env->me_psize) / txn->mt_env->me_psize;
i += i; /* double it for good measure */
need = i;
if (txn->mt_dirty_room > i)
return MDB_SUCCESS;
if (!txn->mt_spill_pgs) {
txn->mt_spill_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX);
if (unlikely(!txn->mt_spill_pgs))
return ENOMEM;
} else {
/* purge deleted slots */
MDB_IDL sl = txn->mt_spill_pgs;
unsigned num = sl[0];
j=0;
for (i=1; i<=num; i++) {
if (!(sl[i] & 1))
sl[++j] = sl[i];
}
sl[0] = j;
}
/* Preserve pages which may soon be dirtied again */
rc = mdb_pages_xkeep(m0, P_DIRTY, 1);
if (unlikely(rc != MDB_SUCCESS))
goto bailout;
/* Less aggressive spill - we originally spilled the entire dirty list,
* with a few exceptions for cursor pages and DB root pages. But this
* turns out to be a lot of wasted effort because in a large txn many
* of those pages will need to be used again. So now we spill only 1/8th
* of the dirty pages. Testing revealed this to be a good tradeoff,
* better than 1/2, 1/4, or 1/10. */
if (need < MDB_IDL_UM_MAX / 8)
need = MDB_IDL_UM_MAX / 8;
/* Save the page IDs of all the pages we're flushing */
/* flush from the tail forward, this saves a lot of shifting later on. */
for (i=dl[0].mid; i && need; i--) {
MDB_ID pn = dl[i].mid << 1;
dp = dl[i].mptr;
if (dp->mp_flags & (P_LOOSE|P_KEEP))
continue;
/* Can't spill twice, make sure it's not already in a parent's
* spill list. */
if (txn->mt_parent) {
MDB_txn *tx2;
for (tx2 = txn->mt_parent; tx2; tx2 = tx2->mt_parent) {
if (tx2->mt_spill_pgs) {
j = mdb_midl_search(tx2->mt_spill_pgs, pn);
if (j <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[j] == pn) {
dp->mp_flags |= P_KEEP;
break;
}
}
}
if (tx2)
continue;
}
rc = mdb_midl_append(&txn->mt_spill_pgs, pn);
if (unlikely(rc != MDB_SUCCESS))
goto bailout;
need--;
}
mdb_midl_sort(txn->mt_spill_pgs);
/* Flush the spilled part of dirty list */
rc = mdb_page_flush(txn, i);
if (unlikely(rc != MDB_SUCCESS))
goto bailout;
/* Reset any dirty pages we kept that page_flush didn't see */
rc = mdb_pages_xkeep(m0, P_DIRTY|P_KEEP, i);
bailout:
txn->mt_flags |= rc ? MDB_TXN_ERROR : MDB_TXN_SPILLS;
return rc;
}
static MDBX_INLINE uint64_t
mdb_meta_sign(MDB_meta *meta) {
uint64_t sign = MDB_DATASIGN_NONE;
#if 0 /* TODO */
sign = hippeus_hash64(
&meta->mm_mapsize,
sizeof(MDB_meta) - offsetof(MDB_meta, mm_mapsize),
meta->mm_version | (uint64_t) MDB_MAGIC << 32
);
#else
(void) meta;
#endif
/* LY: newer returns MDB_DATASIGN_NONE or MDB_DATASIGN_WEAK */
return (sign > MDB_DATASIGN_WEAK) ? sign : ~sign;
}
static MDBX_INLINE MDB_meta*
mdb_meta_head_w(MDB_env *env) {
MDB_meta* a = METAPAGE_1(env);
MDB_meta* b = METAPAGE_2(env);
txnid_t head_txnid = env->me_txns->mti_txnid;
mdb_assert(env, a->mm_txnid != b->mm_txnid || head_txnid == 0);
if (a->mm_txnid == head_txnid)
return a;
if (likely(b->mm_txnid == head_txnid))
return b;
mdb_debug("me_txns->mti_txnid not match meta-pages");
mdb_assert(env, head_txnid == a->mm_txnid || head_txnid == b->mm_txnid);
env->me_flags |= MDB_FATAL_ERROR;
return a;
}
static MDB_meta*
mdb_meta_head_r(MDB_env *env) {
MDB_meta* a = METAPAGE_1(env);
MDB_meta* b = METAPAGE_2(env), *h;
#ifdef __SANITIZE_THREAD__
pthread_mutex_lock(&tsan_mutex);
#endif
txnid_t head_txnid = env->me_txns->mti_txnid;
mdb_assert(env, a->mm_txnid != b->mm_txnid || head_txnid == 0);
if (likely(a->mm_txnid == head_txnid)) {
h = a;
} else if (likely(b->mm_txnid == head_txnid)) {
h = b;
} else {
/* LY: seems got a collision with mdb_env_sync0() */
mdbx_coherent_barrier();
head_txnid = env->me_txns->mti_txnid;
mdb_assert(env, a->mm_txnid != b->mm_txnid || head_txnid == 0);
if (likely(a->mm_txnid == head_txnid)) {
h = a;
} else if (likely(b->mm_txnid == head_txnid)) {
h = b;
} else {
/* LY: got a race again, or DB is corrupted */
int rc = mdb_mutex_lock(env, MDB_MUTEX(env, w));
h = mdb_meta_head_w(env);
if (rc == 0)
mdb_mutex_unlock(env, MDB_MUTEX(env, w));
}
}
#ifdef __SANITIZE_THREAD__
pthread_mutex_unlock(&tsan_mutex);
#endif
return h;
}
static MDBX_INLINE MDB_meta*
mdb_env_meta_flipflop(const MDB_env *env, MDB_meta* meta) {
return (meta == METAPAGE_1(env)) ? METAPAGE_2(env) : METAPAGE_1(env);
}
static MDBX_INLINE int
mdb_meta_lt(MDB_meta* a, MDB_meta* b) {
return (META_IS_STEADY(a) == META_IS_STEADY(b))
? a->mm_txnid < b->mm_txnid : META_IS_STEADY(b);
}
/** Find oldest txnid still referenced. */
static
txnid_t mdb_find_oldest(MDB_env *env, int *laggard)
{
#ifdef __SANITIZE_THREAD__
pthread_mutex_lock(&tsan_mutex);
#endif
int i, reader;
MDB_reader *r = env->me_txns->mti_readers;
txnid_t oldest = env->me_txns->mti_txnid;
MDB_meta* a = METAPAGE_1(env);
MDB_meta* b = METAPAGE_2(env);
if (META_IS_WEAK(a) && oldest > b->mm_txnid)
oldest = b->mm_txnid;
if (META_IS_WEAK(b) && oldest > a->mm_txnid)
oldest = a->mm_txnid;
for (reader = -1, i = env->me_txns->mti_numreaders; --i >= 0; ) {
if (r[i].mr_pid) {
txnid_t snap = r[i].mr_txnid;
if (oldest > snap) {
oldest = snap;
reader = i;
}
}
}
#ifdef __SANITIZE_THREAD__
pthread_mutex_unlock(&tsan_mutex);
#endif
if (laggard)
*laggard = reader;
return env->me_pgoldest = oldest;
}
/** Add a page to the txn's dirty list */
static void
mdb_page_dirty(MDB_txn *txn, MDB_page *mp)
{
MDB_ID2 mid;
int rc, (*insert)(MDB_ID2L, MDB_ID2 *);
if (txn->mt_flags & MDB_TXN_WRITEMAP) {
insert = mdb_mid2l_append;
} else {
insert = mdb_mid2l_insert;
}
mid.mid = mp->mp_pgno;
mid.mptr = mp;
rc = insert(txn->mt_u.dirty_list, &mid);
mdb_tassert(txn, rc == 0);
txn->mt_dirty_room--;
}
/** Allocate page numbers and memory for writing. Maintain me_pglast,
* me_pghead and mt_next_pgno. Set #MDB_TXN_ERROR on failure.
*
* If there are free pages available from older transactions, they
* are re-used first. Otherwise allocate a new page at mt_next_pgno.
* Do not modify the freedB, just merge freeDB records into me_pghead[]
* and move me_pglast to say which records were consumed. Only this
* function can create me_pghead and move me_pglast/mt_next_pgno.
* @param[in] mc cursor A cursor handle identifying the transaction and
* database for which we are allocating.
* @param[in] num the number of pages to allocate.
* @param[out] mp Address of the allocated page(s). Requests for multiple pages
* will always be satisfied by a single contiguous chunk of memory.
* @return 0 on success, non-zero on failure.
*/
#define MDBX_ALLOC_CACHE 1
#define MDBX_ALLOC_GC 2
#define MDBX_ALLOC_NEW 4
#define MDBX_ALLOC_KICK 8
#define MDBX_ALLOC_ALL (MDBX_ALLOC_CACHE|MDBX_ALLOC_GC|MDBX_ALLOC_NEW|MDBX_ALLOC_KICK)
static int
mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp, int flags)
{
int rc;
MDB_txn *txn = mc->mc_txn;
MDB_env *env = txn->mt_env;
pgno_t pgno, *mop = env->me_pghead;
unsigned i = 0, j, mop_len = mop ? mop[0] : 0, n2 = num-1;
MDB_page *np;
txnid_t oldest = 0, last = 0;
MDB_cursor_op op;
MDB_cursor m2;
int found_oldest = 0;
if (likely(flags & MDBX_ALLOC_GC)) {
flags |= env->me_flags & (MDBX_COALESCE | MDBX_LIFORECLAIM);
if (unlikely(mc->mc_flags & C_RECLAIMING)) {
/* If mc is updating the freeDB, then the freelist cannot play
* catch-up with itself by growing while trying to save it. */
flags &= ~(MDBX_ALLOC_GC | MDBX_ALLOC_KICK | MDBX_COALESCE | MDBX_LIFORECLAIM);
}
}
if (likely(flags & MDBX_ALLOC_CACHE)) {
/* If there are any loose pages, just use them */
assert(mp && num);
if (likely(num == 1 && txn->mt_loose_pgs)) {
np = txn->mt_loose_pgs;
txn->mt_loose_pgs = NEXT_LOOSE_PAGE(np);
txn->mt_loose_count--;
mdb_debug("db %d use loose page %zu", DDBI(mc), np->mp_pgno);
ASAN_UNPOISON_MEMORY_REGION(np, env->me_psize);
*mp = np;
return MDB_SUCCESS;
}
}
/* If our dirty list is already full, we can't do anything */
if (unlikely(txn->mt_dirty_room == 0)) {
rc = MDB_TXN_FULL;
goto fail;
}
for (;;) { /* oom-kick retry loop */
for (op = MDB_FIRST;; op = (flags & MDBX_LIFORECLAIM) ? MDB_PREV : MDB_NEXT) {
MDB_val key, data;
MDB_node *leaf;
pgno_t *idl;
/* Seek a big enough contiguous page range. Prefer
* pages at the tail, just truncating the list. */
if (likely(flags & MDBX_ALLOC_CACHE)
&& mop_len > n2
&& ( !(flags & MDBX_COALESCE) || op == MDB_FIRST)) {
i = mop_len;
do {
pgno = mop[i];
if (likely(mop[i-n2] == pgno+n2))
goto done;
} while (--i > n2);
}
if (op == MDB_FIRST) { /* 1st iteration */
/* Prepare to fetch more and coalesce */
if (unlikely( !(flags & MDBX_ALLOC_GC) ))
break;
oldest = env->me_pgoldest;
mdb_cursor_init(&m2, txn, FREE_DBI, NULL);
if (flags & MDBX_LIFORECLAIM) {
if (! found_oldest) {
oldest = mdb_find_oldest(env, NULL);
found_oldest = 1;
}
/* Begin from oldest reader if any */
if (oldest > 2) {
last = oldest - 1;
op = MDB_SET_RANGE;
}
} else if (env->me_pglast) {
/* Continue lookup from env->me_pglast to higher/last */
last = env->me_pglast;
op = MDB_SET_RANGE;
}
key.mv_data = &last;
key.mv_size = sizeof(last);
}
if (! (flags & MDBX_LIFORECLAIM) ) {
/* Do not fetch more if the record will be too recent */
if (op != MDB_FIRST && ++last >= oldest) {
if (!found_oldest) {
oldest = mdb_find_oldest(env, NULL);
found_oldest = 1;
}
if (oldest <= last)
break;
}
}
rc = mdb_cursor_get(&m2, &key, NULL, op);
if (rc == MDB_NOTFOUND && (flags & MDBX_LIFORECLAIM)) {
if (op == MDB_SET_RANGE)
continue;
found_oldest = 1;
if (oldest < mdb_find_oldest(env, NULL)) {
oldest = env->me_pgoldest;
last = oldest - 1;
key.mv_data = &last;
key.mv_size = sizeof(last);
op = MDB_SET_RANGE;
rc = mdb_cursor_get(&m2, &key, NULL, op);
}
}
if (unlikely(rc)) {
if (rc == MDB_NOTFOUND)
break;
goto fail;
}
last = *(txnid_t*)key.mv_data;
if (oldest <= last) {
if (!found_oldest) {
oldest = mdb_find_oldest(env, NULL);
found_oldest = 1;
}
if (oldest <= last) {
if (flags & MDBX_LIFORECLAIM)
continue;
break;
}
}
if (flags & MDBX_LIFORECLAIM) {
if (txn->mt_lifo_reclaimed) {
for(j = txn->mt_lifo_reclaimed[0]; j > 0; --j)
if (txn->mt_lifo_reclaimed[j] == last)
break;
if (j)
continue;
}
}
np = m2.mc_pg[m2.mc_top];
leaf = NODEPTR(np, m2.mc_ki[m2.mc_top]);
if (unlikely((rc = mdb_node_read(&m2, leaf, &data)) != MDB_SUCCESS))
goto fail;
if ((flags & MDBX_LIFORECLAIM) && !txn->mt_lifo_reclaimed) {
txn->mt_lifo_reclaimed = mdb_midl_alloc(env->me_maxfree_1pg);
if (unlikely(!txn->mt_lifo_reclaimed)) {
rc = ENOMEM;
goto fail;
}
}
idl = (MDB_ID *) data.mv_data;
mdb_tassert(txn, idl[0] == 0 || data.mv_size == (idl[0] + 1) * sizeof(MDB_ID));
i = idl[0];
if (!mop) {
if (unlikely(!(env->me_pghead = mop = mdb_midl_alloc(i)))) {
rc = ENOMEM;
goto fail;
}
} else {
if (unlikely((rc = mdb_midl_need(&env->me_pghead, i)) != 0))
goto fail;
mop = env->me_pghead;
}
if (flags & MDBX_LIFORECLAIM) {
if ((rc = mdb_midl_append(&txn->mt_lifo_reclaimed, last)) != 0)
goto fail;
}
env->me_pglast = last;
if (mdb_debug_enabled(MDBX_DBG_EXTRA)) {
mdb_debug_extra("IDL read txn %zu root %zu num %u, IDL",
last, txn->mt_dbs[FREE_DBI].md_root, i);
for (j = i; j; j--)
mdb_debug_extra_print(" %zu", idl[j]);
mdb_debug_extra_print("\n");
}
/* Merge in descending sorted order */
mdb_midl_xmerge(mop, idl);
mop_len = mop[0];
if (unlikely((flags & MDBX_ALLOC_CACHE) == 0)) {
/* force gc reclaim mode */
return MDB_SUCCESS;
}
/* Don't try to coalesce too much. */
if (mop_len > MDB_IDL_UM_SIZE / 2)
break;
if (flags & MDBX_COALESCE) {
if (mop_len /* current size */ >= env->me_maxfree_1pg / 2
|| i /* prev size */ >= env->me_maxfree_1pg / 4)
flags &= ~MDBX_COALESCE;
}
}
if ((flags & (MDBX_COALESCE|MDBX_ALLOC_CACHE)) == (MDBX_COALESCE|MDBX_ALLOC_CACHE)
&& mop_len > n2) {
i = mop_len;
do {
pgno = mop[i];
if (mop[i-n2] == pgno+n2)
goto done;
} while (--i > n2);
}
/* Use new pages from the map when nothing suitable in the freeDB */
i = 0;
pgno = txn->mt_next_pgno;
rc = MDB_MAP_FULL;
if (likely(pgno + num <= env->me_maxpg)) {
rc = MDB_NOTFOUND;
if (likely(flags & MDBX_ALLOC_NEW))
goto done;
}
if ((flags & MDBX_ALLOC_GC)
&& ((flags & MDBX_ALLOC_KICK) || rc == MDB_MAP_FULL)) {
MDB_meta* head = mdb_meta_head_w(env);
MDB_meta* tail = mdb_env_meta_flipflop(env, head);
if (oldest == tail->mm_txnid
&& META_IS_WEAK(head) && !META_IS_WEAK(tail)) {
MDB_meta meta = *head;
/* LY: Here an oom was happened:
* - all pages had allocated;
* - reclaiming was stopped at the last steady-sync;
* - the head-sync is weak.
* Now we need make a sync to resume reclaiming. If both
* MDB_NOSYNC and MDB_MAPASYNC flags are set, then assume that
* utterly no-sync write mode was requested. In such case
* don't make a steady-sync, but only a legacy-mode checkpoint,
* just for resume reclaiming only, not for data consistency. */
mdb_debug("kick-gc: head %zu/%c, tail %zu/%c, oldest %zu, txnid %zu",
head->mm_txnid, META_IS_WEAK(head) ? 'W' : 'N',
tail->mm_txnid, META_IS_WEAK(tail) ? 'W' : 'N',
oldest, env->me_txns->mt1.mtb.mtb_txnid );
int flags = env->me_flags & MDB_WRITEMAP;
if ((env->me_flags & MDBX_UTTERLY_NOSYNC) == MDBX_UTTERLY_NOSYNC)
flags |= MDBX_UTTERLY_NOSYNC;
mdb_assert(env, env->me_sync_pending > 0);
if (mdb_env_sync0(env, flags, &meta) == MDB_SUCCESS) {
txnid_t snap = mdb_find_oldest(env, NULL);
if (snap > oldest) {
continue;
}
}
}
if (rc == MDB_MAP_FULL) {
#if MDBX_MODE_ENABLED
txnid_t snap = mdbx_oomkick(env, oldest);
#else
mdb_debug("DB size maxed out");
txnid_t snap = mdb_find_oldest(env, NULL);
#endif /* MDBX_MODE_ENABLED */
if (snap > oldest) {
oldest = snap;
continue;
}
}
}
fail:
if (mp) {
*mp = NULL;
txn->mt_flags |= MDB_TXN_ERROR;
}
assert(rc);
return rc;
}
done:
assert(mp && num);
if (env->me_flags & MDB_WRITEMAP) {
np = (MDB_page *)(env->me_map + env->me_psize * pgno);
/* LY: reset no-access flag from mdb_kill_page() */
VALGRIND_MAKE_MEM_UNDEFINED(np, env->me_psize * num);
ASAN_UNPOISON_MEMORY_REGION(np, env->me_psize * num);
} else {
if (unlikely(!(np = mdb_page_malloc(txn, num)))) {
rc = ENOMEM;
goto fail;
}
}
if (i) {
mop[0] = mop_len -= num;
/* Move any stragglers down */
for (j = i-num; j < mop_len; )
mop[++j] = mop[++i];
} else {
txn->mt_next_pgno = pgno + num;
}
if (env->me_flags & MDBX_PAGEPERTURB)
memset(np, 0x71 /* 'q', 113 */, env->me_psize * num);
VALGRIND_MAKE_MEM_UNDEFINED(np, env->me_psize * num);
np->mp_pgno = pgno;
np->mp_leaf2_ksize = 0;
np->mp_flags = 0;
np->mp_pages = num;
mdb_page_dirty(txn, np);
*mp = np;
return MDB_SUCCESS;
}
/** Copy the used portions of a non-overflow page.
* @param[in] dst page to copy into
* @param[in] src page to copy from
* @param[in] psize size of a page
*/
static void
mdb_page_copy(MDB_page *dst, MDB_page *src, unsigned psize)
{
enum { Align = sizeof(pgno_t) };
indx_t upper = src->mp_upper, lower = src->mp_lower, unused = upper-lower;
/* If page isn't full, just copy the used portion. Adjust
* alignment so memcpy may copy words instead of bytes. */
if ((unused &= -Align) && !IS_LEAF2(src)) {
upper = (upper + PAGEBASE) & -Align;
memcpy(dst, src, (lower + PAGEBASE + (Align-1)) & -Align);
memcpy((pgno_t *)((char *)dst+upper), (pgno_t *)((char *)src+upper),
psize - upper);
} else {
memcpy(dst, src, psize - unused);
}
}
/** Pull a page off the txn's spill list, if present.
* If a page being referenced was spilled to disk in this txn, bring
* it back and make it dirty/writable again.
* @param[in] txn the transaction handle.
* @param[in] mp the page being referenced. It must not be dirty.
* @param[out] ret the writable page, if any. ret is unchanged if
* mp wasn't spilled.
*/
static int
mdb_page_unspill(MDB_txn *txn, MDB_page *mp, MDB_page **ret)
{
MDB_env *env = txn->mt_env;
const MDB_txn *tx2;
unsigned x;
pgno_t pgno = mp->mp_pgno, pn = pgno << 1;
for (tx2 = txn; tx2; tx2=tx2->mt_parent) {
if (!tx2->mt_spill_pgs)
continue;
x = mdb_midl_search(tx2->mt_spill_pgs, pn);
if (x <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[x] == pn) {
MDB_page *np;
int num;
if (txn->mt_dirty_room == 0)
return MDB_TXN_FULL;
if (IS_OVERFLOW(mp))
num = mp->mp_pages;
else
num = 1;
if (env->me_flags & MDB_WRITEMAP) {
np = mp;
} else {
np = mdb_page_malloc(txn, num);
if (unlikely(!np))
return ENOMEM;
if (num > 1)
memcpy(np, mp, num * env->me_psize);
else
mdb_page_copy(np, mp, env->me_psize);
}
if (tx2 == txn) {
/* If in current txn, this page is no longer spilled.
* If it happens to be the last page, truncate the spill list.
* Otherwise mark it as deleted by setting the LSB. */
if (x == txn->mt_spill_pgs[0])
txn->mt_spill_pgs[0]--;
else
txn->mt_spill_pgs[x] |= 1;
} /* otherwise, if belonging to a parent txn, the
* page remains spilled until child commits
*/
mdb_page_dirty(txn, np);
np->mp_flags |= P_DIRTY;
*ret = np;
break;
}
}
return MDB_SUCCESS;
}
/** Touch a page: make it dirty and re-insert into tree with updated pgno.
* Set #MDB_TXN_ERROR on failure.
* @param[in] mc cursor pointing to the page to be touched
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_touch(MDB_cursor *mc)
{
MDB_page *mp = mc->mc_pg[mc->mc_top], *np;
MDB_txn *txn = mc->mc_txn;
MDB_cursor *m2, *m3;
pgno_t pgno;
int rc;
if (!F_ISSET(mp->mp_flags, P_DIRTY)) {
if (txn->mt_flags & MDB_TXN_SPILLS) {
np = NULL;
rc = mdb_page_unspill(txn, mp, &np);
if (unlikely(rc))
goto fail;
if (likely(np))
goto done;
}
if (unlikely((rc = mdb_midl_need(&txn->mt_free_pgs, 1)) ||
(rc = mdb_page_alloc(mc, 1, &np, MDBX_ALLOC_ALL))))
goto fail;
pgno = np->mp_pgno;
mdb_debug("touched db %d page %zu -> %zu", DDBI(mc), mp->mp_pgno, pgno);
mdb_cassert(mc, mp->mp_pgno != pgno);
mdb_midl_xappend(txn->mt_free_pgs, mp->mp_pgno);
/* Update the parent page, if any, to point to the new page */
if (mc->mc_top) {
MDB_page *parent = mc->mc_pg[mc->mc_top-1];
MDB_node *node = NODEPTR(parent, mc->mc_ki[mc->mc_top-1]);
SETPGNO(node, pgno);
} else {
mc->mc_db->md_root = pgno;
}
} else if (txn->mt_parent && !IS_SUBP(mp)) {
MDB_ID2 mid, *dl = txn->mt_u.dirty_list;
pgno = mp->mp_pgno;
/* If txn has a parent, make sure the page is in our
* dirty list. */
if (dl[0].mid) {
unsigned x = mdb_mid2l_search(dl, pgno);
if (x <= dl[0].mid && dl[x].mid == pgno) {
if (unlikely(mp != dl[x].mptr)) { /* bad cursor? */
mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
txn->mt_flags |= MDB_TXN_ERROR;
return MDB_PROBLEM;
}
return 0;
}
}
mdb_cassert(mc, dl[0].mid < MDB_IDL_UM_MAX);
/* No - copy it */
np = mdb_page_malloc(txn, 1);
if (unlikely(!np))
return ENOMEM;
mid.mid = pgno;
mid.mptr = np;
rc = mdb_mid2l_insert(dl, &mid);
mdb_cassert(mc, rc == 0);
} else {
return 0;
}
mdb_page_copy(np, mp, txn->mt_env->me_psize);
np->mp_pgno = pgno;
np->mp_flags |= P_DIRTY;
done:
/* Adjust cursors pointing to mp */
mc->mc_pg[mc->mc_top] = np;
m2 = txn->mt_cursors[mc->mc_dbi];
if (mc->mc_flags & C_SUB) {
for (; m2; m2=m2->mc_next) {
m3 = &m2->mc_xcursor->mx_cursor;
if (m3->mc_snum < mc->mc_snum) continue;
if (m3->mc_pg[mc->mc_top] == mp)
m3->mc_pg[mc->mc_top] = np;
}
} else {
for (; m2; m2=m2->mc_next) {
if (m2->mc_snum < mc->mc_snum) continue;
if (m2 == mc) continue;
if (m2->mc_pg[mc->mc_top] == mp) {
m2->mc_pg[mc->mc_top] = np;
if (XCURSOR_INITED(m2) && IS_LEAF(np))
XCURSOR_REFRESH(m2, np, m2->mc_ki[mc->mc_top]);
}
}
}
return 0;
fail:
txn->mt_flags |= MDB_TXN_ERROR;
return rc;
}
int
mdb_env_sync(MDB_env *env, int force)
{
int rc;
pthread_mutex_t *mutex;
MDB_meta *head;
unsigned flags;
if (unlikely(! env))
return EINVAL;
if (unlikely(env->me_signature != MDBX_ME_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(! env->me_txns))
return MDB_PANIC;
flags = env->me_flags & ~MDB_NOMETASYNC;
if (unlikely(flags & (MDB_RDONLY | MDB_FATAL_ERROR)))
return EACCES;
head = mdb_meta_head_r(env);
if (! META_IS_WEAK(head) && env->me_sync_pending == 0
&& env->me_mapsize == head->mm_mapsize)
/* LY: nothing to do */
return MDB_SUCCESS;
if (force || head->mm_mapsize != env->me_mapsize
|| (env->me_sync_threshold && env->me_sync_pending >= env->me_sync_threshold))
flags &= MDB_WRITEMAP;
/* LY: early sync before acquiring the mutex to reduce writer's latency */
if (env->me_sync_pending > env->me_psize * 16 && (flags & MDB_NOSYNC) == 0) {
if (flags & MDB_WRITEMAP) {
size_t used_size = env->me_psize * (head->mm_last_pg + 1);
rc = msync(env->me_map, used_size,
(flags & MDB_MAPASYNC) ? MS_ASYNC : MS_SYNC);
} else {
rc = fdatasync(env->me_fd);
}
if (unlikely(rc))
return errno;
}
mutex = MDB_MUTEX(env, w);
rc = mdb_mutex_lock(env, mutex);
if (unlikely(rc))
return rc;
/* LY: head may be changed while the mutex has been acquired. */
head = mdb_meta_head_w(env);
rc = MDB_SUCCESS;
if (META_IS_WEAK(head) || env->me_sync_pending != 0
|| env->me_mapsize != head->mm_mapsize) {
MDB_meta meta = *head;
rc = mdb_env_sync0(env, flags, &meta);
}
mdb_mutex_unlock(env, mutex);
return rc;
}
/** Back up parent txn's cursors, then grab the originals for tracking */
static int
mdb_cursor_shadow(MDB_txn *src, MDB_txn *dst)
{
MDB_cursor *mc, *bk;
MDB_xcursor *mx;
size_t size;
int i;
for (i = src->mt_numdbs; --i >= 0; ) {
if ((mc = src->mt_cursors[i]) != NULL) {
size = sizeof(MDB_cursor);
if (mc->mc_xcursor)
size += sizeof(MDB_xcursor);
for (; mc; mc = bk->mc_next) {
bk = malloc(size);
if (unlikely(!bk))
return ENOMEM;
*bk = *mc;
mc->mc_backup = bk;
mc->mc_db = &dst->mt_dbs[i];
/* Kill pointers into src to reduce abuse: The
* user may not use mc until dst ends. But we need a valid
* txn pointer here for cursor fixups to keep working. */
mc->mc_txn = dst;
mc->mc_dbflag = &dst->mt_dbflags[i];
if ((mx = mc->mc_xcursor) != NULL) {
*(MDB_xcursor *)(bk+1) = *mx;
mx->mx_cursor.mc_txn = dst;
}
mc->mc_next = dst->mt_cursors[i];
dst->mt_cursors[i] = mc;
}
}
}
return MDB_SUCCESS;
}
/** Close this write txn's cursors, give parent txn's cursors back to parent.
* @param[in] txn the transaction handle.
* @param[in] merge true to keep changes to parent cursors, false to revert.
* @return 0 on success, non-zero on failure.
*/
static void
mdb_cursors_close(MDB_txn *txn, unsigned merge)
{
MDB_cursor **cursors = txn->mt_cursors, *mc, *next, *bk;
MDB_xcursor *mx;
int i;
for (i = txn->mt_numdbs; --i >= 0; ) {
for (mc = cursors[i]; mc; mc = next) {
next = mc->mc_next;
if ((bk = mc->mc_backup) != NULL) {
if (merge) {
/* Commit changes to parent txn */
mc->mc_next = bk->mc_next;
mc->mc_backup = bk->mc_backup;
mc->mc_txn = bk->mc_txn;
mc->mc_db = bk->mc_db;
mc->mc_dbflag = bk->mc_dbflag;
if ((mx = mc->mc_xcursor) != NULL)
mx->mx_cursor.mc_txn = bk->mc_txn;
} else {
/* Abort nested txn */
*mc = *bk;
if ((mx = mc->mc_xcursor) != NULL)
*mx = *(MDB_xcursor *)(bk+1);
}
mc = bk;
}
/* Only malloced cursors are permanently tracked. */
mc->mc_signature = 0;
free(mc);
}
cursors[i] = NULL;
}
}
/** Set or check a pid lock. Set returns 0 on success.
* Check returns 0 if the process is certainly dead, nonzero if it may
* be alive (the lock exists or an error happened so we do not know).
*/
static int
mdb_reader_pid(MDB_env *env, int op, pid_t pid)
{
for (;;) {
int rc;
struct flock lock_info;
memset(&lock_info, 0, sizeof(lock_info));
lock_info.l_type = F_WRLCK;
lock_info.l_whence = SEEK_SET;
lock_info.l_start = pid;
lock_info.l_len = 1;
if ((rc = fcntl(env->me_lfd, op, &lock_info)) == 0) {
if (op == F_GETLK && lock_info.l_type != F_UNLCK)
rc = -1;
} else if ((rc = errno) == EINTR) {
continue;
}
return rc;
}
}
/** Common code for #mdb_txn_begin() and #mdb_txn_renew().
* @param[in] txn the transaction handle to initialize
* @return 0 on success, non-zero on failure.
*/
static int
mdb_txn_renew0(MDB_txn *txn, unsigned flags)
{
MDB_env *env = txn->mt_env;
unsigned i, nr;
int rc, new_notls = 0;
if (unlikely(env->me_pid != getpid())) {
env->me_flags |= MDB_FATAL_ERROR;
return MDB_PANIC;
}
if (flags & MDB_TXN_RDONLY) {
MDBX_rthc *rthc = NULL;
MDB_reader *r = NULL;
txn->mt_flags = MDB_TXN_RDONLY;
if (likely(env->me_flags & MDB_ENV_TXKEY)) {
mdb_assert(env, !(env->me_flags & MDB_NOTLS));
rthc = mdbx_rthc_get(env->me_txkey);
if (unlikely(! rthc))
return ENOMEM;
if (likely(rthc->rc_reader)) {
r = rthc->rc_reader;
mdb_assert(env, r->mr_pid == env->me_pid);
mdb_assert(env, r->mr_tid == pthread_self());
}
} else {
mdb_assert(env, env->me_flags & MDB_NOTLS);
r = txn->mt_u.reader;
}
if (likely(r)) {
if (unlikely(r->mr_pid != env->me_pid || r->mr_txnid != ~(txnid_t)0))
return MDB_BAD_RSLOT;
} else {
pid_t pid = env->me_pid;
pthread_t tid = pthread_self();
pthread_mutex_t *rmutex = MDB_MUTEX(env, r);
rc = mdb_mutex_lock(env, rmutex);
if (unlikely(rc != MDB_SUCCESS))
return rc;
if (unlikely(!env->me_live_reader)) {
rc = mdb_reader_pid(env, F_SETLK, pid);
if (unlikely(rc != MDB_SUCCESS)) {
mdb_mutex_unlock(env, rmutex);
return rc;
}
env->me_live_reader = 1;
}
nr = env->me_txns->mti_numreaders;
for (i=0; i<nr; i++)
if (env->me_txns->mti_readers[i].mr_pid == 0)
break;
if (unlikely(i == env->me_maxreaders)) {
mdb_mutex_unlock(env, rmutex);
return MDB_READERS_FULL;
}
r = &env->me_txns->mti_readers[i];
/* Claim the reader slot, carefully since other code
* uses the reader table un-mutexed: First reset the
* slot, next publish it in mti_numreaders. After
* that, it is safe for mdb_env_close() to touch it.
* When it will be closed, we can finally claim it. */
r->mr_pid = 0;
r->mr_txnid = ~(txnid_t)0;
r->mr_tid = tid;
mdbx_coherent_barrier();
#ifdef __SANITIZE_THREAD__
pthread_mutex_lock(&tsan_mutex);
#endif
if (i == nr)
env->me_txns->mti_numreaders = ++nr;
if (env->me_close_readers < nr)
env->me_close_readers = nr;
r->mr_pid = pid;
#ifdef __SANITIZE_THREAD__
pthread_mutex_unlock(&tsan_mutex);
#endif
mdb_mutex_unlock(env, rmutex);
new_notls = MDB_END_SLOT;
if (likely(rthc)) {
rthc->rc_reader = r;
new_notls = 0;
}
}
while((env->me_flags & MDB_FATAL_ERROR) == 0) {
MDB_meta *meta = mdb_meta_head_r(txn->mt_env);
txnid_t lead = meta->mm_txnid;
r->mr_txnid = lead;
mdbx_coherent_barrier();
txnid_t snap = txn->mt_env->me_txns->mti_txnid;
/* LY: Retry on a race, ITS#7970. */
if (likely(lead == snap)) {
txn->mt_txnid = lead;
txn->mt_next_pgno = meta->mm_last_pg+1;
/* Copy the DB info and flags */
memcpy(txn->mt_dbs, meta->mm_dbs, CORE_DBS * sizeof(MDB_db));
#if MDBX_MODE_ENABLED
txn->mt_canary = meta->mm_canary;
#endif
break;
}
}
txn->mt_u.reader = r;
txn->mt_dbxs = env->me_dbxs; /* mostly static anyway */
} else {
/* Not yet touching txn == env->me_txn0, it may be active */
rc = mdb_mutex_lock(env, MDB_MUTEX(env, w));
if (unlikely(rc))
return rc;
#ifdef __SANITIZE_THREAD__
pthread_mutex_lock(&tsan_mutex);
#endif
MDB_meta *meta = mdb_meta_head_w(env);
#if MDBX_MODE_ENABLED
txn->mt_canary = meta->mm_canary;
#endif
txn->mt_txnid = meta->mm_txnid + 1;
txn->mt_flags = flags;
#ifdef __SANITIZE_THREAD__
pthread_mutex_unlock(&tsan_mutex);
#endif
#if MDB_DEBUG
if (unlikely(txn->mt_txnid == mdb_debug_edge)) {
if (! mdb_debug_logger)
mdb_runtime_flags |= MDBX_DBG_TRACE | MDBX_DBG_EXTRA
| MDBX_DBG_AUDIT | MDBX_DBG_ASSERT;
mdb_debug_log(MDBX_DBG_EDGE, __FUNCTION__, __LINE__,
"on/off edge (txn %zu)", txn->mt_txnid);
}
#endif
txn->mt_child = NULL;
txn->mt_loose_pgs = NULL;
txn->mt_loose_count = 0;
txn->mt_dirty_room = MDB_IDL_UM_MAX;
txn->mt_u.dirty_list = env->me_dirty_list;
txn->mt_u.dirty_list[0].mid = 0;
txn->mt_free_pgs = env->me_free_pgs;
txn->mt_free_pgs[0] = 0;
txn->mt_spill_pgs = NULL;
if (txn->mt_lifo_reclaimed)
txn->mt_lifo_reclaimed[0] = 0;
env->me_txn = txn;
memcpy(txn->mt_dbiseqs, env->me_dbiseqs, env->me_maxdbs * sizeof(unsigned));
/* Copy the DB info and flags */
memcpy(txn->mt_dbs, meta->mm_dbs, CORE_DBS * sizeof(MDB_db));
/* Moved to here to avoid a data race in read TXNs */
txn->mt_next_pgno = meta->mm_last_pg+1;
}
/* Setup db info */
txn->mt_numdbs = env->me_numdbs;
for (i=CORE_DBS; i<txn->mt_numdbs; i++) {
unsigned x = env->me_dbflags[i];
txn->mt_dbs[i].md_flags = x & PERSISTENT_FLAGS;
txn->mt_dbflags[i] = (x & MDB_VALID) ? DB_VALID|DB_USRVALID|DB_STALE : 0;
}
txn->mt_dbflags[MAIN_DBI] = DB_VALID|DB_USRVALID;
txn->mt_dbflags[FREE_DBI] = DB_VALID;
if (unlikely(env->me_flags & MDB_FATAL_ERROR)) {
mdb_debug("environment had fatal error, must shutdown!");
rc = MDB_PANIC;
} else if (unlikely(env->me_maxpg < txn->mt_next_pgno)) {
rc = MDB_MAP_RESIZED;
} else {
return MDB_SUCCESS;
}
mdb_txn_end(txn, new_notls /*0 or MDB_END_SLOT*/ | MDB_END_FAIL_BEGIN);
return rc;
}
int
mdb_txn_renew(MDB_txn *txn)
{
int rc;
if (unlikely(!txn))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(!F_ISSET(txn->mt_flags, MDB_TXN_RDONLY|MDB_TXN_FINISHED)))
return EINVAL;
rc = mdb_txn_renew0(txn, MDB_TXN_RDONLY);
if (rc == MDB_SUCCESS) {
mdb_debug("renew txn %zu%c %p on mdbenv %p, root page %zu",
txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w',
(void *)txn, (void *)txn->mt_env, txn->mt_dbs[MAIN_DBI].md_root);
}
return rc;
}
int
mdb_txn_begin(MDB_env *env, MDB_txn *parent, unsigned flags, MDB_txn **ret)
{
MDB_txn *txn;
MDB_ntxn *ntxn;
int rc, size, tsize;
if (unlikely(!env || !ret))
return EINVAL;
if (unlikely(env->me_signature != MDBX_ME_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(env->me_pid != getpid())) {
env->me_flags |= MDB_FATAL_ERROR;
return MDB_PANIC;
}
flags &= MDB_TXN_BEGIN_FLAGS;
flags |= env->me_flags & MDB_WRITEMAP;
if (unlikely(env->me_flags & MDB_RDONLY & ~flags)) /* write txn in RDONLY env */
return EACCES;
if (parent) {
if (unlikely(parent->mt_signature != MDBX_MT_SIGNATURE))
return EINVAL;
/* Nested transactions: Max 1 child, write txns only, no writemap */
flags |= parent->mt_flags;
if (unlikely(flags & (MDB_RDONLY|MDB_WRITEMAP|MDB_TXN_BLOCKED))) {
return (parent->mt_flags & MDB_TXN_RDONLY) ? EINVAL : MDB_BAD_TXN;
}
/* Child txns save MDB_pgstate and use own copy of cursors */
size = env->me_maxdbs * (sizeof(MDB_db)+sizeof(MDB_cursor *)+1);
size += tsize = sizeof(MDB_ntxn);
} else if (flags & MDB_RDONLY) {
size = env->me_maxdbs * (sizeof(MDB_db)+1);
size += tsize = sizeof(MDB_txn);
} else {
/* Reuse preallocated write txn. However, do not touch it until
* mdb_txn_renew0() succeeds, since it currently may be active. */
txn = env->me_txn0;
goto renew;
}
if (unlikely((txn = calloc(1, size)) == NULL)) {
mdb_debug("calloc: %s", strerror(errno));
return ENOMEM;
}
txn->mt_dbxs = env->me_dbxs; /* static */
txn->mt_dbs = (MDB_db *) ((char *)txn + tsize);
txn->mt_dbflags = (unsigned char *)txn + size - env->me_maxdbs;
txn->mt_flags = flags;
txn->mt_env = env;
if (parent) {
unsigned i;
txn->mt_cursors = (MDB_cursor **)(txn->mt_dbs + env->me_maxdbs);
txn->mt_dbiseqs = parent->mt_dbiseqs;
txn->mt_u.dirty_list = malloc(sizeof(MDB_ID2)*MDB_IDL_UM_SIZE);
if (!txn->mt_u.dirty_list ||
!(txn->mt_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX)))
{
free(txn->mt_u.dirty_list);
free(txn);
return ENOMEM;
}
txn->mt_txnid = parent->mt_txnid;
txn->mt_dirty_room = parent->mt_dirty_room;
txn->mt_u.dirty_list[0].mid = 0;
txn->mt_spill_pgs = NULL;
txn->mt_next_pgno = parent->mt_next_pgno;
parent->mt_flags |= MDB_TXN_HAS_CHILD;
parent->mt_child = txn;
txn->mt_parent = parent;
txn->mt_numdbs = parent->mt_numdbs;
memcpy(txn->mt_dbs, parent->mt_dbs, txn->mt_numdbs * sizeof(MDB_db));
/* Copy parent's mt_dbflags, but clear DB_NEW */
for (i=0; i<txn->mt_numdbs; i++)
txn->mt_dbflags[i] = parent->mt_dbflags[i] & ~DB_NEW;
rc = 0;
ntxn = (MDB_ntxn *)txn;
ntxn->mnt_pgstate = env->me_pgstate; /* save parent me_pghead & co */
if (env->me_pghead) {
size = MDB_IDL_SIZEOF(env->me_pghead);
env->me_pghead = mdb_midl_alloc(env->me_pghead[0]);
if (likely(env->me_pghead))
memcpy(env->me_pghead, ntxn->mnt_pgstate.mf_pghead, size);
else
rc = ENOMEM;
}
if (likely(!rc))
rc = mdb_cursor_shadow(parent, txn);
if (unlikely(rc))
mdb_txn_end(txn, MDB_END_FAIL_BEGINCHILD);
} else { /* MDB_RDONLY */
txn->mt_dbiseqs = env->me_dbiseqs;
renew:
rc = mdb_txn_renew0(txn, flags);
}
if (unlikely(rc)) {
if (txn != env->me_txn0)
free(txn);
} else {
txn->mt_signature = MDBX_MT_SIGNATURE;
*ret = txn;
mdb_debug("begin txn %zu%c %p on mdbenv %p, root page %zu",
txn->mt_txnid, (flags & MDB_RDONLY) ? 'r' : 'w',
(void *) txn, (void *) env, txn->mt_dbs[MAIN_DBI].md_root);
}
return rc;
}
MDB_env *
mdb_txn_env(MDB_txn *txn)
{
if(unlikely(!txn || txn->mt_signature != MDBX_MT_SIGNATURE))
return NULL;
return txn->mt_env;
}
size_t
mdb_txn_id(MDB_txn *txn)
{
if(unlikely(!txn || txn->mt_signature != MDBX_MT_SIGNATURE))
return 0;
return txn->mt_txnid;
}
/** Export or close DBI handles opened in this txn. */
static void
mdb_dbis_update(MDB_txn *txn, int keep)
{
int i;
MDB_dbi n = txn->mt_numdbs;
MDB_env *env = txn->mt_env;
unsigned char *tdbflags = txn->mt_dbflags;
for (i = n; --i >= CORE_DBS;) {
if (tdbflags[i] & DB_NEW) {
if (keep) {
env->me_dbflags[i] = txn->mt_dbs[i].md_flags | MDB_VALID;
} else {
char *ptr = env->me_dbxs[i].md_name.mv_data;
if (ptr) {
env->me_dbxs[i].md_name.mv_data = NULL;
env->me_dbxs[i].md_name.mv_size = 0;
env->me_dbflags[i] = 0;
env->me_dbiseqs[i]++;
free(ptr);
}
}
}
}
if (keep && env->me_numdbs < n)
env->me_numdbs = n;
}
/** End a transaction, except successful commit of a nested transaction.
* May be called twice for readonly txns: First reset it, then abort.
* @param[in] txn the transaction handle to end
* @param[in] mode why and how to end the transaction
*/
static int
mdb_txn_end(MDB_txn *txn, unsigned mode)
{
MDB_env *env = txn->mt_env;
static const char *const names[] = MDB_END_NAMES;
if (unlikely(txn->mt_env->me_pid != getpid())) {
env->me_flags |= MDB_FATAL_ERROR;
return MDB_PANIC;
}
/* Export or close DBI handles opened in this txn */
mdb_dbis_update(txn, mode & MDB_END_UPDATE);
mdb_debug("%s txn %zu%c %p on mdbenv %p, root page %zu",
names[mode & MDB_END_OPMASK],
txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w',
(void *) txn, (void *)env, txn->mt_dbs[MAIN_DBI].md_root);
if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) {
if (txn->mt_u.reader) {
#ifdef __SANITIZE_THREAD__
pthread_mutex_lock(&tsan_mutex);
#endif
txn->mt_u.reader->mr_txnid = ~(txnid_t)0;
if (!(env->me_flags & MDB_NOTLS)) {
txn->mt_u.reader = NULL; /* txn does not own reader */
} else if (mode & MDB_END_SLOT) {
txn->mt_u.reader->mr_pid = 0;
txn->mt_u.reader = NULL;
} /* else txn owns the slot until it does MDB_END_SLOT */
#ifdef __SANITIZE_THREAD__
pthread_mutex_unlock(&tsan_mutex);
#endif
}
mdbx_coherent_barrier();
txn->mt_numdbs = 0; /* prevent further DBI activity */
txn->mt_flags |= MDB_TXN_FINISHED;
} else if (!F_ISSET(txn->mt_flags, MDB_TXN_FINISHED)) {
pgno_t *pghead = env->me_pghead;
if (!(mode & MDB_END_UPDATE)) /* !(already closed cursors) */
mdb_cursors_close(txn, 0);
if (!(env->me_flags & MDB_WRITEMAP)) {
mdb_dlist_free(txn);
}
if (txn->mt_lifo_reclaimed) {
txn->mt_lifo_reclaimed[0] = 0;
if (txn != env->me_txn0) {
mdb_midl_free(txn->mt_lifo_reclaimed);
txn->mt_lifo_reclaimed = NULL;
}
}
txn->mt_numdbs = 0;
txn->mt_flags = MDB_TXN_FINISHED;
if (!txn->mt_parent) {
mdb_midl_shrink(&txn->mt_free_pgs);
env->me_free_pgs = txn->mt_free_pgs;
/* me_pgstate: */
env->me_pghead = NULL;
env->me_pglast = 0;
env->me_txn = NULL;
mode = 0; /* txn == env->me_txn0, do not free() it */
/* The writer mutex was locked in mdb_txn_begin. */
mdb_mutex_unlock(env, MDB_MUTEX(env, w));
} else {
txn->mt_parent->mt_child = NULL;
txn->mt_parent->mt_flags &= ~MDB_TXN_HAS_CHILD;
env->me_pgstate = ((MDB_ntxn *)txn)->mnt_pgstate;
mdb_midl_free(txn->mt_free_pgs);
mdb_midl_free(txn->mt_spill_pgs);
free(txn->mt_u.dirty_list);
}
mdb_midl_free(pghead);
}
if (mode & MDB_END_FREE) {
txn->mt_signature = 0;
free(txn);
}
return MDB_SUCCESS;
}
int
mdb_txn_reset(MDB_txn *txn)
{
if (unlikely(! txn))
return EINVAL;
if(unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
/* This call is only valid for read-only txns */
if (unlikely(!(txn->mt_flags & MDB_TXN_RDONLY)))
return EINVAL;
return mdb_txn_end(txn, MDB_END_RESET);
}
int
mdb_txn_abort(MDB_txn *txn)
{
if (unlikely(! txn))
return EINVAL;
if(unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (txn->mt_child)
mdb_txn_abort(txn->mt_child);
return mdb_txn_end(txn, MDB_END_ABORT|MDB_END_SLOT|MDB_END_FREE);
}
static MDBX_INLINE int
mdb_backlog_size(MDB_txn *txn)
{
int reclaimed = txn->mt_env->me_pghead ? txn->mt_env->me_pghead[0] : 0;
return reclaimed + txn->mt_loose_count;
}
/* LY: Prepare a backlog of pages to modify FreeDB itself,
* while reclaiming is prohibited. It should be enough to prevent search
* in mdb_page_alloc() during a deleting, when freeDB tree is unbalanced. */
static int
mdb_prep_backlog(MDB_txn *txn, MDB_cursor *mc)
{
/* LY: extra page(s) for b-tree rebalancing */
const int extra = (txn->mt_env->me_flags & MDBX_LIFORECLAIM) ? 2 : 1;
if (mdb_backlog_size(txn) < mc->mc_db->md_depth + extra) {
int rc = mdb_cursor_touch(mc);
if (unlikely(rc))
return rc;
while (unlikely(mdb_backlog_size(txn) < extra)) {
rc = mdb_page_alloc(mc, 1, NULL, MDBX_ALLOC_GC);
if (unlikely(rc)) {
if (unlikely(rc != MDB_NOTFOUND))
return rc;
break;
}
}
}
return MDB_SUCCESS;
}
/** Save the freelist as of this transaction to the freeDB.
* This changes the freelist. Keep trying until it stabilizes.
*/
static int
mdb_freelist_save(MDB_txn *txn)
{
/* env->me_pghead[] can grow and shrink during this call.
* env->me_pglast and txn->mt_free_pgs[] can only grow.
* Page numbers cannot disappear from txn->mt_free_pgs[]. */
MDB_cursor mc;
MDB_env *env = txn->mt_env;
int rc, maxfree_1pg = env->me_maxfree_1pg, more = 1;
txnid_t pglast = 0, head_id = 0;
pgno_t freecnt = 0, *free_pgs, *mop;
ssize_t head_room = 0, total_room = 0, mop_len, clean_limit;
unsigned cleanup_idx = 0, refill_idx = 0;
const int lifo = (env->me_flags & MDBX_LIFORECLAIM) != 0;
mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
/* MDB_RESERVE cancels meminit in ovpage malloc (when no WRITEMAP) */
clean_limit = (env->me_flags & (MDB_NOMEMINIT|MDB_WRITEMAP))
? SSIZE_MAX : maxfree_1pg;
again:
for (;;) {
/* Come back here after each Put() in case freelist changed */
MDB_val key, data;
pgno_t *pgs;
ssize_t j;
if (! lifo) {
/* If using records from freeDB which we have not yet
* deleted, delete them and any we reserved for me_pghead. */
while (pglast < env->me_pglast) {
rc = mdb_cursor_first(&mc, &key, NULL);
if (unlikely(rc))
goto bailout;
rc = mdb_prep_backlog(txn, &mc);
if (unlikely(rc))
goto bailout;
pglast = head_id = *(txnid_t *)key.mv_data;
total_room = head_room = 0;
more = 1;
mdb_tassert(txn, pglast <= env->me_pglast);
mc.mc_flags |= C_RECLAIMING;
rc = mdb_cursor_del(&mc, 0);
mc.mc_flags &= ~C_RECLAIMING;
if (unlikely(rc))
goto bailout;
}
} else if (txn->mt_lifo_reclaimed) {
/* LY: cleanup reclaimed records. */
while(cleanup_idx < txn->mt_lifo_reclaimed[0]) {
pglast = txn->mt_lifo_reclaimed[++cleanup_idx];
key.mv_data = &pglast;
key.mv_size = sizeof(pglast);
rc = mdb_cursor_get(&mc, &key, NULL, MDB_SET);
if (likely(rc != MDB_NOTFOUND)) {
if (unlikely(rc))
goto bailout;
rc = mdb_prep_backlog(txn, &mc);
if (unlikely(rc))
goto bailout;
mc.mc_flags |= C_RECLAIMING;
rc = mdb_cursor_del(&mc, 0);
mc.mc_flags &= ~C_RECLAIMING;
if (unlikely(rc))
goto bailout;
}
}
}
if (unlikely(!env->me_pghead) && txn->mt_loose_pgs) {
/* Put loose page numbers in mt_free_pgs, since
* we may be unable to return them to me_pghead. */
MDB_page *mp = txn->mt_loose_pgs;
if (unlikely((rc = mdb_midl_need(&txn->mt_free_pgs, txn->mt_loose_count)) != 0))
return rc;
for (; mp; mp = NEXT_LOOSE_PAGE(mp))
mdb_midl_xappend(txn->mt_free_pgs, mp->mp_pgno);
txn->mt_loose_pgs = NULL;
txn->mt_loose_count = 0;
}
/* Save the IDL of pages freed by this txn, to a single record */
if (freecnt < txn->mt_free_pgs[0]) {
if (unlikely(!freecnt)) {
/* Make sure last page of freeDB is touched and on freelist */
rc = mdb_page_search(&mc, NULL, MDB_PS_LAST|MDB_PS_MODIFY);
if (unlikely(rc && rc != MDB_NOTFOUND))
goto bailout;
}
free_pgs = txn->mt_free_pgs;
/* Write to last page of freeDB */
key.mv_size = sizeof(txn->mt_txnid);
key.mv_data = &txn->mt_txnid;
do {
freecnt = free_pgs[0];
data.mv_size = MDB_IDL_SIZEOF(free_pgs);
rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE);
if (unlikely(rc))
goto bailout;
/* Retry if mt_free_pgs[] grew during the Put() */
free_pgs = txn->mt_free_pgs;
} while (freecnt < free_pgs[0]);
mdb_midl_sort(free_pgs);
memcpy(data.mv_data, free_pgs, data.mv_size);
if (mdb_debug_enabled(MDBX_DBG_EXTRA)) {
unsigned i = free_pgs[0];
mdb_debug_extra("IDL write txn %zu root %zu num %u, IDL",
txn->mt_txnid, txn->mt_dbs[FREE_DBI].md_root, i);
for (; i; i--)
mdb_debug_extra_print(" %zu", free_pgs[i]);
mdb_debug_extra_print("\n");
}
continue;
}
mop = env->me_pghead;
mop_len = (mop ? mop[0] : 0) + txn->mt_loose_count;
if (mop_len && refill_idx == 0)
refill_idx = 1;
/* Reserve records for me_pghead[]. Split it if multi-page,
* to avoid searching freeDB for a page range. Use keys in
* range [1,me_pglast]: Smaller than txnid of oldest reader. */
if (total_room >= mop_len) {
if (total_room == mop_len || --more < 0)
break;
} else if (head_room >= maxfree_1pg && head_id > 1) {
/* Keep current record (overflow page), add a new one */
head_id--;
refill_idx++;
head_room = 0;
}
if (lifo) {
if (refill_idx > (txn->mt_lifo_reclaimed ? txn->mt_lifo_reclaimed[0] : 0)) {
/* LY: need just a txn-id for save page list. */
rc = mdb_page_alloc(&mc, 0, NULL, MDBX_ALLOC_GC | MDBX_ALLOC_KICK);
if (likely(rc == 0))
/* LY: ok, reclaimed from freedb. */
continue;
if (unlikely(rc != MDB_NOTFOUND))
/* LY: other troubles... */
goto bailout;
/* LY: freedb is empty, will look any free txn-id in high2low order. */
if (unlikely(env->me_pglast < 1)) {
/* LY: not any txn in the past of freedb. */
rc = MDB_MAP_FULL;
goto bailout;
}
if (unlikely(! txn->mt_lifo_reclaimed)) {
txn->mt_lifo_reclaimed = mdb_midl_alloc(env->me_maxfree_1pg);
if (unlikely(! txn->mt_lifo_reclaimed)) {
rc = ENOMEM;
goto bailout;
}
}
/* LY: append the list. */
rc = mdb_midl_append(&txn->mt_lifo_reclaimed, env->me_pglast - 1);
if (unlikely(rc))
goto bailout;
--env->me_pglast;
/* LY: note that freeDB cleanup is not needed. */
++cleanup_idx;
}
head_id = txn->mt_lifo_reclaimed[refill_idx];
}
/* (Re)write {key = head_id, IDL length = head_room} */
total_room -= head_room;
head_room = mop_len - total_room;
if (head_room > maxfree_1pg && head_id > 1) {
/* Overflow multi-page for part of me_pghead */
head_room /= head_id; /* amortize page sizes */
head_room += maxfree_1pg - head_room % (maxfree_1pg + 1);
} else if (head_room < 0) {
/* Rare case, not bothering to delete this record */
head_room = 0;
continue;
}
key.mv_size = sizeof(head_id);
key.mv_data = &head_id;
data.mv_size = (head_room + 1) * sizeof(pgno_t);
rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE);
if (unlikely(rc))
goto bailout;
/* IDL is initially empty, zero out at least the length */
pgs = (pgno_t *)data.mv_data;
j = head_room > clean_limit ? head_room : 0;
do {
pgs[j] = 0;
} while (--j >= 0);
total_room += head_room;
}
mdb_tassert(txn, cleanup_idx == (txn->mt_lifo_reclaimed ? txn->mt_lifo_reclaimed[0] : 0));
/* Return loose page numbers to me_pghead, though usually none are
* left at this point. The pages themselves remain in dirty_list. */
if (txn->mt_loose_pgs) {
MDB_page *mp = txn->mt_loose_pgs;
unsigned count = txn->mt_loose_count;
MDB_IDL loose;
/* Room for loose pages + temp IDL with same */
if ((rc = mdb_midl_need(&env->me_pghead, 2*count+1)) != 0)
goto bailout;
mop = env->me_pghead;
loose = mop + MDB_IDL_ALLOCLEN(mop) - count;
for (count = 0; mp; mp = NEXT_LOOSE_PAGE(mp))
loose[ ++count ] = mp->mp_pgno;
loose[0] = count;
mdb_midl_sort(loose);
mdb_midl_xmerge(mop, loose);
txn->mt_loose_pgs = NULL;
txn->mt_loose_count = 0;
mop_len = mop[0];
}
/* Fill in the reserved me_pghead records */
rc = MDB_SUCCESS;
if (mop_len) {
MDB_val key, data;
mop += mop_len;
if (! lifo) {
rc = mdb_cursor_first(&mc, &key, &data);
if (unlikely(rc))
goto bailout;
}
for(;;) {
txnid_t id;
ssize_t len;
MDB_ID save;
if (! lifo) {
id = *(txnid_t *)key.mv_data;
mdb_tassert(txn, id <= env->me_pglast);
} else {
mdb_tassert(txn, refill_idx > 0 && refill_idx <= txn->mt_lifo_reclaimed[0]);
id = txn->mt_lifo_reclaimed[refill_idx--];
key.mv_data = &id;
key.mv_size = sizeof(id);
rc = mdb_cursor_get(&mc, &key, &data, MDB_SET);
if (unlikely(rc))
goto bailout;
}
mdb_tassert(txn, cleanup_idx == (txn->mt_lifo_reclaimed ? txn->mt_lifo_reclaimed[0] : 0));
len = (ssize_t)(data.mv_size / sizeof(MDB_ID)) - 1;
mdb_tassert(txn, len >= 0);
if (len > mop_len)
len = mop_len;
data.mv_size = (len + 1) * sizeof(MDB_ID);
key.mv_data = &id;
key.mv_size = sizeof(id);
data.mv_data = mop -= len;
save = mop[0];
mop[0] = len;
rc = mdb_cursor_put(&mc, &key, &data, MDB_CURRENT);
mdb_tassert(txn, cleanup_idx == (txn->mt_lifo_reclaimed ? txn->mt_lifo_reclaimed[0] : 0));
mop[0] = save;
if (unlikely(rc || (mop_len -= len) == 0))
goto bailout;
if (! lifo) {
rc = mdb_cursor_next(&mc, &key, &data, MDB_NEXT);
if (unlikely(rc))
goto bailout;
}
}
}
bailout:
if (txn->mt_lifo_reclaimed) {
mdb_tassert(txn, rc || cleanup_idx == txn->mt_lifo_reclaimed[0]);
if (rc == 0 && cleanup_idx != txn->mt_lifo_reclaimed[0]) {
mdb_tassert(txn, cleanup_idx < txn->mt_lifo_reclaimed[0]);
/* LY: zeroed cleanup_idx to force cleanup & refill created freeDB records. */
cleanup_idx = 0;
/* LY: restart filling */
refill_idx = total_room = head_room = 0;
more = 1;
goto again;
}
txn->mt_lifo_reclaimed[0] = 0;
if (txn != env->me_txn0) {
mdb_midl_free(txn->mt_lifo_reclaimed);
txn->mt_lifo_reclaimed = NULL;
}
}
return rc;
}
/** Flush (some) dirty pages to the map, after clearing their dirty flag.
* @param[in] txn the transaction that's being committed
* @param[in] keep number of initial pages in dirty_list to keep dirty.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_flush(MDB_txn *txn, int keep)
{
MDB_env *env = txn->mt_env;
MDB_ID2L dl = txn->mt_u.dirty_list;
unsigned psize = env->me_psize, j;
int i, pagecount = dl[0].mid, rc;
size_t size = 0, pos = 0;
pgno_t pgno = 0;
MDB_page *dp = NULL;
struct iovec iov[MDB_COMMIT_PAGES];
ssize_t wpos = 0, wsize = 0, wres;
size_t next_pos = 1; /* impossible pos, so pos != next_pos */
int n = 0;
j = i = keep;
if (env->me_flags & MDB_WRITEMAP) {
/* Clear dirty flags */
while (++i <= pagecount) {
dp = dl[i].mptr;
/* Don't flush this page yet */
if (dp->mp_flags & (P_LOOSE|P_KEEP)) {
dp->mp_flags &= ~P_KEEP;
dl[++j] = dl[i];
continue;
}
dp->mp_flags &= ~P_DIRTY;
env->me_sync_pending += IS_OVERFLOW(dp) ? psize * dp->mp_pages : psize;
}
goto done;
}
/* Write the pages */
for (;;) {
if (++i <= pagecount) {
dp = dl[i].mptr;
/* Don't flush this page yet */
if (dp->mp_flags & (P_LOOSE|P_KEEP)) {
dp->mp_flags &= ~P_KEEP;
dl[i].mid = 0;
continue;
}
pgno = dl[i].mid;
/* clear dirty flag */
dp->mp_flags &= ~P_DIRTY;
pos = pgno * psize;
size = psize;
if (IS_OVERFLOW(dp)) size *= dp->mp_pages;
env->me_sync_pending += size;
}
/* Write up to MDB_COMMIT_PAGES dirty pages at a time. */
if (pos!=next_pos || n==MDB_COMMIT_PAGES || wsize+size>MAX_WRITE) {
if (n) {
retry:
/* Write previous page(s) */
wres = pwritev(env->me_fd, iov, n, wpos);
if (unlikely(wres != wsize)) {
if (wres < 0) {
rc = errno;
if (rc == EINTR)
goto retry;
mdb_debug("Write error: %s", strerror(rc));
} else {
rc = EIO; /* TODO: Use which error code? */
mdb_debug("short write, filesystem full?");
}
return rc;
}
n = 0;
}
if (i > pagecount)
break;
wpos = pos;
wsize = 0;
}
mdb_debug("committing page %zu", pgno);
next_pos = pos + size;
iov[n].iov_len = size;
iov[n].iov_base = (char *)dp;
wsize += size;
n++;
}
mdb_invalidate_cache(env->me_map, txn->mt_next_pgno * env->me_psize);
for (i = keep; ++i <= pagecount; ) {
dp = dl[i].mptr;
/* This is a page we skipped above */
if (!dl[i].mid) {
dl[++j] = dl[i];
dl[j].mid = dp->mp_pgno;
continue;
}
mdb_dpage_free(env, dp);
}
done:
i--;
txn->mt_dirty_room += i - j;
dl[0].mid = j;
return MDB_SUCCESS;
}
int
mdb_txn_commit(MDB_txn *txn)
{
int rc;
unsigned i, end_mode;
MDB_env *env;
if (unlikely(txn == NULL))
return EINVAL;
if(unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(txn->mt_env->me_pid != getpid())) {
txn->mt_env->me_flags |= MDB_FATAL_ERROR;
return MDB_PANIC;
}
/* mdb_txn_end() mode for a commit which writes nothing */
end_mode = MDB_END_EMPTY_COMMIT|MDB_END_UPDATE|MDB_END_SLOT|MDB_END_FREE;
if (txn->mt_child) {
rc = mdb_txn_commit(txn->mt_child);
txn->mt_child = NULL;
if (unlikely(rc != MDB_SUCCESS))
goto fail;
}
env = txn->mt_env;
if (unlikely(F_ISSET(txn->mt_flags, MDB_TXN_RDONLY))) {
goto done;
}
if (unlikely(txn->mt_flags & (MDB_TXN_FINISHED|MDB_TXN_ERROR))) {
mdb_debug("error flag is set, can't commit");
if (txn->mt_parent)
txn->mt_parent->mt_flags |= MDB_TXN_ERROR;
rc = MDB_BAD_TXN;
goto fail;
}
if (txn->mt_parent) {
MDB_txn *parent = txn->mt_parent;
MDB_page **lp;
MDB_ID2L dst, src;
MDB_IDL pspill;
unsigned x, y, len, ps_len;
/* Append our reclaim list to parent's */
if (txn->mt_lifo_reclaimed) {
if (parent->mt_lifo_reclaimed) {
rc = mdb_midl_append_list(&parent->mt_lifo_reclaimed, txn->mt_lifo_reclaimed);
if (unlikely(rc != MDB_SUCCESS))
goto fail;
mdb_midl_free(txn->mt_lifo_reclaimed);
} else
parent->mt_lifo_reclaimed = txn->mt_lifo_reclaimed;
txn->mt_lifo_reclaimed = NULL;
}
/* Append our free list to parent's */
rc = mdb_midl_append_list(&parent->mt_free_pgs, txn->mt_free_pgs);
if (unlikely(rc != MDB_SUCCESS))
goto fail;
mdb_midl_free(txn->mt_free_pgs);
/* Failures after this must either undo the changes
* to the parent or set MDB_TXN_ERROR in the parent. */
parent->mt_next_pgno = txn->mt_next_pgno;
parent->mt_flags = txn->mt_flags;
/* Merge our cursors into parent's and close them */
mdb_cursors_close(txn, 1);
/* Update parent's DB table. */
memcpy(parent->mt_dbs, txn->mt_dbs, txn->mt_numdbs * sizeof(MDB_db));
parent->mt_numdbs = txn->mt_numdbs;
parent->mt_dbflags[FREE_DBI] = txn->mt_dbflags[FREE_DBI];
parent->mt_dbflags[MAIN_DBI] = txn->mt_dbflags[MAIN_DBI];
for (i=CORE_DBS; i<txn->mt_numdbs; i++) {
/* preserve parent's DB_NEW status */
x = parent->mt_dbflags[i] & DB_NEW;
parent->mt_dbflags[i] = txn->mt_dbflags[i] | x;
}
dst = parent->mt_u.dirty_list;
src = txn->mt_u.dirty_list;
/* Remove anything in our dirty list from parent's spill list */
if ((pspill = parent->mt_spill_pgs) && (ps_len = pspill[0])) {
x = y = ps_len;
pspill[0] = (pgno_t)-1;
/* Mark our dirty pages as deleted in parent spill list */
for (i=0, len=src[0].mid; ++i <= len; ) {
MDB_ID pn = src[i].mid << 1;
while (pn > pspill[x])
x--;
if (pn == pspill[x]) {
pspill[x] = 1;
y = --x;
}
}
/* Squash deleted pagenums if we deleted any */
for (x=y; ++x <= ps_len; )
if (!(pspill[x] & 1))
pspill[++y] = pspill[x];
pspill[0] = y;
}
/* Remove anything in our spill list from parent's dirty list */
if (txn->mt_spill_pgs && txn->mt_spill_pgs[0]) {
for (i=1; i<=txn->mt_spill_pgs[0]; i++) {
MDB_ID pn = txn->mt_spill_pgs[i];
if (pn & 1)
continue; /* deleted spillpg */
pn >>= 1;
y = mdb_mid2l_search(dst, pn);
if (y <= dst[0].mid && dst[y].mid == pn) {
free(dst[y].mptr);
while (y < dst[0].mid) {
dst[y] = dst[y+1];
y++;
}
dst[0].mid--;
}
}
}
/* Find len = length of merging our dirty list with parent's */
x = dst[0].mid;
dst[0].mid = 0; /* simplify loops */
if (parent->mt_parent) {
len = x + src[0].mid;
y = mdb_mid2l_search(src, dst[x].mid + 1) - 1;
for (i = x; y && i; y--) {
pgno_t yp = src[y].mid;
while (yp < dst[i].mid)
i--;
if (yp == dst[i].mid) {
i--;
len--;
}
}
} else { /* Simplify the above for single-ancestor case */
len = MDB_IDL_UM_MAX - txn->mt_dirty_room;
}
/* Merge our dirty list with parent's */
y = src[0].mid;
for (i = len; y; dst[i--] = src[y--]) {
pgno_t yp = src[y].mid;
while (yp < dst[x].mid)
dst[i--] = dst[x--];
if (yp == dst[x].mid)
free(dst[x--].mptr);
}
mdb_tassert(txn, i == x);
dst[0].mid = len;
free(txn->mt_u.dirty_list);
parent->mt_dirty_room = txn->mt_dirty_room;
if (txn->mt_spill_pgs) {
if (parent->mt_spill_pgs) {
/* TODO: Prevent failure here, so parent does not fail */
rc = mdb_midl_append_list(&parent->mt_spill_pgs, txn->mt_spill_pgs);
if (unlikely(rc != MDB_SUCCESS))
parent->mt_flags |= MDB_TXN_ERROR;
mdb_midl_free(txn->mt_spill_pgs);
mdb_midl_sort(parent->mt_spill_pgs);
} else {
parent->mt_spill_pgs = txn->mt_spill_pgs;
}
}
/* Append our loose page list to parent's */
for (lp = &parent->mt_loose_pgs; *lp; lp = &NEXT_LOOSE_PAGE(*lp))
;
*lp = txn->mt_loose_pgs;
parent->mt_loose_count += txn->mt_loose_count;
parent->mt_child = NULL;
mdb_midl_free(((MDB_ntxn *)txn)->mnt_pgstate.mf_pghead);
txn->mt_signature = 0;
free(txn);
return rc;
}
env = txn->mt_env;
if (unlikely(txn != env->me_txn)) {
mdb_debug("attempt to commit unknown transaction");
rc = EINVAL;
goto fail;
}
mdb_cursors_close(txn, 0);
if (!txn->mt_u.dirty_list[0].mid &&
!(txn->mt_flags & (MDB_TXN_DIRTY|MDB_TXN_SPILLS)))
goto done;
mdb_debug("committing txn %zu %p on mdbenv %p, root page %zu",
txn->mt_txnid, (void*)txn, (void*)env, txn->mt_dbs[MAIN_DBI].md_root);
/* Update DB root pointers */
if (txn->mt_numdbs > CORE_DBS) {
MDB_cursor mc;
MDB_dbi i;
MDB_val data;
data.mv_size = sizeof(MDB_db);
mdb_cursor_init(&mc, txn, MAIN_DBI, NULL);
for (i = CORE_DBS; i < txn->mt_numdbs; i++) {
if (txn->mt_dbflags[i] & DB_DIRTY) {
if (unlikely(TXN_DBI_CHANGED(txn, i))) {
rc = MDB_BAD_DBI;
goto fail;
}
data.mv_data = &txn->mt_dbs[i];
rc = mdb_cursor_put(&mc, &txn->mt_dbxs[i].md_name, &data,
F_SUBDATA);
if (unlikely(rc != MDB_SUCCESS))
goto fail;
}
}
}
rc = mdb_freelist_save(txn);
if (unlikely(rc != MDB_SUCCESS))
goto fail;
mdb_midl_free(env->me_pghead);
env->me_pghead = NULL;
mdb_midl_shrink(&txn->mt_free_pgs);
if (mdb_audit_enabled())
mdb_audit(txn);
rc = mdb_page_flush(txn, 0);
if (likely(rc == MDB_SUCCESS)) {
MDB_meta meta;
meta.mm_dbs[FREE_DBI] = txn->mt_dbs[FREE_DBI];
meta.mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI];
meta.mm_last_pg = txn->mt_next_pgno - 1;
meta.mm_txnid = txn->mt_txnid;
#if MDBX_MODE_ENABLED
meta.mm_canary = txn->mt_canary;
#endif
rc = mdb_env_sync0(env, env->me_flags | txn->mt_flags, &meta);
}
if (unlikely(rc != MDB_SUCCESS))
goto fail;
end_mode = MDB_END_COMMITTED|MDB_END_UPDATE;
done:
return mdb_txn_end(txn, end_mode);
fail:
mdb_txn_abort(txn);
return rc;
}
/** Read the environment parameters of a DB environment before
* mapping it into memory.
* @param[in] env the environment handle
* @param[out] meta address of where to store the meta information
* @return 0 on success, non-zero on failure.
*/
static int __cold
mdb_env_read_header(MDB_env *env, MDB_meta *meta)
{
MDB_metabuf pbuf;
MDB_page *p;
MDB_meta *m;
int i, rc, off;
enum { Size = sizeof(pbuf) };
/* We don't know the page size yet, so use a minimum value.
* Read both meta pages so we can use the latest one.
*/
meta->mm_datasync_sign = MDB_DATASIGN_WEAK;
meta->mm_txnid = 0;
for (i=off=0; i<NUM_METAS; i++, off += meta->mm_psize) {
rc = pread(env->me_fd, &pbuf, Size, off);
if (rc != Size) {
if (rc == 0 && off == 0)
return ENOENT;
rc = rc < 0 ? (int) errno : MDB_INVALID;
mdb_debug("read: %s", mdb_strerror(rc));
return rc;
}
p = (MDB_page *)&pbuf;
if (!F_ISSET(p->mp_flags, P_META)) {
mdb_debug("page %zu not a meta page", p->mp_pgno);
return MDB_INVALID;
}
m = PAGEDATA(p);
if (m->mm_magic != MDB_MAGIC) {
mdb_debug("meta has invalid magic");
return MDB_INVALID;
}
if (m->mm_version != MDB_DATA_VERSION) {
mdb_debug("database is version %u, expected version %u",
m->mm_version, MDB_DATA_VERSION);
return MDB_VERSION_MISMATCH;
}
if (m->mm_datasync_sign > MDB_DATASIGN_WEAK && m->mm_datasync_sign != mdb_meta_sign(m))
continue;
if (mdb_meta_lt(meta, m))
*meta = *m;
}
if (meta->mm_datasync_sign == MDB_DATASIGN_WEAK)
/* LY: Both meta-pages are weak. */
return MDB_CORRUPTED;
return MDB_SUCCESS;
}
/** Fill in most of the zeroed #MDB_meta for an empty database environment */
static void __cold
mdb_env_init_meta0(MDB_env *env, MDB_meta *meta)
{
meta->mm_magic = MDB_MAGIC;
meta->mm_version = MDB_DATA_VERSION;
meta->mm_mapsize = env->me_mapsize;
meta->mm_psize = env->me_psize;
meta->mm_last_pg = NUM_METAS-1;
meta->mm_flags = env->me_flags & 0xffff;
meta->mm_flags |= MDB_INTEGERKEY; /* this is mm_dbs[FREE_DBI].md_flags */
meta->mm_dbs[FREE_DBI].md_root = P_INVALID;
meta->mm_dbs[MAIN_DBI].md_root = P_INVALID;
meta->mm_datasync_sign = mdb_meta_sign(meta);
}
/** Write the environment parameters of a freshly created DB environment.
* @param[in] env the environment handle
* @param[in] meta the #MDB_meta to write
* @return 0 on success, non-zero on failure.
*/
static int __cold
mdb_env_init_meta(MDB_env *env, MDB_meta *meta)
{
MDB_page *p, *q;
int rc;
unsigned psize;
int len;
mdb_debug("writing new meta page");
psize = env->me_psize;
p = calloc(NUM_METAS, psize);
if (!p)
return ENOMEM;
p->mp_pgno = 0;
p->mp_flags = P_META;
*(MDB_meta *)PAGEDATA(p) = *meta;
q = (MDB_page *)((char *)p + psize);
q->mp_pgno = 1;
q->mp_flags = P_META;
*(MDB_meta *)PAGEDATA(q) = *meta;
do
len = pwrite(env->me_fd, p, psize * NUM_METAS, 0);
while (len == -1 && errno == EINTR);
if (len < 0)
rc = errno;
else if ((unsigned) len == psize * NUM_METAS)
rc = MDB_SUCCESS;
else
rc = ENOSPC;
free(p);
return rc;
}
static int
mdb_env_sync0(MDB_env *env, unsigned flags, MDB_meta *pending)
{
int rc;
MDB_meta* head = mdb_meta_head_w(env);
size_t prev_mapsize = head->mm_mapsize;
size_t used_size = env->me_psize * (pending->mm_last_pg + 1);
mdb_assert(env, pending != METAPAGE_1(env) && pending != METAPAGE_2(env));
mdb_assert(env, (env->me_flags & (MDB_RDONLY | MDB_FATAL_ERROR)) == 0);
mdb_assert(env, META_IS_WEAK(head) || env->me_sync_pending != 0
|| env->me_mapsize != prev_mapsize);
pending->mm_mapsize = env->me_mapsize;
mdb_assert(env, pending->mm_mapsize >= used_size);
if (unlikely(pending->mm_mapsize != prev_mapsize)) {
if (pending->mm_mapsize < prev_mapsize) {
/* LY: currently this can't happen, but force full-sync. */
flags &= MDB_WRITEMAP;
} else {
/* Persist any increases of mapsize config */
}
}
if (env->me_sync_threshold && env->me_sync_pending >= env->me_sync_threshold)
flags &= MDB_WRITEMAP;
/* LY: step#1 - sync previously written/updated data-pages */
if (env->me_sync_pending && (flags & MDB_NOSYNC) == 0) {
if (env->me_flags & MDB_WRITEMAP) {
int mode = (flags & MDB_MAPASYNC) ? MS_ASYNC : MS_SYNC;
if (unlikely(msync(env->me_map, used_size, mode))) {
rc = errno;
/* LY: msync() should never return EINTR */
goto fail;
}
if ((flags & MDB_MAPASYNC) == 0)
env->me_sync_pending = 0;
} else {
int (*flush)(int fd) = fdatasync;
if (unlikely(prev_mapsize != pending->mm_mapsize)) {
/* LY: It is no reason to use fdatasync() here, even in case
* no such bug in a kernel. Because "no-bug" mean that a kernel
* internally do nearly the same, e.g. fdatasync() == fsync()
* when no-kernel-bug and file size was changed.
*
* So, this code is always safe and without appreciable
* performance degradation.
*
* For more info about of a corresponding fdatasync() bug
* see http://www.spinics.net/lists/linux-ext4/msg33714.html */
flush = fsync;
}
while(unlikely(flush(env->me_fd) < 0)) {
rc = errno;
if (rc != EINTR)
goto fail;
}
env->me_sync_pending = 0;
}
}
/* LY: step#2 - update meta-page. */
if (env->me_sync_pending == 0) {
pending->mm_datasync_sign = mdb_meta_sign(pending);
} else {
pending->mm_datasync_sign =
(flags & MDBX_UTTERLY_NOSYNC) == MDBX_UTTERLY_NOSYNC
? MDB_DATASIGN_NONE : MDB_DATASIGN_WEAK;
}
volatile MDB_meta* target = (pending->mm_txnid == head->mm_txnid || META_IS_WEAK(head))
? head : mdb_env_meta_flipflop(env, head);
off_t offset = (char*) target - env->me_map;
MDB_meta* stay = mdb_env_meta_flipflop(env, (MDB_meta*) target);
mdb_debug("writing meta %d (%s, was %zu/%s, stay %s %zu/%s), root %zu, txn_id %zu, %s",
offset >= env->me_psize,
target == head ? "head" : "tail", target->mm_txnid,
META_IS_WEAK(target) ? "Weak" : META_IS_STEADY(target) ? "Steady" : "Legacy",
stay == head ? "head" : "tail", stay->mm_txnid,
META_IS_WEAK(stay) ? "Weak" : META_IS_STEADY(stay) ? "Steady" : "Legacy",
pending->mm_dbs[MAIN_DBI].md_root, pending->mm_txnid,
META_IS_WEAK(pending) ? "Weak" : META_IS_STEADY(pending) ? "Steady" : "Legacy" );
if (env->me_flags & MDB_WRITEMAP) {
#ifdef __SANITIZE_THREAD__
pthread_mutex_lock(&tsan_mutex);
#endif
/* LY: 'invalidate' the meta,
* but mdb_meta_head_r() will be confused/retired in collision case. */
target->mm_datasync_sign = MDB_DATASIGN_WEAK;
target->mm_txnid = 0;
/* LY: update info */
target->mm_mapsize = pending->mm_mapsize;
target->mm_dbs[FREE_DBI] = pending->mm_dbs[FREE_DBI];
target->mm_dbs[MAIN_DBI] = pending->mm_dbs[MAIN_DBI];
target->mm_last_pg = pending->mm_last_pg;
#if MDBX_MODE_ENABLED
target->mm_canary = pending->mm_canary;
#endif
/* LY: 'commit' the meta */
target->mm_txnid = pending->mm_txnid;
target->mm_datasync_sign = pending->mm_datasync_sign;
} else {
pending->mm_magic = MDB_MAGIC;
pending->mm_version = MDB_DATA_VERSION;
pending->mm_address = head->mm_address;
retry:
rc = pwrite(env->me_fd, pending, sizeof(MDB_meta), offset);
if (unlikely(rc != sizeof(MDB_meta))) {
rc = (rc < 0) ? errno : EIO;
if (rc == EINTR)
goto retry;
undo:
mdb_debug("write failed, disk error?");
/* On a failure, the pagecache still contains the new data.
* Write some old data back, to prevent it from being used. */
if (pwrite(env->me_fd, (void*) target, sizeof(MDB_meta), offset) == sizeof(MDB_meta)) {
/* LY: take a chance, if write succeeds at a magic ;) */
goto retry;
}
goto fail;
}
mdb_invalidate_cache(env->me_map + offset, sizeof(MDB_meta));
#ifdef __SANITIZE_THREAD__
pthread_mutex_lock(&tsan_mutex);
#endif
}
/* Memory ordering issues are irrelevant; since the entire writer
* is wrapped by wmutex, all of these changes will become visible
* after the wmutex is unlocked. Since the DB is multi-version,
* readers will get consistent data regardless of how fresh or
* how stale their view of these values is.
*/
env->me_txns->mti_txnid = pending->mm_txnid;
#ifdef __SANITIZE_THREAD__
pthread_mutex_unlock(&tsan_mutex);
#endif
/* LY: step#3 - sync meta-pages. */
if ((flags & (MDB_NOSYNC | MDB_NOMETASYNC)) == 0) {
if (env->me_flags & MDB_WRITEMAP) {
char* ptr = env->me_map + (offset & ~(env->me_os_psize - 1));
int mode = (flags & MDB_MAPASYNC) ? MS_ASYNC : MS_SYNC;
if (unlikely(msync(ptr, env->me_os_psize, mode) < 0)) {
rc = errno;
goto fail;
}
} else {
while(unlikely(fdatasync(env->me_fd) < 0)) {
rc = errno;
if (rc != EINTR)
goto undo;
}
}
}
/* LY: currently this can't happen, but... */
if (unlikely(pending->mm_mapsize < prev_mapsize)) {
mdb_assert(env, pending->mm_mapsize == env->me_mapsize);
if (unlikely(mremap(env->me_map, prev_mapsize, pending->mm_mapsize,
MREMAP_FIXED, pending->mm_address) == MAP_FAILED)) {
rc = errno;
goto fail;
}
if (unlikely(ftruncate(env->me_fd, pending->mm_mapsize) < 0)) {
rc = errno;
goto fail;
}
}
return MDB_SUCCESS;
fail:
env->me_flags |= MDB_FATAL_ERROR;
return rc;
}
int __cold
mdb_env_create(MDB_env **env)
{
MDB_env *e;
e = calloc(1, sizeof(MDB_env));
if (!e)
return ENOMEM;
e->me_maxreaders = DEFAULT_READERS;
e->me_maxdbs = e->me_numdbs = CORE_DBS;
e->me_fd = INVALID_HANDLE_VALUE;
e->me_lfd = INVALID_HANDLE_VALUE;
e->me_pid = getpid();
GET_PAGESIZE(e->me_os_psize);
VALGRIND_CREATE_MEMPOOL(e,0,0);
e->me_signature = MDBX_ME_SIGNATURE;
*env = e;
return MDB_SUCCESS;
}
static int __cold
mdb_env_map(MDB_env *env, void *addr, size_t usedsize)
{
unsigned flags = env->me_flags;
int prot = PROT_READ;
if (flags & MDB_WRITEMAP) {
prot |= PROT_WRITE;
if (ftruncate(env->me_fd, env->me_mapsize) < 0)
return errno;
}
env->me_map = mmap(addr, env->me_mapsize, prot, MAP_SHARED, env->me_fd, 0);
if (env->me_map == MAP_FAILED) {
env->me_map = NULL;
return errno;
}
/* Can happen because the address argument to mmap() is just a
* hint. mmap() can pick another, e.g. if the range is in use.
* The MAP_FIXED flag would prevent that, but then mmap could
* instead unmap existing pages to make room for the new map.
*/
if (addr && env->me_map != addr) {
errno = 0; /* LY: clean errno as a hit for this case */
return EBUSY; /* TODO: Make a new MDB_* error code? */
}
if (madvise(env->me_map, env->me_mapsize, MADV_DONTFORK))
return errno;
#ifdef MADV_NOHUGEPAGE
(void) madvise(env->me_map, env->me_mapsize, MADV_NOHUGEPAGE);
#endif
#ifdef MADV_DONTDUMP
if (! (flags & MDBX_PAGEPERTURB)) {
(void) madvise(env->me_map, env->me_mapsize, MADV_DONTDUMP);
}
#endif
#ifdef MADV_REMOVE
if (flags & MDB_WRITEMAP) {
(void) madvise(env->me_map + usedsize, env->me_mapsize - usedsize, MADV_REMOVE);
}
#endif
/* Turn on/off readahead. It's harmful when the DB is larger than RAM. */
if (madvise(env->me_map, env->me_mapsize, (flags & MDB_NORDAHEAD) ? MADV_RANDOM : MADV_WILLNEED))
return errno;
/* Lock meta pages to avoid unexpected write,
* before the data pages would be synchronized. */
if ((flags & MDB_WRITEMAP) && mlock(env->me_map, env->me_psize * 2))
return errno;
#ifdef USE_VALGRIND
env->me_valgrind_handle =
VALGRIND_CREATE_BLOCK(env->me_map, env->me_mapsize, "lmdb");
#endif
return MDB_SUCCESS;
}
int __cold
mdb_env_set_mapsize(MDB_env *env, size_t size)
{
if (unlikely(!env))
return EINVAL;
if (unlikely(env->me_signature != MDBX_ME_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(size < env->me_psize * 8))
return EINVAL;
/* If env is already open, caller is responsible for making
* sure there are no active txns.
*/
if (env->me_map) {
int rc;
MDB_meta *meta;
void *old;
if (env->me_txn)
return EINVAL;
meta = mdb_meta_head_w(env);
if (!size)
size = meta->mm_mapsize;
/* Silently round up to minimum if the size is too small */
const size_t usedsize = (meta->mm_last_pg + 1) * env->me_psize;
if (size < usedsize)
size = usedsize;
munmap(env->me_map, env->me_mapsize);
#ifdef USE_VALGRIND
VALGRIND_DISCARD(env->me_valgrind_handle);
env->me_valgrind_handle = -1;
#endif
env->me_mapsize = size;
old = (env->me_flags & MDB_FIXEDMAP) ? env->me_map : NULL;
rc = mdb_env_map(env, old, usedsize);
if (rc)
return rc;
}
env->me_mapsize = size;
if (env->me_psize)
env->me_maxpg = env->me_mapsize / env->me_psize;
return MDB_SUCCESS;
}
int __cold
mdb_env_set_maxdbs(MDB_env *env, MDB_dbi dbs)
{
if (unlikely(!env))
return EINVAL;
if (unlikely(env->me_signature != MDBX_ME_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(env->me_map))
return EINVAL;
env->me_maxdbs = dbs + CORE_DBS;
return MDB_SUCCESS;
}
int __cold
mdb_env_set_maxreaders(MDB_env *env, unsigned readers)
{
if (unlikely(!env || readers < 1))
return EINVAL;
if (unlikely(env->me_signature != MDBX_ME_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(env->me_map))
return EINVAL;
env->me_maxreaders = readers;
return MDB_SUCCESS;
}
int __cold
mdb_env_get_maxreaders(MDB_env *env, unsigned *readers)
{
if (!env || !readers)
return EINVAL;
if (unlikely(env->me_signature != MDBX_ME_SIGNATURE))
return MDB_VERSION_MISMATCH;
*readers = env->me_maxreaders;
return MDB_SUCCESS;
}
static int __cold
mdb_fsize(HANDLE fd, size_t *size)
{
struct stat st;
if (fstat(fd, &st))
return errno;
*size = st.st_size;
return MDB_SUCCESS;
}
/** Further setup required for opening an LMDB environment
*/
static int __cold
mdb_env_open2(MDB_env *env, MDB_meta *meta)
{
unsigned flags = env->me_flags;
int i, newenv = 0, rc;
if ((i = mdb_env_read_header(env, meta)) != 0) {
if (i != ENOENT)
return i;
mdb_debug("new mdbenv");
newenv = 1;
env->me_psize = env->me_os_psize;
if (env->me_psize > MAX_PAGESIZE)
env->me_psize = MAX_PAGESIZE;
memset(meta, 0, sizeof(*meta));
mdb_env_init_meta0(env, meta);
meta->mm_mapsize = DEFAULT_MAPSIZE;
} else {
env->me_psize = meta->mm_psize;
}
/* Was a mapsize configured? */
if (!env->me_mapsize) {
env->me_mapsize = meta->mm_mapsize;
}
{
/* Make sure mapsize >= committed data size. Even when using
* mm_mapsize, which could be broken in old files (ITS#7789).
*/
size_t minsize = (meta->mm_last_pg + 1) * meta->mm_psize;
if (env->me_mapsize < minsize)
env->me_mapsize = minsize;
}
meta->mm_mapsize = env->me_mapsize;
if (newenv && !(flags & MDB_FIXEDMAP)) {
/* mdb_env_map() may grow the datafile. Write the metapages
* first, so the file will be valid if initialization fails.
* Except with FIXEDMAP, since we do not yet know mm_address.
* We could fill in mm_address later, but then a different
* program might end up doing that - one with a memory layout
* and map address which does not suit the main program.
*/
rc = mdb_env_init_meta(env, meta);
if (rc)
return rc;
newenv = 0;
}
const size_t usedsize = (meta->mm_last_pg + 1) * env->me_psize;
rc = mdb_env_map(env, (flags & MDB_FIXEDMAP) ? meta->mm_address : NULL, usedsize);
if (rc)
return rc;
if (newenv) {
if (flags & MDB_FIXEDMAP)
meta->mm_address = env->me_map;
i = mdb_env_init_meta(env, meta);
if (i != MDB_SUCCESS) {
return i;
}
}
env->me_maxfree_1pg = (env->me_psize - PAGEHDRSZ) / sizeof(pgno_t) - 1;
env->me_nodemax = (((env->me_psize - PAGEHDRSZ) / MDB_MINKEYS) & -2)
- sizeof(indx_t);
env->me_maxkey_limit = env->me_nodemax - (NODESIZE + sizeof(MDB_db));
env->me_maxpg = env->me_mapsize / env->me_psize;
if (MDB_MAXKEYSIZE > env->me_maxkey_limit)
return MDB_BAD_VALSIZE;
return MDB_SUCCESS;
}
/****************************************************************************/
#ifndef MDBX_USE_THREAD_ATEXIT
# if __GLIBC_PREREQ(2,18)
# define MDBX_USE_THREAD_ATEXIT 1
# else
# define MDBX_USE_THREAD_ATEXIT 0
# endif
#endif
static pthread_mutex_t mdbx_rthc_mutex = PTHREAD_MUTEX_INITIALIZER;
static MDBX_rthc *mdbx_rthc_list;
static pthread_key_t mdbx_pthread_crutch_key;
static __inline
void mdbx_rthc_lock(void) {
mdb_ensure(NULL, pthread_mutex_lock(&mdbx_rthc_mutex) == 0);
}
static __inline
void mdbx_rthc_unlock(void) {
mdb_ensure(NULL, pthread_mutex_unlock(&mdbx_rthc_mutex) == 0);
}
/** Release a reader thread's slot in the reader lock table.
* This function is called automatically when a thread exits.
* @param[in] ptr This points to the MDB_rthc of a slot in the reader lock table.
*/
static __cold
void mdbx_rthc_dtor(void)
{
/* LY: Основная задача этого деструктора была и есть в освобождении
* слота таблицы читателей при завершении треда, но тут есть пара
* не очевидных сложностей:
* - Таблица читателей располагается в разделяемой памяти, поэтому
* во избежание segfault деструктор не должен что-либо делать после
* или одновременно с mdb_env_close().
* - Действительно, mdb_env_close() вызовет pthread_key_delete() и
* после этого glibc не будет вызывать деструктор.
* - ОДНАКО, это никак не решает проблему гонок между mdb_env_close()
* и завершающимися тредами. Грубо говоря, при старте mdb_env_close()
* деструктор уже может выполняться в некоторых тредах, и завершиться
* эти выполнения могут во время или после окончания mdb_env_close().
* - БОЛЕЕ ТОГО, схожая проблема возникает при выгрузке dso/dll,
* так как в текущей glibc (2.24) подсистема ld.so ничего не знает о
* TSD-деструкторах и поэтому может выгрузить lib.so до того как
* отработали все деструкторы.
* - Исходное проявление проблемы было зафиксировано
* в https://github.com/ReOpen/ReOpenLDAP/issues/48
*
* Предыдущее решение посредством выделяемого динамически MDB_rthc
* было не удачным, так как порождало либо утечку памяти,
* либо вероятностное обращение к уже освобожденной памяти
* из этого деструктора.
*
* Текущее решение достаточно "развесисто", но решает все описанные выше
* проблемы без пенальти по производительности.
*/
mdbx_rthc_lock();
pid_t pid = getpid();
pthread_t thread = pthread_self();
for (MDBX_rthc** ref = &mdbx_rthc_list; *ref; ) {
MDBX_rthc* rthc = *ref;
if (rthc->rc_thread == thread) {
if (rthc->rc_reader && rthc->rc_reader->mr_pid == pid) {
rthc->rc_reader->mr_pid = 0;
mdbx_coherent_barrier();
}
*ref = rthc->rc_next;
free(rthc);
} else {
ref = &(*ref)->rc_next;
}
}
mdbx_rthc_unlock();
}
#if MDBX_USE_THREAD_ATEXIT
extern void *__dso_handle __attribute__ ((__weak__));
extern int __cxa_thread_atexit_impl(void (*dtor)(void*), void *obj, void *dso_symbol);
static __cold
void mdbx_rthc__thread_atexit(void *ptr) {
mdb_ensure(NULL, ptr == pthread_getspecific(mdbx_pthread_crutch_key));
mdb_ensure(NULL, pthread_setspecific(mdbx_pthread_crutch_key, NULL) == 0);
mdbx_rthc_dtor();
}
static __attribute__((constructor)) __cold
void mdbx_pthread_crutch_ctor(void) {
mdb_ensure(NULL, pthread_key_create(
&mdbx_pthread_crutch_key, NULL) == 0);
}
#else /* MDBX_USE_THREAD_ATEXIT */
static __cold
void mdbx_rthc__thread_key_dtor(void *ptr) {
(void) ptr;
if (mdbx_pthread_crutch_key != (pthread_key_t) -1)
mdbx_rthc_dtor();
}
static __attribute__((constructor)) __cold
void mdbx_pthread_crutch_ctor(void) {
mdb_ensure(NULL, pthread_key_create(
&mdbx_pthread_crutch_key, mdbx_rthc__thread_key_dtor) == 0);
}
static __attribute__((destructor)) __cold
void mdbx_pthread_crutch_dtor(void)
{
pthread_key_delete(mdbx_pthread_crutch_key);
mdbx_pthread_crutch_key = -1;
/* LY: Из-за race condition в pthread_key_delete()
* деструкторы уже могли начать выполняться.
* Уступая квант времени сразу после удаления ключа
* мы даем им шанс завершиться. */
pthread_yield();
mdbx_rthc_lock();
pid_t pid = getpid();
while (mdbx_rthc_list != NULL) {
MDBX_rthc* rthc = mdbx_rthc_list;
mdbx_rthc_list = mdbx_rthc_list->rc_next;
if (rthc->rc_reader && rthc->rc_reader->mr_pid == pid) {
rthc->rc_reader->mr_pid = 0;
mdbx_coherent_barrier();
}
free(rthc);
/* LY: Каждый неудаленный элемент списка - это один
* не отработавший деструктор и потенциальный
* шанс получить segfault после выгрузки lib.so
* Поэтому на каждой итерации уступаем квант времени,
* в надежде что деструкторы успеют отработать. */
mdbx_rthc_unlock();
pthread_yield();
mdbx_rthc_lock();
}
mdbx_rthc_unlock();
pthread_yield();
}
#endif /* MDBX_USE_THREAD_ATEXIT */
static __cold
MDBX_rthc* mdbx_rthc_add(pthread_key_t key)
{
MDBX_rthc *rthc = malloc(sizeof(MDBX_rthc));
if (unlikely(rthc == NULL))
goto bailout;
rthc->rc_next = NULL;
rthc->rc_reader = NULL;
rthc->rc_thread = pthread_self();
if (unlikely(pthread_setspecific(key, rthc) != 0))
goto bailout_free;
mdbx_rthc_lock();
if (pthread_getspecific(mdbx_pthread_crutch_key) == NULL) {
#if MDBX_USE_THREAD_ATEXIT
void *dso_anchor = (&__dso_handle && __dso_handle)
? __dso_handle : (void *)mdb_version;
if (unlikely(__cxa_thread_atexit_impl(mdbx_rthc__thread_atexit, rthc, dso_anchor) != 0)) {
mdbx_rthc_unlock();
goto bailout_free;
}
#endif /* MDBX_USE_THREAD_ATEXIT */
mdb_ensure(NULL, pthread_setspecific(mdbx_pthread_crutch_key, rthc) == 0);
}
rthc->rc_next = mdbx_rthc_list;
mdbx_rthc_list = rthc;
mdbx_rthc_unlock();
return rthc;
bailout_free:
free(rthc);
bailout:
return NULL;
}
static __inline
MDBX_rthc* mdbx_rthc_get(pthread_key_t key)
{
MDBX_rthc *rthc = pthread_getspecific(key);
if (likely(rthc != NULL))
return rthc;
return mdbx_rthc_add(key);
}
static __cold
void mdbx_rthc_cleanup(MDB_env *env)
{
mdbx_rthc_lock();
MDB_reader *begin = env->me_txns->mti_readers;
MDB_reader *end = begin + env->me_close_readers;
for (MDBX_rthc** ref = &mdbx_rthc_list; *ref; ) {
MDBX_rthc* rthc = *ref;
if (rthc->rc_reader >= begin && rthc->rc_reader < end) {
if (rthc->rc_reader->mr_pid == env->me_pid) {
rthc->rc_reader->mr_pid = 0;
mdbx_coherent_barrier();
}
*ref = rthc->rc_next;
free(rthc);
} else {
ref = &(*ref)->rc_next;
}
}
mdbx_rthc_unlock();
}
/****************************************************************************/
/** Downgrade the exclusive lock on the region back to shared */
static __cold
int mdb_env_share_locks(MDB_env *env, int *excl)
{
struct flock lock_info;
int rc = 0;
/* The shared lock replaces the existing lock */
memset((void *)&lock_info, 0, sizeof(lock_info));
lock_info.l_type = F_RDLCK;
lock_info.l_whence = SEEK_SET;
lock_info.l_start = 0;
lock_info.l_len = 1;
while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) &&
(rc = errno) == EINTR) ;
*excl = rc ? -1 : 0; /* error may mean we lost the lock */
return rc;
}
/** Try to get exclusive lock, otherwise shared.
* Maintain *excl = -1: no/unknown lock, 0: shared, 1: exclusive.
*/
static int __cold
mdb_env_excl_lock(MDB_env *env, int *excl)
{
int rc = 0;
struct flock lock_info;
memset((void *)&lock_info, 0, sizeof(lock_info));
lock_info.l_type = F_WRLCK;
lock_info.l_whence = SEEK_SET;
lock_info.l_start = 0;
lock_info.l_len = 1;
while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) &&
(rc = errno) == EINTR) ;
if (!rc) {
*excl = 1;
} else {
lock_info.l_type = F_RDLCK;
while ((rc = fcntl(env->me_lfd, F_SETLKW, &lock_info)) &&
(rc = errno) == EINTR) ;
if (rc == 0)
*excl = 0;
}
return rc;
}
#ifdef MDB_USE_HASH
/*
* hash_64 - 64 bit Fowler/Noll/Vo-0 FNV-1a hash code
*
* @(#) $Revision: 5.1 $
* @(#) $Id: hash_64a.c,v 5.1 2009/06/30 09:01:38 chongo Exp $
* @(#) $Source: /usr/local/src/cmd/fnv/RCS/hash_64a.c,v $
*
* http://www.isthe.com/chongo/tech/comp/fnv/index.html
*
***
*
* Please do not copyright this code. This code is in the public domain.
*
* LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
* EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*
* By:
* chongo <Landon Curt Noll> /\oo/\
* http://www.isthe.com/chongo/
*
* Share and Enjoy! :-)
*/
typedef unsigned long long mdb_hash_t;
#define MDB_HASH_INIT ((mdb_hash_t)0xcbf29ce484222325ULL)
/** perform a 64 bit Fowler/Noll/Vo FNV-1a hash on a buffer
* @param[in] val value to hash
* @param[in] hval initial value for hash
* @return 64 bit hash
*
* NOTE: To use the recommended 64 bit FNV-1a hash, use MDB_HASH_INIT as the
* hval arg on the first call.
*/
static mdb_hash_t
mdb_hash_val(MDB_val *val, mdb_hash_t hval)
{
unsigned char *s = (unsigned char *)val->mv_data; /* unsigned string */
unsigned char *end = s + val->mv_size;
/*
* FNV-1a hash each octet of the string
*/
while (s < end) {
/* xor the bottom with the current octet */
hval ^= (mdb_hash_t)*s++;
/* multiply by the 64 bit FNV magic prime mod 2^64 */
hval += (hval << 1) + (hval << 4) + (hval << 5) +
(hval << 7) + (hval << 8) + (hval << 40);
}
/* return our new hash value */
return hval;
}
/** Hash the string and output the encoded hash.
* This uses modified RFC1924 Ascii85 encoding to accommodate systems with
* very short name limits. We don't care about the encoding being reversible,
* we just want to preserve as many bits of the input as possible in a
* small printable string.
* @param[in] str string to hash
* @param[out] encbuf an array of 11 chars to hold the hash
*/
static const char mdb_a85[]= "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!#$%&()*+-;<=>?@^_`{|}~";
static void __cold
mdb_pack85(unsigned long l, char *out)
{
int i;
for (i=0; i<5; i++) {
*out++ = mdb_a85[l % 85];
l /= 85;
}
}
static void __cold
mdb_hash_enc(MDB_val *val, char *encbuf)
{
mdb_hash_t h = mdb_hash_val(val, MDB_HASH_INIT);
mdb_pack85(h, encbuf);
mdb_pack85(h>>32, encbuf+5);
encbuf[10] = '\0';
}
#endif
/** Open and/or initialize the lock region for the environment.
* @param[in] env The LMDB environment.
* @param[in] lpath The pathname of the file used for the lock region.
* @param[in] mode The Unix permissions for the file, if we create it.
* @param[in,out] excl In -1, out lock type: -1 none, 0 shared, 1 exclusive
* @return 0 on success, non-zero on failure.
*/
static int __cold
mdb_env_setup_locks(MDB_env *env, char *lpath, int mode, int *excl)
{
int fdflags;
int rc;
off_t size, rsize;
void *m;
env->me_lfd = open(lpath, O_RDWR|O_CREAT|O_CLOEXEC, mode);
if (env->me_lfd == INVALID_HANDLE_VALUE) {
rc = errno;
if (rc == EROFS && (env->me_flags & MDB_RDONLY)) {
return MDB_SUCCESS;
}
return rc;
}
/* Lose record locks when exec*() */
if ((fdflags = fcntl(env->me_lfd, F_GETFD) | FD_CLOEXEC) >= 0)
fcntl(env->me_lfd, F_SETFD, fdflags);
if (!(env->me_flags & MDB_NOTLS)) {
rc = pthread_key_create(&env->me_txkey, NULL);
if (rc)
return rc;
env->me_flags |= MDB_ENV_TXKEY;
}
/* Try to get exclusive lock. If we succeed, then
* nobody is using the lock region and we should initialize it.
*/
if ((rc = mdb_env_excl_lock(env, excl))) return rc;
size = lseek(env->me_lfd, 0, SEEK_END);
if (size == -1) return errno;
rsize = (env->me_maxreaders-1) * sizeof(MDB_reader) + sizeof(MDB_txninfo);
if (size < rsize && *excl > 0) {
if (ftruncate(env->me_lfd, rsize) != 0) return errno;
} else {
rsize = size;
size = rsize - sizeof(MDB_txninfo);
env->me_maxreaders = size/sizeof(MDB_reader) + 1;
}
m = mmap(NULL, rsize, PROT_READ|PROT_WRITE, MAP_SHARED, env->me_lfd, 0);
if (m == MAP_FAILED)
return errno;
env->me_txns = m;
#ifdef MADV_NOHUGEPAGE
(void) madvise(env->me_txns, rsize, MADV_NOHUGEPAGE);
#endif
#ifdef MADV_DODUMP
(void) madvise(env->me_txns, rsize, MADV_DODUMP);
#endif
if (madvise(env->me_txns, rsize, MADV_DONTFORK) < 0)
return errno;
if (madvise(env->me_txns, rsize, MADV_WILLNEED) < 0)
return errno;
if (madvise(env->me_txns, rsize, MADV_RANDOM) < 0)
return errno;
if (*excl > 0) {
/* Solaris needs this before initing a robust mutex. Otherwise
* it may skip the init and return EBUSY "seems someone already
* inited" or EINVAL "it was inited differently".
*/
memset(&env->me_txns->mti_rmutex, 0, sizeof(env->me_txns->mti_rmutex));
memset(&env->me_txns->mti_wmutex, 0, sizeof(env->me_txns->mti_wmutex));
pthread_mutexattr_t mattr;
rc = pthread_mutexattr_init(&mattr);
if (rc) return rc;
rc = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED);
#if MDB_USE_ROBUST
if(! rc) rc = pthread_mutexattr_setrobust(&mattr, PTHREAD_MUTEX_ROBUST);
#endif /* MDB_USE_ROBUST */
if (! rc) rc = pthread_mutex_init(&env->me_txns->mti_rmutex, &mattr);
if (! rc) rc = pthread_mutex_init(&env->me_txns->mti_wmutex, &mattr);
pthread_mutexattr_destroy(&mattr);
if (rc) return rc;
env->me_txns->mti_magic = MDB_MAGIC;
env->me_txns->mti_format = MDB_LOCK_FORMAT;
env->me_txns->mti_txnid = ~0L;
env->me_txns->mti_numreaders = 0;
} else {
if (env->me_txns->mti_magic != MDB_MAGIC) {
mdb_debug("lock region has invalid magic");
return MDB_INVALID;
}
if (env->me_txns->mti_format != MDB_LOCK_FORMAT) {
mdb_debug("lock region has format+version 0x%x, expected 0x%x",
env->me_txns->mti_format, MDB_LOCK_FORMAT);
return MDB_VERSION_MISMATCH;
}
}
return MDB_SUCCESS;
}
/** The name of the lock file in the DB environment */
#define LOCKNAME "/lock.mdb"
/** The name of the data file in the DB environment */
#define DATANAME "/data.mdb"
/** The suffix of the lock file when no subdir is used */
#define LOCKSUFF "-lock"
/** Only a subset of the @ref mdb_env flags can be changed
* at runtime. Changing other flags requires closing the
* environment and re-opening it with the new flags.
*/
#define CHANGEABLE (MDB_NOSYNC|MDB_NOMETASYNC|MDB_MAPASYNC| \
MDB_NOMEMINIT|MDBX_COALESCE|MDBX_PAGEPERTURB)
#define CHANGELESS (MDB_FIXEDMAP|MDB_NOSUBDIR|MDB_RDONLY| \
MDB_WRITEMAP|MDB_NOTLS|MDB_NORDAHEAD|MDBX_LIFORECLAIM)
#if VALID_FLAGS & PERSISTENT_FLAGS & (CHANGEABLE|CHANGELESS)
# error "Persistent DB flags & env flags overlap, but both go in mm_flags"
#endif
MDBX_ONLY_FEATURE int __cold
mdbx_env_open_ex(MDB_env *env, const char *path, unsigned flags, mode_t mode, int *exclusive)
{
int oflags, rc, len, excl = -1;
char *lpath, *dpath;
if (unlikely(!env || !path))
return EINVAL;
if (unlikely(env->me_signature != MDBX_ME_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (env->me_fd != INVALID_HANDLE_VALUE || (flags & ~(CHANGEABLE|CHANGELESS)))
return EINVAL;
len = strlen(path);
if (flags & MDB_NOSUBDIR) {
rc = len + sizeof(LOCKSUFF) + len + 1;
} else {
rc = len + sizeof(LOCKNAME) + len + sizeof(DATANAME);
}
lpath = malloc(rc);
if (!lpath)
return ENOMEM;
if (flags & MDB_NOSUBDIR) {
dpath = lpath + len + sizeof(LOCKSUFF);
sprintf(lpath, "%s" LOCKSUFF, path);
strcpy(dpath, path);
} else {
dpath = lpath + len + sizeof(LOCKNAME);
sprintf(lpath, "%s" LOCKNAME, path);
sprintf(dpath, "%s" DATANAME, path);
}
rc = MDB_SUCCESS;
flags |= env->me_flags;
if (flags & MDB_RDONLY) {
/* LY: silently ignore irrelevant flags when we're only getting read access */
flags &= ~(MDB_WRITEMAP | MDB_MAPASYNC | MDB_NOSYNC | MDB_NOMETASYNC
| MDBX_COALESCE | MDBX_LIFORECLAIM | MDB_NOMEMINIT);
} else {
if (!((env->me_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX))
&& (env->me_dirty_list = calloc(MDB_IDL_UM_SIZE, sizeof(MDB_ID2)))))
rc = ENOMEM;
}
env->me_flags = flags |= MDB_ENV_ACTIVE;
if (rc)
goto leave;
env->me_path = strdup(path);
env->me_dbxs = calloc(env->me_maxdbs, sizeof(MDB_dbx));
env->me_dbflags = calloc(env->me_maxdbs, sizeof(uint16_t));
env->me_dbiseqs = calloc(env->me_maxdbs, sizeof(unsigned));
if (!(env->me_dbxs && env->me_path && env->me_dbflags && env->me_dbiseqs)) {
rc = ENOMEM;
goto leave;
}
env->me_dbxs[FREE_DBI].md_cmp = mdb_cmp_int_ai; /* aligned MDB_INTEGERKEY */
/* For RDONLY, get lockfile after we know datafile exists */
if (!(flags & MDB_RDONLY)) {
rc = mdb_env_setup_locks(env, lpath, mode, &excl);
if (rc)
goto leave;
}
if (F_ISSET(flags, MDB_RDONLY))
oflags = O_RDONLY;
else
oflags = O_RDWR | O_CREAT;
env->me_fd = open(dpath, oflags|O_CLOEXEC, mode);
if (env->me_fd == INVALID_HANDLE_VALUE) {
rc = errno;
goto leave;
}
int fdflags;
if ((fdflags = fcntl(env->me_fd, F_GETFD) | FD_CLOEXEC) >= 0)
fcntl(env->me_fd, F_SETFD, fdflags);
if (flags & MDB_RDONLY) {
rc = mdb_env_setup_locks(env, lpath, mode, &excl);
if (rc)
goto leave;
}
MDB_meta meta;
if ((rc = mdb_env_open2(env, &meta)) == MDB_SUCCESS) {
mdb_debug("opened dbenv %p", (void *) env);
if (excl > 0) {
env->me_txns->mti_txnid = meta.mm_txnid;
if (exclusive == NULL || *exclusive < 2) {
/* LY: downgrade lock only if exclusive access not requested.
* in case exclusive==1, just leave value as is. */
rc = mdb_env_share_locks(env, &excl);
if (rc)
goto leave;
}
} else if (exclusive) {
/* LY: just indicate that is not an exclusive access. */
*exclusive = 0;
}
if (!(flags & MDB_RDONLY)) {
MDB_txn *txn;
int tsize = sizeof(MDB_txn), size = tsize + env->me_maxdbs *
(sizeof(MDB_db)+sizeof(MDB_cursor *)+sizeof(unsigned)+1);
if ((env->me_pbuf = calloc(1, env->me_psize)) &&
(txn = calloc(1, size)))
{
txn->mt_dbs = (MDB_db *)((char *)txn + tsize);
txn->mt_cursors = (MDB_cursor **)(txn->mt_dbs + env->me_maxdbs);
txn->mt_dbiseqs = (unsigned *)(txn->mt_cursors + env->me_maxdbs);
txn->mt_dbflags = (unsigned char *)(txn->mt_dbiseqs + env->me_maxdbs);
txn->mt_env = env;
txn->mt_dbxs = env->me_dbxs;
txn->mt_flags = MDB_TXN_FINISHED;
env->me_txn0 = txn;
} else {
rc = ENOMEM;
}
}
}
#if MDB_DEBUG
if (rc == MDB_SUCCESS) {
MDB_meta *meta = mdb_meta_head_r(env);
MDB_db *db = &meta->mm_dbs[MAIN_DBI];
int toggle = ((char*) meta == PAGEDATA(env->me_map)) ? 0 : 1;
mdb_debug("opened database version %u, pagesize %u",
meta->mm_version, env->me_psize);
mdb_debug("using meta page %d, txn %zu", toggle, meta->mm_txnid);
mdb_debug("depth: %u", db->md_depth);
mdb_debug("entries: %zu", db->md_entries);
mdb_debug("branch pages: %zu", db->md_branch_pages);
mdb_debug("leaf pages: %zu", db->md_leaf_pages);
mdb_debug("overflow pages: %zu", db->md_overflow_pages);
mdb_debug("root: %zu", db->md_root);
}
#endif
leave:
if (rc)
mdb_env_close0(env);
free(lpath);
return rc;
}
int __cold
mdb_env_open(MDB_env *env, const char *path, unsigned flags, mode_t mode)
{
return mdbx_env_open_ex(env, path, flags, mode, NULL);
}
/** Destroy resources from mdb_env_open(), clear our readers & DBIs */
static void __cold
mdb_env_close0(MDB_env *env)
{
int i;
if (!(env->me_flags & MDB_ENV_ACTIVE))
return;
env->me_flags &= ~MDB_ENV_ACTIVE;
/* Doing this here since me_dbxs may not exist during mdb_env_close */
if (env->me_dbxs) {
for (i = env->me_maxdbs; --i >= CORE_DBS; )
free(env->me_dbxs[i].md_name.mv_data);
free(env->me_dbxs);
}
free(env->me_pbuf);
free(env->me_dbiseqs);
free(env->me_dbflags);
free(env->me_path);
free(env->me_dirty_list);
if (env->me_txn0)
mdb_midl_free(env->me_txn0->mt_lifo_reclaimed);
free(env->me_txn0);
mdb_midl_free(env->me_free_pgs);
if (env->me_flags & MDB_ENV_TXKEY) {
mdb_ensure(env, pthread_key_delete(env->me_txkey) == 0);
env->me_flags &= ~MDB_ENV_TXKEY;
}
if (env->me_map) {
munmap(env->me_map, env->me_mapsize);
#ifdef USE_VALGRIND
VALGRIND_DISCARD(env->me_valgrind_handle);
env->me_valgrind_handle = -1;
#endif
}
if (env->me_fd != INVALID_HANDLE_VALUE)
(void) close(env->me_fd);
/* Clearing readers is done in this function because
* me_txkey with its destructor must be disabled first.
*
* We skip the the reader mutex, so we touch only
* data owned by this process (me_close_readers and
* our readers), and clear each reader atomically.
*/
if (env->me_pid == getpid())
mdbx_rthc_cleanup(env);
munmap((void *)env->me_txns, (env->me_maxreaders-1)*sizeof(MDB_reader)+sizeof(MDB_txninfo));
env->me_txns = NULL;
env->me_pid = 0;
if (env->me_lfd != INVALID_HANDLE_VALUE) {
(void) close(env->me_lfd);
}
}
MDBX_ONLY_FEATURE int __cold
mdbx_env_close_ex(MDB_env *env, int dont_sync)
{
MDB_page *dp;
int rc = MDB_SUCCESS;
if (unlikely(!env))
return EINVAL;
if (unlikely(env->me_signature != MDBX_ME_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (! dont_sync && env->me_txns)
rc = mdb_env_sync(env, 1);
VALGRIND_DESTROY_MEMPOOL(env);
while ((dp = env->me_dpages) != NULL) {
ASAN_UNPOISON_MEMORY_REGION(&dp->mp_next, sizeof(dp->mp_next));
VALGRIND_MAKE_MEM_DEFINED(&dp->mp_next, sizeof(dp->mp_next));
env->me_dpages = dp->mp_next;
free(dp);
}
mdb_env_close0(env);
env->me_signature = 0;
free(env);
return rc;
}
void __cold
mdb_env_close(MDB_env *env)
{
mdbx_env_close_ex(env, 0);
}
/* LY: fast enough on most arches
*
* /
* | -1, a < b
* cmp2int(a,b) = < 0, a == b
* | 1, a > b
* \
*/
#if 1
# define mdbx_cmp2int(a, b) (((b) > (a)) ? -1 : (a) > (b))
#else
# define mdbx_cmp2int(a, b) (((a) > (b)) - ((b) > (a)))
#endif
/** Compare two items pointing at aligned unsigned int's. */
static int __hot
mdb_cmp_int_ai(const MDB_val *a, const MDB_val *b)
{
mdb_assert(NULL, a->mv_size == b->mv_size);
mdb_assert(NULL, 0 == (uintptr_t) a->mv_data % sizeof(int)
&& 0 == (uintptr_t) b->mv_data % sizeof(int));
if (sizeof(int) != sizeof(size_t) && likely(a->mv_size == sizeof(size_t)))
return mdbx_cmp2int( *(size_t *)a->mv_data, *(size_t *)b->mv_data );
mdb_assert(NULL, a->mv_size == sizeof(int) );
return mdbx_cmp2int( *(unsigned *)a->mv_data, *(unsigned *)b->mv_data );
}
/** Compare two items pointing at 2-byte aligned unsigned int's. */
static int __hot
mdb_cmp_int_a2(const MDB_val *a, const MDB_val *b)
{
mdb_assert(NULL, a->mv_size == b->mv_size);
mdb_assert(NULL, 0 == (uintptr_t) a->mv_data % sizeof(uint16_t)
&& 0 == (uintptr_t) b->mv_data % sizeof(uint16_t));
#ifdef MISALIGNED_OK
if (sizeof(int) != sizeof(size_t) && likely(a->mv_size == sizeof(size_t)))
return mdbx_cmp2int( *(size_t *)a->mv_data, *(size_t *)b->mv_data );
mdb_assert(NULL, a->mv_size == sizeof(int) );
return mdbx_cmp2int( *(unsigned *)a->mv_data, *(unsigned *)b->mv_data );
#else
mdb_assert(NULL, 0 == a->mv_size % sizeof(uint16_t));
{
int diff;
const uint16_t *pa, *pb, *end;
#if BYTE_ORDER == LITTLE_ENDIAN
end = (const uint16_t *) a->mv_data;
pa = (const uint16_t *) ((char *) a->mv_data + a->mv_size);
pb = (const uint16_t *) ((char *) b->mv_data + a->mv_size);
do {
diff = *--pa - *--pb;
#else /* BYTE_ORDER */
end = (const uint16_t *) ((char *) a->mv_data + a->mv_size);
pa = (const uint16_t *) a->mv_data;
pb = (const uint16_t *) b->mv_data;
do {
diff = *pa++ - *pb++;
#endif /* BYTE_ORDER */
if (likely(diff != 0)) break;
} while(pa != end);
return diff;
}
#endif /* MISALIGNED_OK */
}
/** Compare two items pointing at unsigneds of unknown alignment.
*
* This is also set as #MDB_INTEGERDUP|#MDB_DUPFIXED's #MDB_dbx.%md_dcmp.
*/
static int __hot
mdb_cmp_int_ua(const MDB_val *a, const MDB_val *b)
{
mdb_assert(NULL, a->mv_size == b->mv_size);
#if MISALIGNED_OK
if (sizeof(int) != sizeof(size_t) && likely(a->mv_size == sizeof(size_t)))
return mdbx_cmp2int( *(size_t *)a->mv_data, *(size_t *)b->mv_data );
mdb_assert(NULL, a->mv_size == sizeof(int) );
return mdbx_cmp2int( *(unsigned *)a->mv_data, *(unsigned *)b->mv_data );
#else
mdb_assert(NULL, a->mv_size == sizeof(int) || a->mv_size == sizeof(size_t));
#if BYTE_ORDER == LITTLE_ENDIAN
{
int diff;
const uint8_t *pa, *pb;
pa = (const uint8_t *)a->mv_data + a->mv_size;
pb = (const uint8_t *)b->mv_data + a->mv_size;
do {
diff = *--pa - *--pb;
if (likely(diff != 0)) break;
} while(pa != a->mv_data);
return diff;
}
#else /* BYTE_ORDER */
return memcmp(a->mv_data, b->mv_data, a->mv_size);
#endif /* BYTE_ORDER */
#endif /* MISALIGNED_OK */
}
/** Compare two items lexically */
static int __hot
mdb_cmp_memn(const MDB_val *a, const MDB_val *b)
{
/* LY: assumes that length of keys are NOT equal for most cases,
* if no then branch-prediction should mitigate the problem */
#if 0
/* LY: without branch instructions on x86,
* but isn't best for equal length of keys */
int diff_len = mdbx_cmp2int(a->mv_size, b->mv_size);
#else
/* LY: best when length of keys are equal,
* but got a branch-penalty otherwise */
if (unlikely(a->mv_size == b->mv_size))
return memcmp(a->mv_data, b->mv_data, a->mv_size);
int diff_len = (a->mv_size < b->mv_size) ? -1 : 1;
#endif
size_t shortest = (a->mv_size < b->mv_size) ? a->mv_size : b->mv_size;
int diff_data = memcmp(a->mv_data, b->mv_data, shortest);
return likely(diff_data) ? diff_data : diff_len;
}
/** Compare two items in reverse byte order */
static int __hot
mdb_cmp_memnr(const MDB_val *a, const MDB_val *b)
{
const uint8_t *pa, *pb, *end;
pa = (const uint8_t *)a->mv_data + a->mv_size;
pb = (const uint8_t *)b->mv_data + b->mv_size;
size_t minlen = (a->mv_size < b->mv_size) ? a->mv_size : b->mv_size;
end = pa - minlen;
while (pa != end) {
int diff = *--pa - *--pb;
if (likely(diff))
return diff;
}
return mdbx_cmp2int(a->mv_size, b->mv_size);
}
/** Search for key within a page, using binary search.
* Returns the smallest entry larger or equal to the key.
* If exactp is non-null, stores whether the found entry was an exact match
* in *exactp (1 or 0).
* Updates the cursor index with the index of the found entry.
* If no entry larger or equal to the key is found, returns NULL.
*/
static MDB_node * __hot
mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp)
{
unsigned i = 0, nkeys;
int low, high;
int rc = 0;
MDB_page *mp = mc->mc_pg[mc->mc_top];
MDB_node *node = NULL;
MDB_val nodekey;
MDB_cmp_func *cmp;
DKBUF;
nkeys = NUMKEYS(mp);
mdb_debug("searching %u keys in %s %spage %zu",
nkeys, IS_LEAF(mp) ? "leaf" : "branch", IS_SUBP(mp) ? "sub-" : "",
mdb_dbg_pgno(mp));
low = IS_LEAF(mp) ? 0 : 1;
high = nkeys - 1;
cmp = mc->mc_dbx->md_cmp;
/* Branch pages have no data, so if using integer keys,
* alignment is guaranteed. Use faster mdb_cmp_int_ai.
*/
if (cmp == mdb_cmp_int_a2 && IS_BRANCH(mp))
cmp = mdb_cmp_int_ai;
if (IS_LEAF2(mp)) {
nodekey.mv_size = mc->mc_db->md_xsize;
node = NODEPTR(mp, 0); /* fake */
while (low <= high) {
i = (low + high) >> 1;
nodekey.mv_data = LEAF2KEY(mp, i, nodekey.mv_size);
rc = cmp(key, &nodekey);
mdb_debug("found leaf index %u [%s], rc = %i",
i, DKEY(&nodekey), rc);
if (rc == 0)
break;
if (rc > 0)
low = i + 1;
else
high = i - 1;
}
} else {
while (low <= high) {
i = (low + high) >> 1;
node = NODEPTR(mp, i);
nodekey.mv_size = NODEKSZ(node);
nodekey.mv_data = NODEKEY(node);
rc = cmp(key, &nodekey);
if (IS_LEAF(mp))
mdb_debug("found leaf index %u [%s], rc = %i",
i, DKEY(&nodekey), rc);
else
mdb_debug("found branch index %u [%s -> %zu], rc = %i",
i, DKEY(&nodekey), NODEPGNO(node), rc);
if (rc == 0)
break;
if (rc > 0)
low = i + 1;
else
high = i - 1;
}
}
if (rc > 0) { /* Found entry is less than the key. */
i++; /* Skip to get the smallest entry larger than key. */
if (!IS_LEAF2(mp))
node = NODEPTR(mp, i);
}
if (exactp)
*exactp = (rc == 0 && nkeys > 0);
/* store the key index */
mc->mc_ki[mc->mc_top] = i;
if (i >= nkeys)
/* There is no entry larger or equal to the key. */
return NULL;
/* nodeptr is fake for LEAF2 */
return node;
}
#if 0
static void
mdb_cursor_adjust(MDB_cursor *mc, func)
{
MDB_cursor *m2;
for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
if (m2->mc_pg[m2->mc_top] == mc->mc_pg[mc->mc_top]) {
func(mc, m2);
}
}
}
#endif
/** Pop a page off the top of the cursor's stack. */
static void
mdb_cursor_pop(MDB_cursor *mc)
{
if (mc->mc_snum) {
mdb_debug("popped page %zu off db %d cursor %p",
mc->mc_pg[mc->mc_top]->mp_pgno, DDBI(mc), (void *) mc);
mc->mc_snum--;
if (mc->mc_snum) {
mc->mc_top--;
} else {
mc->mc_flags &= ~C_INITIALIZED;
}
}
}
/** Push a page onto the top of the cursor's stack.
* Set #MDB_TXN_ERROR on failure.
*/
static int
mdb_cursor_push(MDB_cursor *mc, MDB_page *mp)
{
mdb_debug("pushing page %zu on db %d cursor %p", mp->mp_pgno,
DDBI(mc), (void *) mc);
if (unlikely(mc->mc_snum >= CURSOR_STACK)) {
mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
return MDB_CURSOR_FULL;
}
mc->mc_top = mc->mc_snum++;
mc->mc_pg[mc->mc_top] = mp;
mc->mc_ki[mc->mc_top] = 0;
return MDB_SUCCESS;
}
/** Find the address of the page corresponding to a given page number.
* Set #MDB_TXN_ERROR on failure.
* @param[in] mc the cursor accessing the page.
* @param[in] pgno the page number for the page to retrieve.
* @param[out] ret address of a pointer where the page's address will be stored.
* @param[out] lvl dirty_list inheritance level of found page. 1=current txn, 0=mapped page.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_get(MDB_cursor *mc, pgno_t pgno, MDB_page **ret, int *lvl)
{
MDB_txn *txn = mc->mc_txn;
MDB_env *env = txn->mt_env;
MDB_page *p = NULL;
int level;
if (! (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_WRITEMAP))) {
MDB_txn *tx2 = txn;
level = 1;
do {
MDB_ID2L dl = tx2->mt_u.dirty_list;
unsigned x;
/* Spilled pages were dirtied in this txn and flushed
* because the dirty list got full. Bring this page
* back in from the map (but don't unspill it here,
* leave that unless page_touch happens again). */
if (tx2->mt_spill_pgs) {
MDB_ID pn = pgno << 1;
x = mdb_midl_search(tx2->mt_spill_pgs, pn);
if (x <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[x] == pn)
goto mapped;
}
if (dl[0].mid) {
unsigned x = mdb_mid2l_search(dl, pgno);
if (x <= dl[0].mid && dl[x].mid == pgno) {
p = dl[x].mptr;
goto done;
}
}
level++;
} while ((tx2 = tx2->mt_parent) != NULL);
}
if (unlikely(pgno >= txn->mt_next_pgno)) {
mdb_debug("page %zu not found", pgno);
txn->mt_flags |= MDB_TXN_ERROR;
return MDB_PAGE_NOTFOUND;
}
level = 0;
mapped:
p = (MDB_page *)(env->me_map + env->me_psize * pgno);
done:
*ret = p;
if (lvl)
*lvl = level;
return MDB_SUCCESS;
}
/** Finish #mdb_page_search() / #mdb_page_search_lowest().
* The cursor is at the root page, set up the rest of it.
*/
static int
mdb_page_search_root(MDB_cursor *mc, MDB_val *key, int flags)
{
MDB_page *mp = mc->mc_pg[mc->mc_top];
int rc;
DKBUF;
while (IS_BRANCH(mp)) {
MDB_node *node;
indx_t i;
mdb_debug("branch page %zu has %u keys", mp->mp_pgno, NUMKEYS(mp));
/* Don't assert on branch pages in the FreeDB. We can get here
* while in the process of rebalancing a FreeDB branch page; we must
* let that proceed. ITS#8336
*/
mdb_cassert(mc, !mc->mc_dbi || NUMKEYS(mp) > 1);
mdb_debug("found index 0 to page %zu", NODEPGNO(NODEPTR(mp, 0)));
if (flags & (MDB_PS_FIRST|MDB_PS_LAST)) {
i = 0;
if (flags & MDB_PS_LAST)
i = NUMKEYS(mp) - 1;
} else {
int exact;
node = mdb_node_search(mc, key, &exact);
if (node == NULL)
i = NUMKEYS(mp) - 1;
else {
i = mc->mc_ki[mc->mc_top];
if (!exact) {
mdb_cassert(mc, i > 0);
i--;
}
}
mdb_debug("following index %u for key [%s]", i, DKEY(key));
}
mdb_cassert(mc, i < NUMKEYS(mp));
node = NODEPTR(mp, i);
if (unlikely((rc = mdb_page_get(mc, NODEPGNO(node), &mp, NULL)) != 0))
return rc;
mc->mc_ki[mc->mc_top] = i;
if (unlikely(rc = mdb_cursor_push(mc, mp)))
return rc;
if (flags & MDB_PS_MODIFY) {
if (unlikely((rc = mdb_page_touch(mc)) != 0))
return rc;
mp = mc->mc_pg[mc->mc_top];
}
}
if (unlikely(!IS_LEAF(mp))) {
mdb_debug("internal error, index points to a %02X page!?",
mp->mp_flags);
mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
return MDB_CORRUPTED;
}
mdb_debug("found leaf page %zu for key [%s]", mp->mp_pgno,
key ? DKEY(key) : "null");
mc->mc_flags |= C_INITIALIZED;
mc->mc_flags &= ~C_EOF;
return MDB_SUCCESS;
}
/** Search for the lowest key under the current branch page.
* This just bypasses a NUMKEYS check in the current page
* before calling mdb_page_search_root(), because the callers
* are all in situations where the current page is known to
* be underfilled.
*/
static int
mdb_page_search_lowest(MDB_cursor *mc)
{
MDB_page *mp = mc->mc_pg[mc->mc_top];
MDB_node *node = NODEPTR(mp, 0);
int rc;
if (unlikely((rc = mdb_page_get(mc, NODEPGNO(node), &mp, NULL)) != 0))
return rc;
mc->mc_ki[mc->mc_top] = 0;
if (unlikely(rc = mdb_cursor_push(mc, mp)))
return rc;
return mdb_page_search_root(mc, NULL, MDB_PS_FIRST);
}
/** Search for the page a given key should be in.
* Push it and its parent pages on the cursor stack.
* @param[in,out] mc the cursor for this operation.
* @param[in] key the key to search for, or NULL for first/last page.
* @param[in] flags If MDB_PS_MODIFY is set, visited pages in the DB
* are touched (updated with new page numbers).
* If MDB_PS_FIRST or MDB_PS_LAST is set, find first or last leaf.
* This is used by #mdb_cursor_first() and #mdb_cursor_last().
* If MDB_PS_ROOTONLY set, just fetch root node, no further lookups.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_search(MDB_cursor *mc, MDB_val *key, int flags)
{
int rc;
pgno_t root;
/* Make sure the txn is still viable, then find the root from
* the txn's db table and set it as the root of the cursor's stack.
*/
if (unlikely(mc->mc_txn->mt_flags & MDB_TXN_BLOCKED)) {
mdb_debug("transaction has failed, must abort");
return MDB_BAD_TXN;
} else {
/* Make sure we're using an up-to-date root */
if (*mc->mc_dbflag & DB_STALE) {
MDB_cursor mc2;
if (unlikely(TXN_DBI_CHANGED(mc->mc_txn, mc->mc_dbi)))
return MDB_BAD_DBI;
mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, NULL);
rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, 0);
if (rc)
return rc;
{
MDB_val data;
int exact = 0;
uint16_t flags;
MDB_node *leaf = mdb_node_search(&mc2,
&mc->mc_dbx->md_name, &exact);
if (!exact)
return MDB_NOTFOUND;
if (unlikely((leaf->mn_flags & (F_DUPDATA|F_SUBDATA)) != F_SUBDATA))
return MDB_INCOMPATIBLE; /* not a named DB */
rc = mdb_node_read(&mc2, leaf, &data);
if (rc)
return rc;
memcpy(&flags, ((char *) data.mv_data + offsetof(MDB_db, md_flags)),
sizeof(uint16_t));
/* The txn may not know this DBI, or another process may
* have dropped and recreated the DB with other flags.
*/
if (unlikely((mc->mc_db->md_flags & PERSISTENT_FLAGS) != flags))
return MDB_INCOMPATIBLE;
memcpy(mc->mc_db, data.mv_data, sizeof(MDB_db));
}
*mc->mc_dbflag &= ~DB_STALE;
}
root = mc->mc_db->md_root;
if (unlikely(root == P_INVALID)) { /* Tree is empty. */
mdb_debug("tree is empty");
return MDB_NOTFOUND;
}
}
mdb_cassert(mc, root > 1);
if (!mc->mc_pg[0] || mc->mc_pg[0]->mp_pgno != root)
if (unlikely((rc = mdb_page_get(mc, root, &mc->mc_pg[0], NULL)) != 0))
return rc;
mc->mc_snum = 1;
mc->mc_top = 0;
mdb_debug("db %d root page %zu has flags 0x%X",
DDBI(mc), root, mc->mc_pg[0]->mp_flags);
if (flags & MDB_PS_MODIFY) {
if (unlikely(rc = mdb_page_touch(mc)))
return rc;
}
if (flags & MDB_PS_ROOTONLY)
return MDB_SUCCESS;
return mdb_page_search_root(mc, key, flags);
}
static int
mdb_ovpage_free(MDB_cursor *mc, MDB_page *mp)
{
MDB_txn *txn = mc->mc_txn;
pgno_t pg = mp->mp_pgno;
unsigned x = 0, ovpages = mp->mp_pages;
MDB_env *env = txn->mt_env;
MDB_IDL sl = txn->mt_spill_pgs;
MDB_ID pn = pg << 1;
int rc;
mdb_debug("free ov page %zu (%u)", pg, ovpages);
/* If the page is dirty or on the spill list we just acquired it,
* so we should give it back to our current free list, if any.
* Otherwise put it onto the list of pages we freed in this txn.
*
* Won't create me_pghead: me_pglast must be inited along with it.
* Unsupported in nested txns: They would need to hide the page
* range in ancestor txns' dirty and spilled lists.
*/
if (env->me_pghead &&
!txn->mt_parent &&
((mp->mp_flags & P_DIRTY) ||
(sl && (x = mdb_midl_search(sl, pn)) <= sl[0] && sl[x] == pn)))
{
unsigned i, j;
pgno_t *mop;
MDB_ID2 *dl, ix, iy;
rc = mdb_midl_need(&env->me_pghead, ovpages);
if (unlikely(rc))
return rc;
if (!(mp->mp_flags & P_DIRTY)) {
/* This page is no longer spilled */
if (x == sl[0])
sl[0]--;
else
sl[x] |= 1;
goto release;
}
/* Remove from dirty list */
dl = txn->mt_u.dirty_list;
x = dl[0].mid--;
for (ix = dl[x]; ix.mptr != mp; ix = iy) {
if (likely(x > 1)) {
x--;
iy = dl[x];
dl[x] = ix;
} else {
mdb_cassert(mc, x > 1);
j = ++(dl[0].mid);
dl[j] = ix; /* Unsorted. OK when MDB_TXN_ERROR. */
txn->mt_flags |= MDB_TXN_ERROR;
return MDB_PROBLEM;
}
}
txn->mt_dirty_room++;
if (!(env->me_flags & MDB_WRITEMAP))
mdb_dpage_free(env, mp);
release:
/* Insert in me_pghead */
mop = env->me_pghead;
j = mop[0] + ovpages;
for (i = mop[0]; i && mop[i] < pg; i--)
mop[j--] = mop[i];
while (j>i)
mop[j--] = pg++;
mop[0] += ovpages;
} else {
rc = mdb_midl_append_range(&txn->mt_free_pgs, pg, ovpages);
if (unlikely(rc))
return rc;
}
mc->mc_db->md_overflow_pages -= ovpages;
return 0;
}
/** Return the data associated with a given node.
* @param[in] mc The cursor for this operation.
* @param[in] leaf The node being read.
* @param[out] data Updated to point to the node's data.
* @return 0 on success, non-zero on failure.
*/
static MDBX_INLINE int
mdb_node_read(MDB_cursor *mc, MDB_node *leaf, MDB_val *data)
{
MDB_page *omp; /* overflow page */
pgno_t pgno;
int rc;
if (!F_ISSET(leaf->mn_flags, F_BIGDATA)) {
data->mv_size = NODEDSZ(leaf);
data->mv_data = NODEDATA(leaf);
return MDB_SUCCESS;
}
/* Read overflow data.
*/
data->mv_size = NODEDSZ(leaf);
memcpy(&pgno, NODEDATA(leaf), sizeof(pgno));
if (unlikely((rc = mdb_page_get(mc, pgno, &omp, NULL)) != 0)) {
mdb_debug("read overflow page %zu failed", pgno);
return rc;
}
data->mv_data = PAGEDATA(omp);
return MDB_SUCCESS;
}
int
mdb_get(MDB_txn *txn, MDB_dbi dbi,
MDB_val *key, MDB_val *data)
{
MDB_cursor mc;
MDB_xcursor mx;
int exact = 0;
DKBUF;
mdb_debug("===> get db %u key [%s]", dbi, DKEY(key));
if (unlikely(!key || !data || !txn))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)))
return EINVAL;
if (unlikely(txn->mt_flags & MDB_TXN_BLOCKED))
return MDB_BAD_TXN;
mdb_cursor_init(&mc, txn, dbi, &mx);
return mdb_cursor_set(&mc, key, data, MDB_SET, &exact);
}
/** Find a sibling for a page.
* Replaces the page at the top of the cursor's stack with the
* specified sibling, if one exists.
* @param[in] mc The cursor for this operation.
* @param[in] move_right Non-zero if the right sibling is requested,
* otherwise the left sibling.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_cursor_sibling(MDB_cursor *mc, int move_right)
{
int rc;
MDB_node *indx;
MDB_page *mp;
if (unlikely(mc->mc_snum < 2)) {
return MDB_NOTFOUND; /* root has no siblings */
}
mdb_cursor_pop(mc);
mdb_debug("parent page is page %zu, index %u",
mc->mc_pg[mc->mc_top]->mp_pgno, mc->mc_ki[mc->mc_top]);
if (move_right
? (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mc->mc_pg[mc->mc_top]))
: (mc->mc_ki[mc->mc_top] == 0)) {
mdb_debug("no more keys left, moving to %s sibling",
move_right ? "right" : "left");
if (unlikely((rc = mdb_cursor_sibling(mc, move_right)) != MDB_SUCCESS)) {
/* undo cursor_pop before returning */
mc->mc_top++;
mc->mc_snum++;
return rc;
}
} else {
if (move_right)
mc->mc_ki[mc->mc_top]++;
else
mc->mc_ki[mc->mc_top]--;
mdb_debug("just moving to %s index key %u",
move_right ? "right" : "left", mc->mc_ki[mc->mc_top]);
}
mdb_cassert(mc, IS_BRANCH(mc->mc_pg[mc->mc_top]));
indx = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
if (unlikely((rc = mdb_page_get(mc, NODEPGNO(indx), &mp, NULL)) != 0)) {
/* mc will be inconsistent if caller does mc_snum++ as above */
mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
return rc;
}
mdb_cursor_push(mc, mp);
if (!move_right)
mc->mc_ki[mc->mc_top] = NUMKEYS(mp)-1;
return MDB_SUCCESS;
}
/** Move the cursor to the next data item. */
static int
mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op)
{
MDB_page *mp;
MDB_node *leaf;
int rc;
if ((mc->mc_flags & C_EOF) ||
((mc->mc_flags & C_DEL) && op == MDB_NEXT_DUP)) {
return MDB_NOTFOUND;
}
if (!(mc->mc_flags & C_INITIALIZED))
return mdb_cursor_first(mc, key, data);
mp = mc->mc_pg[mc->mc_top];
if (mc->mc_db->md_flags & MDB_DUPSORT) {
leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
if (op == MDB_NEXT || op == MDB_NEXT_DUP) {
rc = mdb_cursor_next(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_NEXT);
if (op != MDB_NEXT || rc != MDB_NOTFOUND) {
if (likely(rc == MDB_SUCCESS))
MDB_GET_KEY(leaf, key);
return rc;
}
}
} else {
mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
if (op == MDB_NEXT_DUP)
return MDB_NOTFOUND;
}
}
mdb_debug("cursor_next: top page is %zu in cursor %p",
mdb_dbg_pgno(mp), (void *) mc);
if (mc->mc_flags & C_DEL) {
mc->mc_flags ^= C_DEL;
goto skip;
}
if (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mp)) {
mdb_debug("=====> move to next sibling page");
if (unlikely((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS)) {
mc->mc_flags |= C_EOF;
return rc;
}
mp = mc->mc_pg[mc->mc_top];
mdb_debug("next page is %zu, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top]);
} else
mc->mc_ki[mc->mc_top]++;
skip:
mdb_debug("==> cursor points to page %zu with %u keys, key index %u",
mdb_dbg_pgno(mp), NUMKEYS(mp), mc->mc_ki[mc->mc_top]);
if (IS_LEAF2(mp)) {
key->mv_size = mc->mc_db->md_xsize;
key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
return MDB_SUCCESS;
}
mdb_cassert(mc, IS_LEAF(mp));
leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
mdb_xcursor_init1(mc, leaf);
}
if (data) {
if (unlikely((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS))
return rc;
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
if (unlikely(rc != MDB_SUCCESS))
return rc;
}
}
MDB_GET_KEY(leaf, key);
return MDB_SUCCESS;
}
/** Move the cursor to the previous data item. */
static int
mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op)
{
MDB_page *mp;
MDB_node *leaf;
int rc;
if (!(mc->mc_flags & C_INITIALIZED)) {
rc = mdb_cursor_last(mc, key, data);
if (unlikely(rc))
return rc;
mc->mc_ki[mc->mc_top]++;
}
mp = mc->mc_pg[mc->mc_top];
if (mc->mc_db->md_flags & MDB_DUPSORT) {
leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
if (op == MDB_PREV || op == MDB_PREV_DUP) {
rc = mdb_cursor_prev(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_PREV);
if (op != MDB_PREV || rc != MDB_NOTFOUND) {
if (likely(rc == MDB_SUCCESS)) {
MDB_GET_KEY(leaf, key);
mc->mc_flags &= ~C_EOF;
}
return rc;
}
}
} else {
mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
if (op == MDB_PREV_DUP)
return MDB_NOTFOUND;
}
}
mdb_debug("cursor_prev: top page is %zu in cursor %p",
mdb_dbg_pgno(mp), (void *) mc);
mc->mc_flags &= ~(C_EOF|C_DEL);
if (mc->mc_ki[mc->mc_top] == 0) {
mdb_debug("=====> move to prev sibling page");
if ((rc = mdb_cursor_sibling(mc, 0)) != MDB_SUCCESS) {
return rc;
}
mp = mc->mc_pg[mc->mc_top];
mc->mc_ki[mc->mc_top] = NUMKEYS(mp) - 1;
mdb_debug("prev page is %zu, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top]);
} else
mc->mc_ki[mc->mc_top]--;
mdb_debug("==> cursor points to page %zu with %u keys, key index %u",
mdb_dbg_pgno(mp), NUMKEYS(mp), mc->mc_ki[mc->mc_top]);
if (IS_LEAF2(mp)) {
key->mv_size = mc->mc_db->md_xsize;
key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
return MDB_SUCCESS;
}
mdb_cassert(mc, IS_LEAF(mp));
leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
mdb_xcursor_init1(mc, leaf);
}
if (data) {
if (unlikely((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS))
return rc;
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL);
if (unlikely(rc != MDB_SUCCESS))
return rc;
}
}
MDB_GET_KEY(leaf, key);
return MDB_SUCCESS;
}
/** Set the cursor on a specific data item. */
static int
mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data,
MDB_cursor_op op, int *exactp)
{
int rc;
MDB_page *mp;
MDB_node *leaf = NULL;
DKBUF;
if ( (mc->mc_db->md_flags & MDB_INTEGERKEY)
&& unlikely( key->mv_size != sizeof(unsigned)
&& key->mv_size != sizeof(size_t) )) {
mdb_cassert(mc, ! "key-size is invalid for MDB_INTEGERKEY");
return MDB_BAD_VALSIZE;
}
if (mc->mc_xcursor)
mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
/* See if we're already on the right page */
if (mc->mc_flags & C_INITIALIZED) {
MDB_val nodekey;
mp = mc->mc_pg[mc->mc_top];
if (!NUMKEYS(mp)) {
mc->mc_ki[mc->mc_top] = 0;
return MDB_NOTFOUND;
}
if (mp->mp_flags & P_LEAF2) {
nodekey.mv_size = mc->mc_db->md_xsize;
nodekey.mv_data = LEAF2KEY(mp, 0, nodekey.mv_size);
} else {
leaf = NODEPTR(mp, 0);
MDB_GET_KEY2(leaf, nodekey);
}
rc = mc->mc_dbx->md_cmp(key, &nodekey);
if (rc == 0) {
/* Probably happens rarely, but first node on the page
* was the one we wanted.
*/
mc->mc_ki[mc->mc_top] = 0;
if (exactp)
*exactp = 1;
goto set1;
}
if (rc > 0) {
unsigned i;
unsigned nkeys = NUMKEYS(mp);
if (nkeys > 1) {
if (mp->mp_flags & P_LEAF2) {
nodekey.mv_data = LEAF2KEY(mp,
nkeys-1, nodekey.mv_size);
} else {
leaf = NODEPTR(mp, nkeys-1);
MDB_GET_KEY2(leaf, nodekey);
}
rc = mc->mc_dbx->md_cmp(key, &nodekey);
if (rc == 0) {
/* last node was the one we wanted */
mc->mc_ki[mc->mc_top] = nkeys-1;
if (exactp)
*exactp = 1;
goto set1;
}
if (rc < 0) {
if (mc->mc_ki[mc->mc_top] < NUMKEYS(mp)) {
/* This is definitely the right page, skip search_page */
if (mp->mp_flags & P_LEAF2) {
nodekey.mv_data = LEAF2KEY(mp,
mc->mc_ki[mc->mc_top], nodekey.mv_size);
} else {
leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
MDB_GET_KEY2(leaf, nodekey);
}
rc = mc->mc_dbx->md_cmp(key, &nodekey);
if (rc == 0) {
/* current node was the one we wanted */
if (exactp)
*exactp = 1;
goto set1;
}
}
rc = 0;
mc->mc_flags &= ~C_EOF;
goto set2;
}
}
/* If any parents have right-sibs, search.
* Otherwise, there's nothing further. */
for (i=0; i<mc->mc_top; i++)
if (mc->mc_ki[i] <
NUMKEYS(mc->mc_pg[i])-1)
break;
if (i == mc->mc_top) {
/* There are no other pages */
mc->mc_ki[mc->mc_top] = nkeys;
return MDB_NOTFOUND;
}
}
if (!mc->mc_top) {
/* There are no other pages */
mc->mc_ki[mc->mc_top] = 0;
if (op == MDB_SET_RANGE && !exactp) {
rc = 0;
goto set1;
} else
return MDB_NOTFOUND;
}
} else {
mc->mc_pg[0] = 0;
}
rc = mdb_page_search(mc, key, 0);
if (unlikely(rc != MDB_SUCCESS))
return rc;
mp = mc->mc_pg[mc->mc_top];
mdb_cassert(mc, IS_LEAF(mp));
set2:
leaf = mdb_node_search(mc, key, exactp);
if (exactp != NULL && !*exactp) {
/* MDB_SET specified and not an exact match. */
return MDB_NOTFOUND;
}
if (leaf == NULL) {
mdb_debug("===> inexact leaf not found, goto sibling");
if (unlikely((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS)) {
mc->mc_flags |= C_EOF;
return rc; /* no entries matched */
}
mp = mc->mc_pg[mc->mc_top];
mdb_cassert(mc, IS_LEAF(mp));
leaf = NODEPTR(mp, 0);
}
set1:
mc->mc_flags |= C_INITIALIZED;
mc->mc_flags &= ~C_EOF;
if (IS_LEAF2(mp)) {
if (op == MDB_SET_RANGE || op == MDB_SET_KEY) {
key->mv_size = mc->mc_db->md_xsize;
key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
}
return MDB_SUCCESS;
}
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
mdb_xcursor_init1(mc, leaf);
}
if (likely(data)) {
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
if (op == MDB_SET || op == MDB_SET_KEY || op == MDB_SET_RANGE) {
rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
} else {
int ex2, *ex2p;
if (op == MDB_GET_BOTH) {
ex2p = &ex2;
ex2 = 0;
} else {
ex2p = NULL;
}
rc = mdb_cursor_set(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_SET_RANGE, ex2p);
if (unlikely(rc != MDB_SUCCESS))
return rc;
}
} else if (op == MDB_GET_BOTH || op == MDB_GET_BOTH_RANGE) {
MDB_val olddata;
if (unlikely((rc = mdb_node_read(mc, leaf, &olddata)) != MDB_SUCCESS))
return rc;
rc = mc->mc_dbx->md_dcmp(data, &olddata);
if (rc) {
if (op == MDB_GET_BOTH || rc > 0)
return MDB_NOTFOUND;
rc = 0;
}
*data = olddata;
} else {
if (mc->mc_xcursor)
mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
if (unlikely((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS))
return rc;
}
}
/* The key already matches in all other cases */
if (op == MDB_SET_RANGE || op == MDB_SET_KEY)
MDB_GET_KEY(leaf, key);
mdb_debug("==> cursor placed on key [%s]", DKEY(key));
return rc;
}
/** Move the cursor to the first item in the database. */
static int
mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data)
{
int rc;
MDB_node *leaf;
if (mc->mc_xcursor)
mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) {
rc = mdb_page_search(mc, NULL, MDB_PS_FIRST);
if (unlikely(rc != MDB_SUCCESS))
return rc;
}
mdb_cassert(mc, IS_LEAF(mc->mc_pg[mc->mc_top]));
leaf = NODEPTR(mc->mc_pg[mc->mc_top], 0);
mc->mc_flags |= C_INITIALIZED;
mc->mc_flags &= ~C_EOF;
mc->mc_ki[mc->mc_top] = 0;
if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
key->mv_size = mc->mc_db->md_xsize;
key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], 0, key->mv_size);
return MDB_SUCCESS;
}
if (likely(data)) {
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
mdb_xcursor_init1(mc, leaf);
rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
if (unlikely(rc))
return rc;
} else {
if (unlikely((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS))
return rc;
}
}
MDB_GET_KEY(leaf, key);
return MDB_SUCCESS;
}
/** Move the cursor to the last item in the database. */
static int
mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data)
{
int rc;
MDB_node *leaf;
if (mc->mc_xcursor)
mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
if (likely(!(mc->mc_flags & C_EOF))) {
if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) {
rc = mdb_page_search(mc, NULL, MDB_PS_LAST);
if (unlikely(rc != MDB_SUCCESS))
return rc;
}
mdb_cassert(mc, IS_LEAF(mc->mc_pg[mc->mc_top]));
}
mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]) - 1;
mc->mc_flags |= C_INITIALIZED|C_EOF;
leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
key->mv_size = mc->mc_db->md_xsize;
key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], key->mv_size);
return MDB_SUCCESS;
}
if (likely(data)) {
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
mdb_xcursor_init1(mc, leaf);
rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL);
if (unlikely(rc))
return rc;
} else {
if (unlikely((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS))
return rc;
}
}
MDB_GET_KEY(leaf, key);
return MDB_SUCCESS;
}
int
mdb_cursor_get(MDB_cursor *mc, MDB_val *key, MDB_val *data,
MDB_cursor_op op)
{
int rc;
int exact = 0;
int (*mfunc)(MDB_cursor *mc, MDB_val *key, MDB_val *data);
if (unlikely(mc == NULL))
return EINVAL;
if (unlikely(mc->mc_signature != MDBX_MC_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(mc->mc_txn->mt_flags & MDB_TXN_BLOCKED))
return MDB_BAD_TXN;
switch (op) {
case MDB_GET_CURRENT:
if (unlikely(!(mc->mc_flags & C_INITIALIZED))) {
rc = EINVAL;
} else {
MDB_page *mp = mc->mc_pg[mc->mc_top];
int nkeys = NUMKEYS(mp);
if (!nkeys || mc->mc_ki[mc->mc_top] >= nkeys) {
mc->mc_ki[mc->mc_top] = nkeys;
rc = MDB_NOTFOUND;
break;
}
rc = MDB_SUCCESS;
if (IS_LEAF2(mp)) {
key->mv_size = mc->mc_db->md_xsize;
key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
} else {
MDB_node *leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
MDB_GET_KEY(leaf, key);
if (data) {
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
if (unlikely(!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED))) {
mdb_xcursor_init1(mc, leaf);
rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
if (unlikely(rc))
break;
}
rc = mdb_cursor_get(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_GET_CURRENT);
} else {
rc = mdb_node_read(mc, leaf, data);
}
}
}
}
break;
case MDB_GET_BOTH:
case MDB_GET_BOTH_RANGE:
if (unlikely(data == NULL)) {
rc = EINVAL;
break;
}
if (unlikely(mc->mc_xcursor == NULL)) {
rc = MDB_INCOMPATIBLE;
break;
}
/* FALLTHRU */
case MDB_SET:
case MDB_SET_KEY:
case MDB_SET_RANGE:
if (unlikely(key == NULL)) {
rc = EINVAL;
} else {
rc = mdb_cursor_set(mc, key, data, op,
op == MDB_SET_RANGE ? NULL : &exact);
}
break;
case MDB_GET_MULTIPLE:
if (unlikely(data == NULL || !(mc->mc_flags & C_INITIALIZED))) {
rc = EINVAL;
break;
}
if (unlikely(!(mc->mc_db->md_flags & MDB_DUPFIXED))) {
rc = MDB_INCOMPATIBLE;
break;
}
rc = MDB_SUCCESS;
if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) ||
(mc->mc_xcursor->mx_cursor.mc_flags & C_EOF))
break;
goto fetchm;
case MDB_NEXT_MULTIPLE:
if (unlikely(data == NULL)) {
rc = EINVAL;
break;
}
if (unlikely(!(mc->mc_db->md_flags & MDB_DUPFIXED))) {
rc = MDB_INCOMPATIBLE;
break;
}
rc = mdb_cursor_next(mc, key, data, MDB_NEXT_DUP);
if (rc == MDB_SUCCESS) {
if (mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) {
MDB_cursor *mx;
fetchm:
mx = &mc->mc_xcursor->mx_cursor;
data->mv_size = NUMKEYS(mx->mc_pg[mx->mc_top]) *
mx->mc_db->md_xsize;
data->mv_data = PAGEDATA(mx->mc_pg[mx->mc_top]);
mx->mc_ki[mx->mc_top] = NUMKEYS(mx->mc_pg[mx->mc_top])-1;
} else {
rc = MDB_NOTFOUND;
}
}
break;
case MDB_PREV_MULTIPLE:
if (data == NULL) {
rc = EINVAL;
break;
}
if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
rc = MDB_INCOMPATIBLE;
break;
}
if (!(mc->mc_flags & C_INITIALIZED))
rc = mdb_cursor_last(mc, key, data);
else
rc = MDB_SUCCESS;
if (rc == MDB_SUCCESS) {
MDB_cursor *mx = &mc->mc_xcursor->mx_cursor;
if (mx->mc_flags & C_INITIALIZED) {
rc = mdb_cursor_sibling(mx, 0);
if (rc == MDB_SUCCESS)
goto fetchm;
} else {
rc = MDB_NOTFOUND;
}
}
break;
case MDB_NEXT:
case MDB_NEXT_DUP:
case MDB_NEXT_NODUP:
rc = mdb_cursor_next(mc, key, data, op);
break;
case MDB_PREV:
case MDB_PREV_DUP:
case MDB_PREV_NODUP:
rc = mdb_cursor_prev(mc, key, data, op);
break;
case MDB_FIRST:
rc = mdb_cursor_first(mc, key, data);
break;
case MDB_FIRST_DUP:
mfunc = mdb_cursor_first;
mmove:
if (unlikely(data == NULL || !(mc->mc_flags & C_INITIALIZED))) {
rc = EINVAL;
break;
}
if (unlikely(mc->mc_xcursor == NULL)) {
rc = MDB_INCOMPATIBLE;
break;
}
{
MDB_node *leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
MDB_GET_KEY(leaf, key);
rc = mdb_node_read(mc, leaf, data);
break;
}
}
if (unlikely(!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED))) {
rc = EINVAL;
break;
}
rc = mfunc(&mc->mc_xcursor->mx_cursor, data, NULL);
break;
case MDB_LAST:
rc = mdb_cursor_last(mc, key, data);
break;
case MDB_LAST_DUP:
mfunc = mdb_cursor_last;
goto mmove;
default:
mdb_debug("unhandled/unimplemented cursor operation %u", op);
rc = EINVAL;
break;
}
if (mc->mc_flags & C_DEL)
mc->mc_flags ^= C_DEL;
return rc;
}
/** Touch all the pages in the cursor stack. Set mc_top.
* Makes sure all the pages are writable, before attempting a write operation.
* @param[in] mc The cursor to operate on.
*/
static int
mdb_cursor_touch(MDB_cursor *mc)
{
int rc = MDB_SUCCESS;
if (mc->mc_dbi >= CORE_DBS && !(*mc->mc_dbflag & (DB_DIRTY|DB_DUPDATA))) {
/* Touch DB record of named DB */
MDB_cursor mc2;
MDB_xcursor mcx;
if (TXN_DBI_CHANGED(mc->mc_txn, mc->mc_dbi))
return MDB_BAD_DBI;
mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, &mcx);
rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, MDB_PS_MODIFY);
if (unlikely(rc))
return rc;
*mc->mc_dbflag |= DB_DIRTY;
}
mc->mc_top = 0;
if (mc->mc_snum) {
do {
rc = mdb_page_touch(mc);
} while (!rc && ++(mc->mc_top) < mc->mc_snum);
mc->mc_top = mc->mc_snum-1;
}
return rc;
}
/** Do not spill pages to disk if txn is getting full, may fail instead */
#define MDB_NOSPILL 0x8000
int
mdb_cursor_put(MDB_cursor *mc, MDB_val *key, MDB_val *data,
unsigned flags)
{
MDB_env *env;
MDB_node *leaf = NULL;
MDB_page *fp, *mp, *sub_root = NULL;
uint16_t fp_flags;
MDB_val xdata, *rdata, dkey, olddata;
MDB_db dummy;
int do_sub = 0, insert_key, insert_data;
unsigned mcount = 0, dcount = 0, nospill;
size_t nsize;
int rc, rc2;
unsigned nflags;
DKBUF;
if (unlikely(mc == NULL || key == NULL))
return EINVAL;
if (unlikely(mc->mc_signature != MDBX_MC_SIGNATURE))
return MDB_VERSION_MISMATCH;
env = mc->mc_txn->mt_env;
/* Check this first so counter will always be zero on any
* early failures.
*/
if (flags & MDB_MULTIPLE) {
dcount = data[1].mv_size;
data[1].mv_size = 0;
if (unlikely(!F_ISSET(mc->mc_db->md_flags, MDB_DUPFIXED)))
return MDB_INCOMPATIBLE;
}
if (flags & MDB_RESERVE) {
if (unlikely(mc->mc_db->md_flags & (MDB_DUPSORT | MDB_REVERSEDUP)))
return MDB_INCOMPATIBLE;
}
nospill = flags & MDB_NOSPILL;
flags &= ~MDB_NOSPILL;
if (unlikely(mc->mc_txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED)))
return (mc->mc_txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
if (unlikely(key->mv_size > ENV_MAXKEY(env)))
return MDB_BAD_VALSIZE;
#if SIZE_MAX > MAXDATASIZE
if (unlikely(data->mv_size > ((mc->mc_db->md_flags & MDB_DUPSORT) ? ENV_MAXKEY(env) : MAXDATASIZE)))
return MDB_BAD_VALSIZE;
#else
if ((mc->mc_db->md_flags & MDB_DUPSORT) && unlikely(data->mv_size > ENV_MAXKEY(env)))
return MDB_BAD_VALSIZE;
#endif
if ((mc->mc_db->md_flags & MDB_INTEGERKEY)
&& unlikely(key->mv_size != sizeof(unsigned)
&& key->mv_size != sizeof(size_t) )) {
mdb_cassert(mc, ! "key-size is invalid for MDB_INTEGERKEY");
return MDB_BAD_VALSIZE;
}
if ((mc->mc_db->md_flags & MDB_INTEGERDUP)
&& unlikely(data->mv_size != sizeof(unsigned)
&& data->mv_size != sizeof(size_t) )) {
mdb_cassert(mc, ! "data-size is invalid MDB_INTEGERDUP");
return MDB_BAD_VALSIZE;
}
mdb_debug("==> put db %d key [%s], size %zu, data size %zu",
DDBI(mc), DKEY(key), key ? key->mv_size : 0, data->mv_size);
dkey.mv_size = 0;
if (flags & MDB_CURRENT) {
if (unlikely(!(mc->mc_flags & C_INITIALIZED)))
return EINVAL;
rc = MDB_SUCCESS;
} else if (mc->mc_db->md_root == P_INVALID) {
/* new database, cursor has nothing to point to */
mc->mc_snum = 0;
mc->mc_top = 0;
mc->mc_flags &= ~C_INITIALIZED;
rc = MDB_NO_ROOT;
} else {
int exact = 0;
MDB_val d2;
if (flags & MDB_APPEND) {
MDB_val k2;
rc = mdb_cursor_last(mc, &k2, &d2);
if (rc == 0) {
rc = mc->mc_dbx->md_cmp(key, &k2);
if (rc > 0) {
rc = MDB_NOTFOUND;
mc->mc_ki[mc->mc_top]++;
} else {
/* new key is <= last key */
rc = MDB_KEYEXIST;
}
}
} else {
rc = mdb_cursor_set(mc, key, &d2, MDB_SET, &exact);
}
if ((flags & MDB_NOOVERWRITE) && rc == 0) {
mdb_debug("duplicate key [%s]", DKEY(key));
*data = d2;
return MDB_KEYEXIST;
}
if (rc && unlikely(rc != MDB_NOTFOUND))
return rc;
}
if (mc->mc_flags & C_DEL)
mc->mc_flags ^= C_DEL;
/* Cursor is positioned, check for room in the dirty list */
if (!nospill) {
if (flags & MDB_MULTIPLE) {
rdata = &xdata;
xdata.mv_size = data->mv_size * dcount;
} else {
rdata = data;
}
if (unlikely(rc2 = mdb_page_spill(mc, key, rdata)))
return rc2;
}
if (rc == MDB_NO_ROOT) {
MDB_page *np;
/* new database, write a root leaf page */
mdb_debug("allocating new root leaf page");
if (unlikely(rc2 = mdb_page_new(mc, P_LEAF, 1, &np))) {
return rc2;
}
mdb_cursor_push(mc, np);
mc->mc_db->md_root = np->mp_pgno;
mc->mc_db->md_depth++;
*mc->mc_dbflag |= DB_DIRTY;
if ((mc->mc_db->md_flags & (MDB_DUPSORT|MDB_DUPFIXED)) == MDB_DUPFIXED)
np->mp_flags |= P_LEAF2;
mc->mc_flags |= C_INITIALIZED;
} else {
/* make sure all cursor pages are writable */
rc2 = mdb_cursor_touch(mc);
if (unlikely(rc2))
return rc2;
}
insert_key = insert_data = rc;
if (insert_key) {
/* The key does not exist */
mdb_debug("inserting key at index %i", mc->mc_ki[mc->mc_top]);
if ((mc->mc_db->md_flags & MDB_DUPSORT) &&
LEAFSIZE(key, data) > env->me_nodemax)
{
/* Too big for a node, insert in sub-DB. Set up an empty
* "old sub-page" for prep_subDB to expand to a full page.
*/
fp_flags = P_LEAF|P_DIRTY;
fp = env->me_pbuf;
fp->mp_leaf2_ksize = data->mv_size; /* used if MDB_DUPFIXED */
fp->mp_lower = fp->mp_upper = (PAGEHDRSZ-PAGEBASE);
olddata.mv_size = PAGEHDRSZ;
goto prep_subDB;
}
} else {
/* there's only a key anyway, so this is a no-op */
if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
char *ptr;
unsigned ksize = mc->mc_db->md_xsize;
if (key->mv_size != ksize)
return MDB_BAD_VALSIZE;
ptr = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], ksize);
memcpy(ptr, key->mv_data, ksize);
fix_parent:
/* if overwriting slot 0 of leaf, need to
* update branch key if there is a parent page
*/
if (mc->mc_top && !mc->mc_ki[mc->mc_top]) {
unsigned short dtop = 1;
mc->mc_top--;
/* slot 0 is always an empty key, find real slot */
while (mc->mc_top && !mc->mc_ki[mc->mc_top]) {
mc->mc_top--;
dtop++;
}
if (mc->mc_ki[mc->mc_top])
rc2 = mdb_update_key(mc, key);
else
rc2 = MDB_SUCCESS;
mc->mc_top += dtop;
if (rc2)
return rc2;
}
return MDB_SUCCESS;
}
more:
leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
olddata.mv_size = NODEDSZ(leaf);
olddata.mv_data = NODEDATA(leaf);
/* DB has dups? */
if (F_ISSET(mc->mc_db->md_flags, MDB_DUPSORT)) {
/* Prepare (sub-)page/sub-DB to accept the new item,
* if needed. fp: old sub-page or a header faking
* it. mp: new (sub-)page. offset: growth in page
* size. xdata: node data with new page or DB.
*/
unsigned i, offset = 0;
mp = fp = xdata.mv_data = env->me_pbuf;
mp->mp_pgno = mc->mc_pg[mc->mc_top]->mp_pgno;
/* Was a single item before, must convert now */
if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
/* Just overwrite the current item */
if (flags == MDB_CURRENT)
goto current;
/* does data match? */
if (!mc->mc_dbx->md_dcmp(data, &olddata)) {
if (unlikely(flags & (MDB_NODUPDATA|MDB_APPENDDUP)))
return MDB_KEYEXIST;
/* overwrite it */
goto current;
}
/* Back up original data item */
dkey.mv_size = olddata.mv_size;
dkey.mv_data = memcpy(fp+1, olddata.mv_data, olddata.mv_size);
/* Make sub-page header for the dup items, with dummy body */
fp->mp_flags = P_LEAF|P_DIRTY|P_SUBP;
fp->mp_lower = (PAGEHDRSZ-PAGEBASE);
xdata.mv_size = PAGEHDRSZ + dkey.mv_size + data->mv_size;
if (mc->mc_db->md_flags & MDB_DUPFIXED) {
fp->mp_flags |= P_LEAF2;
fp->mp_leaf2_ksize = data->mv_size;
xdata.mv_size += 2 * data->mv_size; /* leave space for 2 more */
} else {
xdata.mv_size += 2 * (sizeof(indx_t) + NODESIZE) +
(dkey.mv_size & 1) + (data->mv_size & 1);
}
fp->mp_upper = xdata.mv_size - PAGEBASE;
olddata.mv_size = xdata.mv_size; /* pretend olddata is fp */
} else if (leaf->mn_flags & F_SUBDATA) {
/* Data is on sub-DB, just store it */
flags |= F_DUPDATA|F_SUBDATA;
goto put_sub;
} else {
/* Data is on sub-page */
fp = olddata.mv_data;
switch (flags) {
default:
if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
offset = EVEN(NODESIZE + sizeof(indx_t) +
data->mv_size);
break;
}
offset = fp->mp_leaf2_ksize;
if (SIZELEFT(fp) < offset) {
offset *= 4; /* space for 4 more */
break;
}
/* FALLTHRU: Big enough MDB_DUPFIXED sub-page */
case MDB_CURRENT | MDB_NODUPDATA:
case MDB_CURRENT:
fp->mp_flags |= P_DIRTY;
COPY_PGNO(fp->mp_pgno, mp->mp_pgno);
mc->mc_xcursor->mx_cursor.mc_pg[0] = fp;
flags |= F_DUPDATA;
goto put_sub;
}
xdata.mv_size = olddata.mv_size + offset;
}
fp_flags = fp->mp_flags;
if (NODESIZE + NODEKSZ(leaf) + xdata.mv_size > env->me_nodemax) {
/* Too big for a sub-page, convert to sub-DB */
fp_flags &= ~P_SUBP;
prep_subDB:
if (mc->mc_db->md_flags & MDB_DUPFIXED) {
fp_flags |= P_LEAF2;
dummy.md_xsize = fp->mp_leaf2_ksize;
dummy.md_flags = MDB_DUPFIXED;
if (mc->mc_db->md_flags & MDB_INTEGERDUP)
dummy.md_flags |= MDB_INTEGERKEY;
} else {
dummy.md_xsize = 0;
dummy.md_flags = 0;
}
dummy.md_depth = 1;
dummy.md_branch_pages = 0;
dummy.md_leaf_pages = 1;
dummy.md_overflow_pages = 0;
dummy.md_entries = NUMKEYS(fp);
xdata.mv_size = sizeof(MDB_db);
xdata.mv_data = &dummy;
if ((rc = mdb_page_alloc(mc, 1, &mp, MDBX_ALLOC_ALL)))
return rc;
offset = env->me_psize - olddata.mv_size;
flags |= F_DUPDATA|F_SUBDATA;
dummy.md_root = mp->mp_pgno;
sub_root = mp;
}
if (mp != fp) {
mp->mp_flags = fp_flags | P_DIRTY;
mp->mp_leaf2_ksize = fp->mp_leaf2_ksize;
mp->mp_lower = fp->mp_lower;
mp->mp_upper = fp->mp_upper + offset;
if (fp_flags & P_LEAF2) {
memcpy(PAGEDATA(mp), PAGEDATA(fp), NUMKEYS(fp) * fp->mp_leaf2_ksize);
} else {
memcpy((char *)mp + mp->mp_upper + PAGEBASE, (char *)fp + fp->mp_upper + PAGEBASE,
olddata.mv_size - fp->mp_upper - PAGEBASE);
for (i=0; i<NUMKEYS(fp); i++)
mp->mp_ptrs[i] = fp->mp_ptrs[i] + offset;
}
}
rdata = &xdata;
flags |= F_DUPDATA;
do_sub = 1;
if (!insert_key)
mdb_node_del(mc, 0);
goto new_sub;
}
current:
/* LMDB passes F_SUBDATA in 'flags' to write a DB record */
if (unlikely((leaf->mn_flags ^ flags) & F_SUBDATA))
return MDB_INCOMPATIBLE;
/* overflow page overwrites need special handling */
if (F_ISSET(leaf->mn_flags, F_BIGDATA)) {
MDB_page *omp;
pgno_t pg;
int level, ovpages, dpages = OVPAGES(data->mv_size, env->me_psize);
memcpy(&pg, olddata.mv_data, sizeof(pg));
if (unlikely((rc2 = mdb_page_get(mc, pg, &omp, &level)) != 0))
return rc2;
ovpages = omp->mp_pages;
/* Is the ov page large enough? */
if (ovpages >= dpages) {
if (!(omp->mp_flags & P_DIRTY)
&& (level || (env->me_flags & MDB_WRITEMAP))) {
rc = mdb_page_unspill(mc->mc_txn, omp, &omp);
if (unlikely(rc))
return rc;
level = 0; /* dirty in this txn or clean */
}
/* Is it dirty? */
if (omp->mp_flags & P_DIRTY) {
/* yes, overwrite it. Note in this case we don't
* bother to try shrinking the page if the new data
* is smaller than the overflow threshold.
*/
if (unlikely(level > 1)) {
/* It is writable only in a parent txn */
MDB_page *np = mdb_page_malloc(mc->mc_txn, ovpages);
MDB_ID2 id2;
if (unlikely(!np))
return ENOMEM;
id2.mid = pg;
id2.mptr = np;
/* Note - this page is already counted in parent's dirty_room */
rc2 = mdb_mid2l_insert(mc->mc_txn->mt_u.dirty_list, &id2);
mdb_cassert(mc, rc2 == 0);
/* Currently we make the page look as with put() in the
* parent txn, in case the user peeks at MDB_RESERVEd
* or unused parts. Some users treat ovpages specially.
*/
size_t sz = (size_t) env->me_psize * ovpages, off;
if (MDBX_MODE_ENABLED || !(flags & MDB_RESERVE)) {
/* Skip the part where LMDB will put *data.
* Copy end of page, adjusting alignment so
* compiler may copy words instead of bytes.
*/
off = (PAGEHDRSZ + data->mv_size) & -sizeof(size_t);
memcpy((size_t *)((char *)np + off),
(size_t *)((char *)omp + off), sz - off);
sz = PAGEHDRSZ;
}
memcpy(np, omp, sz); /* Copy whole or header of page */
omp = np;
}
SETDSZ(leaf, data->mv_size);
if (F_ISSET(flags, MDB_RESERVE))
data->mv_data = PAGEDATA(omp);
else
memcpy(PAGEDATA(omp), data->mv_data, data->mv_size);
return MDB_SUCCESS;
}
}
if ((rc2 = mdb_ovpage_free(mc, omp)) != MDB_SUCCESS)
return rc2;
} else if (data->mv_size == olddata.mv_size) {
/* same size, just replace it. Note that we could
* also reuse this node if the new data is smaller,
* but instead we opt to shrink the node in that case.
*/
if (F_ISSET(flags, MDB_RESERVE))
data->mv_data = olddata.mv_data;
else if (!(mc->mc_flags & C_SUB))
memcpy(olddata.mv_data, data->mv_data, data->mv_size);
else {
memcpy(NODEKEY(leaf), key->mv_data, key->mv_size);
goto fix_parent;
}
return MDB_SUCCESS;
}
mdb_node_del(mc, 0);
}
rdata = data;
new_sub:
nflags = flags & NODE_ADD_FLAGS;
nsize = IS_LEAF2(mc->mc_pg[mc->mc_top]) ? key->mv_size : mdb_leaf_size(env, key, rdata);
if (SIZELEFT(mc->mc_pg[mc->mc_top]) < nsize) {
if (( flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA )
nflags &= ~MDB_APPEND; /* sub-page may need room to grow */
if (!insert_key)
nflags |= MDB_SPLIT_REPLACE;
rc = mdb_page_split(mc, key, rdata, P_INVALID, nflags);
} else {
/* There is room already in this leaf page. */
rc = mdb_node_add(mc, mc->mc_ki[mc->mc_top], key, rdata, 0, nflags);
if (likely(rc == 0)) {
/* Adjust other cursors pointing to mp */
MDB_cursor *m2, *m3;
MDB_dbi dbi = mc->mc_dbi;
unsigned i = mc->mc_top;
MDB_page *mp = mc->mc_pg[i];
for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (mc->mc_flags & C_SUB)
m3 = &m2->mc_xcursor->mx_cursor;
else
m3 = m2;
if (m3 == mc || m3->mc_snum < mc->mc_snum || m3->mc_pg[i] != mp) continue;
if (m3->mc_ki[i] >= mc->mc_ki[i] && insert_key) {
m3->mc_ki[i]++;
}
if (XCURSOR_INITED(m3))
XCURSOR_REFRESH(m3, mp, m3->mc_ki[i]);
}
}
}
if (likely(rc == MDB_SUCCESS)) {
/* Now store the actual data in the child DB. Note that we're
* storing the user data in the keys field, so there are strict
* size limits on dupdata. The actual data fields of the child
* DB are all zero size. */
if (do_sub) {
int xflags, new_dupdata;
size_t ecount;
put_sub:
xdata.mv_size = 0;
xdata.mv_data = "";
leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
xflags = MDB_NOSPILL;
if (flags & MDB_NODUPDATA)
xflags |= MDB_NOOVERWRITE;
if (flags & MDB_APPENDDUP)
xflags |= MDB_APPEND;
if (flags & MDB_CURRENT) {
xflags |= MDB_CURRENT;
} else {
mdb_xcursor_init1(mc, leaf);
}
if (sub_root)
mc->mc_xcursor->mx_cursor.mc_pg[0] = sub_root;
new_dupdata = (int)dkey.mv_size;
/* converted, write the original data first */
if (dkey.mv_size) {
rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, &dkey, &xdata, xflags);
if (unlikely(rc))
goto bad_sub;
/* we've done our job */
dkey.mv_size = 0;
}
if (!(leaf->mn_flags & F_SUBDATA) || sub_root) {
/* Adjust other cursors pointing to mp */
MDB_cursor *m2;
MDB_xcursor *mx = mc->mc_xcursor;
unsigned i = mc->mc_top;
MDB_page *mp = mc->mc_pg[i];
int nkeys = NUMKEYS(mp);
for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
if (m2 == mc || m2->mc_snum < mc->mc_snum) continue;
if (!(m2->mc_flags & C_INITIALIZED)) continue;
if (m2->mc_pg[i] == mp) {
if (m2->mc_ki[i] == mc->mc_ki[i]) {
mdb_xcursor_init2(m2, mx, new_dupdata);
} else if (!insert_key && m2->mc_ki[i] < nkeys) {
XCURSOR_REFRESH(m2, mp, m2->mc_ki[i]);
}
}
}
}
ecount = mc->mc_xcursor->mx_db.md_entries;
rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, data, &xdata, xflags);
if (flags & F_SUBDATA) {
void *db = NODEDATA(leaf);
memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db));
}
insert_data = mc->mc_xcursor->mx_db.md_entries - ecount;
}
/* Increment count unless we just replaced an existing item. */
if (insert_data)
mc->mc_db->md_entries++;
if (insert_key) {
/* Invalidate txn if we created an empty sub-DB */
if (unlikely(rc))
goto bad_sub;
/* If we succeeded and the key didn't exist before,
* make sure the cursor is marked valid. */
mc->mc_flags |= C_INITIALIZED;
}
if (flags & MDB_MULTIPLE) {
if (!rc) {
mcount++;
/* let caller know how many succeeded, if any */
data[1].mv_size = mcount;
if (mcount < dcount) {
data[0].mv_data = (char *)data[0].mv_data + data[0].mv_size;
insert_key = insert_data = 0;
goto more;
}
}
}
return rc;
bad_sub:
if (unlikely(rc == MDB_KEYEXIST)) /* should not happen, we deleted that item */
rc = MDB_PROBLEM;
}
mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
return rc;
}
int
mdb_cursor_del(MDB_cursor *mc, unsigned flags)
{
MDB_node *leaf;
MDB_page *mp;
int rc;
if (unlikely(!mc))
return EINVAL;
if (unlikely(mc->mc_signature != MDBX_MC_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(mc->mc_txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED)))
return (mc->mc_txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
if (unlikely(!(mc->mc_flags & C_INITIALIZED)))
return EINVAL;
if (unlikely(mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top])))
return MDB_NOTFOUND;
if (unlikely(!(flags & MDB_NOSPILL) && (rc = mdb_page_spill(mc, NULL, NULL))))
return rc;
rc = mdb_cursor_touch(mc);
if (unlikely(rc))
return rc;
mp = mc->mc_pg[mc->mc_top];
if (IS_LEAF2(mp))
goto del_key;
leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
if (flags & MDB_NODUPDATA) {
/* mdb_cursor_del0() will subtract the final entry */
mc->mc_db->md_entries -= mc->mc_xcursor->mx_db.md_entries - 1;
mc->mc_xcursor->mx_cursor.mc_flags &= ~C_INITIALIZED;
} else {
if (!F_ISSET(leaf->mn_flags, F_SUBDATA)) {
mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf);
}
rc = mdb_cursor_del(&mc->mc_xcursor->mx_cursor, MDB_NOSPILL);
if (unlikely(rc))
return rc;
/* If sub-DB still has entries, we're done */
if (mc->mc_xcursor->mx_db.md_entries) {
if (leaf->mn_flags & F_SUBDATA) {
/* update subDB info */
void *db = NODEDATA(leaf);
memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db));
} else {
MDB_cursor *m2;
/* shrink fake page */
mdb_node_shrink(mp, mc->mc_ki[mc->mc_top]);
leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf);
/* fix other sub-DB cursors pointed at fake pages on this page */
for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
if (m2 == mc || m2->mc_snum < mc->mc_snum) continue;
if (!(m2->mc_flags & C_INITIALIZED)) continue;
if (m2->mc_pg[mc->mc_top] == mp) {
MDB_node *n2 = leaf;
if (m2->mc_ki[mc->mc_top] != mc->mc_ki[mc->mc_top]) {
n2 = NODEPTR(mp, m2->mc_ki[mc->mc_top]);
if (n2->mn_flags & F_SUBDATA) continue;
}
m2->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(n2);
}
}
}
mc->mc_db->md_entries--;
return rc;
} else {
mc->mc_xcursor->mx_cursor.mc_flags &= ~C_INITIALIZED;
}
/* otherwise fall thru and delete the sub-DB */
}
if (leaf->mn_flags & F_SUBDATA) {
/* add all the child DB's pages to the free list */
rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0);
if (unlikely(rc))
goto fail;
}
}
/* LMDB passes F_SUBDATA in 'flags' to delete a DB record */
else if (unlikely((leaf->mn_flags ^ flags) & F_SUBDATA)) {
rc = MDB_INCOMPATIBLE;
goto fail;
}
/* add overflow pages to free list */
if (F_ISSET(leaf->mn_flags, F_BIGDATA)) {
MDB_page *omp;
pgno_t pg;
memcpy(&pg, NODEDATA(leaf), sizeof(pg));
if (unlikely((rc = mdb_page_get(mc, pg, &omp, NULL)) ||
(rc = mdb_ovpage_free(mc, omp))))
goto fail;
}
del_key:
return mdb_cursor_del0(mc);
fail:
mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
return rc;
}
/** Allocate and initialize new pages for a database.
* Set #MDB_TXN_ERROR on failure.
* @param[in] mc a cursor on the database being added to.
* @param[in] flags flags defining what type of page is being allocated.
* @param[in] num the number of pages to allocate. This is usually 1,
* unless allocating overflow pages for a large record.
* @param[out] mp Address of a page, or NULL on failure.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp)
{
MDB_page *np;
int rc;
if (unlikely((rc = mdb_page_alloc(mc, num, &np, MDBX_ALLOC_ALL))))
return rc;
mdb_debug("allocated new mpage %zu, page size %u",
np->mp_pgno, mc->mc_txn->mt_env->me_psize);
np->mp_flags = flags | P_DIRTY;
np->mp_lower = (PAGEHDRSZ-PAGEBASE);
np->mp_upper = mc->mc_txn->mt_env->me_psize - PAGEBASE;
if (IS_BRANCH(np))
mc->mc_db->md_branch_pages++;
else if (IS_LEAF(np))
mc->mc_db->md_leaf_pages++;
else if (IS_OVERFLOW(np)) {
mc->mc_db->md_overflow_pages += num;
np->mp_pages = num;
}
*mp = np;
return 0;
}
/** Calculate the size of a leaf node.
* The size depends on the environment's page size; if a data item
* is too large it will be put onto an overflow page and the node
* size will only include the key and not the data. Sizes are always
* rounded up to an even number of bytes, to guarantee 2-byte alignment
* of the #MDB_node headers.
* @param[in] env The environment handle.
* @param[in] key The key for the node.
* @param[in] data The data for the node.
* @return The number of bytes needed to store the node.
*/
static MDBX_INLINE size_t
mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data)
{
size_t sz;
sz = LEAFSIZE(key, data);
if (sz > env->me_nodemax) {
/* put on overflow page */
sz -= data->mv_size - sizeof(pgno_t);
}
return EVEN(sz + sizeof(indx_t));
}
/** Calculate the size of a branch node.
* The size should depend on the environment's page size but since
* we currently don't support spilling large keys onto overflow
* pages, it's simply the size of the #MDB_node header plus the
* size of the key. Sizes are always rounded up to an even number
* of bytes, to guarantee 2-byte alignment of the #MDB_node headers.
* @param[in] env The environment handle.
* @param[in] key The key for the node.
* @return The number of bytes needed to store the node.
*/
static MDBX_INLINE size_t
mdb_branch_size(MDB_env *env, MDB_val *key)
{
size_t sz;
sz = INDXSIZE(key);
if (unlikely(sz > env->me_nodemax)) {
/* put on overflow page */
/* not implemented */
mdb_assert_fail(env, "INDXSIZE(key) <= env->me_nodemax", __FUNCTION__, __LINE__);
sz -= key->mv_size - sizeof(pgno_t);
}
return sz + sizeof(indx_t);
}
/** Add a node to the page pointed to by the cursor.
* Set #MDB_TXN_ERROR on failure.
* @param[in] mc The cursor for this operation.
* @param[in] indx The index on the page where the new node should be added.
* @param[in] key The key for the new node.
* @param[in] data The data for the new node, if any.
* @param[in] pgno The page number, if adding a branch node.
* @param[in] flags Flags for the node.
* @return 0 on success, non-zero on failure. Possible errors are:
* <ul>
* <li>ENOMEM - failed to allocate overflow pages for the node.
* <li>MDB_PAGE_FULL - there is insufficient room in the page. This error
* should never happen since all callers already calculate the
* page's free space before calling this function.
* </ul>
*/
static int
mdb_node_add(MDB_cursor *mc, indx_t indx,
MDB_val *key, MDB_val *data, pgno_t pgno, unsigned flags)
{
unsigned i;
size_t node_size = NODESIZE;
ssize_t room;
indx_t ofs;
MDB_node *node;
MDB_page *mp = mc->mc_pg[mc->mc_top];
MDB_page *ofp = NULL; /* overflow page */
void *ndata;
DKBUF;
mdb_cassert(mc, mp->mp_upper >= mp->mp_lower);
mdb_debug("add to %s %spage %zu index %i, data size %zu key size %zu [%s]",
IS_LEAF(mp) ? "leaf" : "branch",
IS_SUBP(mp) ? "sub-" : "",
mdb_dbg_pgno(mp), indx, data ? data->mv_size : 0,
key ? key->mv_size : 0, key ? DKEY(key) : "null");
if (IS_LEAF2(mp)) {
mdb_cassert(mc, key);
/* Move higher keys up one slot. */
int ksize = mc->mc_db->md_xsize, dif;
char *ptr = LEAF2KEY(mp, indx, ksize);
dif = NUMKEYS(mp) - indx;
if (dif > 0)
memmove(ptr+ksize, ptr, dif*ksize);
/* insert new key */
memcpy(ptr, key->mv_data, ksize);
/* Just using these for counting */
mp->mp_lower += sizeof(indx_t);
mp->mp_upper -= ksize - sizeof(indx_t);
return MDB_SUCCESS;
}
room = (ssize_t)SIZELEFT(mp) - (ssize_t)sizeof(indx_t);
if (key != NULL)
node_size += key->mv_size;
if (IS_LEAF(mp)) {
mdb_cassert(mc, key && data);
if (unlikely(F_ISSET(flags, F_BIGDATA))) {
/* Data already on overflow page. */
node_size += sizeof(pgno_t);
} else if (unlikely(node_size + data->mv_size > mc->mc_txn->mt_env->me_nodemax)) {
int ovpages = OVPAGES(data->mv_size, mc->mc_txn->mt_env->me_psize);
int rc;
/* Put data on overflow page. */
mdb_debug("data size is %zu, node would be %zu, put data on overflow page",
data->mv_size, node_size+data->mv_size);
node_size = EVEN(node_size + sizeof(pgno_t));
if ((ssize_t)node_size > room)
goto full;
if ((rc = mdb_page_new(mc, P_OVERFLOW, ovpages, &ofp)))
return rc;
mdb_debug("allocated overflow page %zu", ofp->mp_pgno);
flags |= F_BIGDATA;
goto update;
} else {
node_size += data->mv_size;
}
}
node_size = EVEN(node_size);
if (unlikely((ssize_t)node_size > room))
goto full;
update:
/* Move higher pointers up one slot. */
for (i = NUMKEYS(mp); i > indx; i--)
mp->mp_ptrs[i] = mp->mp_ptrs[i - 1];
/* Adjust free space offsets. */
ofs = mp->mp_upper - node_size;
mdb_cassert(mc, ofs >= mp->mp_lower + sizeof(indx_t));
mp->mp_ptrs[indx] = ofs;
mp->mp_upper = ofs;
mp->mp_lower += sizeof(indx_t);
/* Write the node data. */
node = NODEPTR(mp, indx);
node->mn_ksize = (key == NULL) ? 0 : key->mv_size;
node->mn_flags = flags;
if (IS_LEAF(mp))
SETDSZ(node,data->mv_size);
else
SETPGNO(node,pgno);
if (key)
memcpy(NODEKEY(node), key->mv_data, key->mv_size);
if (IS_LEAF(mp)) {
ndata = NODEDATA(node);
if (unlikely(ofp == NULL)) {
if (unlikely(F_ISSET(flags, F_BIGDATA)))
memcpy(ndata, data->mv_data, sizeof(pgno_t));
else if (F_ISSET(flags, MDB_RESERVE))
data->mv_data = ndata;
else if (likely(ndata != data->mv_data))
memcpy(ndata, data->mv_data, data->mv_size);
} else {
memcpy(ndata, &ofp->mp_pgno, sizeof(pgno_t));
ndata = PAGEDATA(ofp);
if (F_ISSET(flags, MDB_RESERVE))
data->mv_data = ndata;
else if (likely(ndata != data->mv_data))
memcpy(ndata, data->mv_data, data->mv_size);
}
}
return MDB_SUCCESS;
full:
mdb_debug("not enough room in page %zu, got %u ptrs",
mdb_dbg_pgno(mp), NUMKEYS(mp));
mdb_debug("upper-lower = %u - %u = %zd", mp->mp_upper,mp->mp_lower,room);
mdb_debug("node size = %zu", node_size);
mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
return MDB_PAGE_FULL;
}
/** Delete the specified node from a page.
* @param[in] mc Cursor pointing to the node to delete.
* @param[in] ksize The size of a node. Only used if the page is
* part of a #MDB_DUPFIXED database.
*/
static void
mdb_node_del(MDB_cursor *mc, int ksize)
{
MDB_page *mp = mc->mc_pg[mc->mc_top];
indx_t indx = mc->mc_ki[mc->mc_top];
unsigned sz;
indx_t i, j, numkeys, ptr;
MDB_node *node;
char *base;
mdb_debug("delete node %u on %s page %zu", indx,
IS_LEAF(mp) ? "leaf" : "branch", mdb_dbg_pgno(mp));
numkeys = NUMKEYS(mp);
mdb_cassert(mc, indx < numkeys);
if (IS_LEAF2(mp)) {
int x = numkeys - 1 - indx;
base = LEAF2KEY(mp, indx, ksize);
if (x)
memmove(base, base + ksize, x * ksize);
mp->mp_lower -= sizeof(indx_t);
mp->mp_upper += ksize - sizeof(indx_t);
return;
}
node = NODEPTR(mp, indx);
sz = NODESIZE + node->mn_ksize;
if (IS_LEAF(mp)) {
if (F_ISSET(node->mn_flags, F_BIGDATA))
sz += sizeof(pgno_t);
else
sz += NODEDSZ(node);
}
sz = EVEN(sz);
ptr = mp->mp_ptrs[indx];
for (i = j = 0; i < numkeys; i++) {
if (i != indx) {
mp->mp_ptrs[j] = mp->mp_ptrs[i];
if (mp->mp_ptrs[i] < ptr)
mp->mp_ptrs[j] += sz;
j++;
}
}
base = (char *)mp + mp->mp_upper + PAGEBASE;
memmove(base + sz, base, ptr - mp->mp_upper);
mp->mp_lower -= sizeof(indx_t);
mp->mp_upper += sz;
}
/** Compact the main page after deleting a node on a subpage.
* @param[in] mp The main page to operate on.
* @param[in] indx The index of the subpage on the main page.
*/
static void
mdb_node_shrink(MDB_page *mp, indx_t indx)
{
MDB_node *node;
MDB_page *sp, *xp;
char *base;
indx_t delta, nsize, len, ptr;
int i;
node = NODEPTR(mp, indx);
sp = (MDB_page *)NODEDATA(node);
delta = SIZELEFT(sp);
nsize = NODEDSZ(node) - delta;
/* Prepare to shift upward, set len = length(subpage part to shift) */
if (IS_LEAF2(sp)) {
len = nsize;
if (nsize & 1)
return; /* do not make the node uneven-sized */
} else {
xp = (MDB_page *)((char *)sp + delta); /* destination subpage */
for (i = NUMKEYS(sp); --i >= 0; )
xp->mp_ptrs[i] = sp->mp_ptrs[i] - delta;
len = PAGEHDRSZ;
}
sp->mp_upper = sp->mp_lower;
COPY_PGNO(sp->mp_pgno, mp->mp_pgno);
SETDSZ(node, nsize);
/* Shift <lower nodes...initial part of subpage> upward */
base = (char *)mp + mp->mp_upper + PAGEBASE;
memmove(base + delta, base, (char *)sp + len - base);
ptr = mp->mp_ptrs[indx];
for (i = NUMKEYS(mp); --i >= 0; ) {
if (mp->mp_ptrs[i] <= ptr)
mp->mp_ptrs[i] += delta;
}
mp->mp_upper += delta;
}
/** Initial setup of a sorted-dups cursor.
* Sorted duplicates are implemented as a sub-database for the given key.
* The duplicate data items are actually keys of the sub-database.
* Operations on the duplicate data items are performed using a sub-cursor
* initialized when the sub-database is first accessed. This function does
* the preliminary setup of the sub-cursor, filling in the fields that
* depend only on the parent DB.
* @param[in] mc The main cursor whose sorted-dups cursor is to be initialized.
*/
static void
mdb_xcursor_init0(MDB_cursor *mc)
{
MDB_xcursor *mx = mc->mc_xcursor;
mx->mx_cursor.mc_xcursor = NULL;
mx->mx_cursor.mc_txn = mc->mc_txn;
mx->mx_cursor.mc_db = &mx->mx_db;
mx->mx_cursor.mc_dbx = &mx->mx_dbx;
mx->mx_cursor.mc_dbi = mc->mc_dbi;
mx->mx_cursor.mc_dbflag = &mx->mx_dbflag;
mx->mx_cursor.mc_snum = 0;
mx->mx_cursor.mc_top = 0;
mx->mx_cursor.mc_flags = C_SUB;
mx->mx_dbx.md_name.mv_size = 0;
mx->mx_dbx.md_name.mv_data = NULL;
mx->mx_dbx.md_cmp = mc->mc_dbx->md_dcmp;
mx->mx_dbx.md_dcmp = NULL;
mx->mx_dbx.md_rel = mc->mc_dbx->md_rel;
}
/** Final setup of a sorted-dups cursor.
* Sets up the fields that depend on the data from the main cursor.
* @param[in] mc The main cursor whose sorted-dups cursor is to be initialized.
* @param[in] node The data containing the #MDB_db record for the
* sorted-dup database.
*/
static void
mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node)
{
MDB_xcursor *mx = mc->mc_xcursor;
if (node->mn_flags & F_SUBDATA) {
memcpy(&mx->mx_db, NODEDATA(node), sizeof(MDB_db));
mx->mx_cursor.mc_pg[0] = 0;
mx->mx_cursor.mc_snum = 0;
mx->mx_cursor.mc_top = 0;
mx->mx_cursor.mc_flags = C_SUB;
} else {
MDB_page *fp = NODEDATA(node);
mx->mx_db.md_xsize = 0;
mx->mx_db.md_flags = 0;
mx->mx_db.md_depth = 1;
mx->mx_db.md_branch_pages = 0;
mx->mx_db.md_leaf_pages = 1;
mx->mx_db.md_overflow_pages = 0;
mx->mx_db.md_entries = NUMKEYS(fp);
COPY_PGNO(mx->mx_db.md_root, fp->mp_pgno);
mx->mx_cursor.mc_snum = 1;
mx->mx_cursor.mc_top = 0;
mx->mx_cursor.mc_flags = C_INITIALIZED|C_SUB;
mx->mx_cursor.mc_pg[0] = fp;
mx->mx_cursor.mc_ki[0] = 0;
if (mc->mc_db->md_flags & MDB_DUPFIXED) {
mx->mx_db.md_flags = MDB_DUPFIXED;
mx->mx_db.md_xsize = fp->mp_leaf2_ksize;
if (mc->mc_db->md_flags & MDB_INTEGERDUP)
mx->mx_db.md_flags |= MDB_INTEGERKEY;
}
}
mdb_debug("Sub-db -%u root page %zu", mx->mx_cursor.mc_dbi,
mx->mx_db.md_root);
mx->mx_dbflag = DB_VALID|DB_USRVALID|DB_DUPDATA;
/* #if UINT_MAX < SIZE_MAX
if (mx->mx_dbx.md_cmp == mdb_cmp_int && mx->mx_db.md_pad == sizeof(size_t))
mx->mx_dbx.md_cmp = mdb_cmp_clong;
#endif */
}
/** Fixup a sorted-dups cursor due to underlying update.
* Sets up some fields that depend on the data from the main cursor.
* Almost the same as init1, but skips initialization steps if the
* xcursor had already been used.
* @param[in] mc The main cursor whose sorted-dups cursor is to be fixed up.
* @param[in] src_mx The xcursor of an up-to-date cursor.
* @param[in] new_dupdata True if converting from a non-#F_DUPDATA item.
*/
static void
mdb_xcursor_init2(MDB_cursor *mc, MDB_xcursor *src_mx, int new_dupdata)
{
MDB_xcursor *mx = mc->mc_xcursor;
if (new_dupdata) {
mx->mx_cursor.mc_snum = 1;
mx->mx_cursor.mc_top = 0;
mx->mx_cursor.mc_flags |= C_INITIALIZED;
mx->mx_cursor.mc_ki[0] = 0;
mx->mx_dbflag = DB_VALID|DB_USRVALID|DB_DUPDATA;
#if UINT_MAX < SIZE_MAX
mx->mx_dbx.md_cmp = src_mx->mx_dbx.md_cmp;
#endif
} else if (!(mx->mx_cursor.mc_flags & C_INITIALIZED)) {
return;
}
mx->mx_db = src_mx->mx_db;
mx->mx_cursor.mc_pg[0] = src_mx->mx_cursor.mc_pg[0];
mdb_debug("Sub-db -%u root page %zu", mx->mx_cursor.mc_dbi,
mx->mx_db.md_root);
}
/** Initialize a cursor for a given transaction and database. */
static void
mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx)
{
mc->mc_signature = MDBX_MC_SIGNATURE;
mc->mc_next = NULL;
mc->mc_backup = NULL;
mc->mc_dbi = dbi;
mc->mc_txn = txn;
mc->mc_db = &txn->mt_dbs[dbi];
mc->mc_dbx = &txn->mt_dbxs[dbi];
mc->mc_dbflag = &txn->mt_dbflags[dbi];
mc->mc_snum = 0;
mc->mc_top = 0;
mc->mc_pg[0] = 0;
mc->mc_flags = 0;
mc->mc_ki[0] = 0;
if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT) {
mdb_tassert(txn, mx != NULL);
mx->mx_cursor.mc_signature = MDBX_MC_SIGNATURE;
mc->mc_xcursor = mx;
mdb_xcursor_init0(mc);
} else {
mc->mc_xcursor = NULL;
}
if (*mc->mc_dbflag & DB_STALE) {
mdb_page_search(mc, NULL, MDB_PS_ROOTONLY);
}
}
int
mdb_cursor_open(MDB_txn *txn, MDB_dbi dbi, MDB_cursor **ret)
{
MDB_cursor *mc;
size_t size = sizeof(MDB_cursor);
if (unlikely(!ret || !txn))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(!TXN_DBI_EXIST(txn, dbi, DB_VALID)))
return EINVAL;
if (unlikely(txn->mt_flags & MDB_TXN_BLOCKED))
return MDB_BAD_TXN;
if (unlikely(dbi == FREE_DBI && !F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)))
return EINVAL;
if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT)
size += sizeof(MDB_xcursor);
if (likely((mc = malloc(size)) != NULL)) {
mdb_cursor_init(mc, txn, dbi, (MDB_xcursor *)(mc + 1));
if (txn->mt_cursors) {
mc->mc_next = txn->mt_cursors[dbi];
txn->mt_cursors[dbi] = mc;
mc->mc_flags |= C_UNTRACK;
}
} else {
return ENOMEM;
}
*ret = mc;
return MDB_SUCCESS;
}
int
mdb_cursor_renew(MDB_txn *txn, MDB_cursor *mc)
{
if (unlikely(!mc || !txn))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE
|| mc->mc_signature != MDBX_MC_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(!TXN_DBI_EXIST(txn, mc->mc_dbi, DB_VALID)))
return EINVAL;
if (unlikely((mc->mc_flags & C_UNTRACK) || txn->mt_cursors))
return EINVAL;
if (unlikely(txn->mt_flags & MDB_TXN_BLOCKED))
return MDB_BAD_TXN;
mdb_cursor_init(mc, txn, mc->mc_dbi, mc->mc_xcursor);
return MDB_SUCCESS;
}
/* Return the count of duplicate data items for the current key */
int
mdb_cursor_count(MDB_cursor *mc, size_t *countp)
{
if (unlikely(mc == NULL || countp == NULL))
return EINVAL;
if (unlikely(mc->mc_signature != MDBX_MC_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(mc->mc_txn->mt_flags & MDB_TXN_BLOCKED))
return MDB_BAD_TXN;
if (unlikely(!(mc->mc_flags & C_INITIALIZED)))
return EINVAL;
#if MDBX_MODE_ENABLED
MDB_page *mp = mc->mc_pg[mc->mc_top];
int nkeys = NUMKEYS(mp);
if (!nkeys || mc->mc_ki[mc->mc_top] >= nkeys) {
*countp = 0;
return MDB_NOTFOUND;
} else if (mc->mc_xcursor == NULL || IS_LEAF2(mp)) {
*countp = 1;
} else {
MDB_node *leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
if (!F_ISSET(leaf->mn_flags, F_DUPDATA))
*countp = 1;
else if (unlikely(!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)))
return EINVAL;
else
*countp = mc->mc_xcursor->mx_db.md_entries;
}
#else
if (unlikely(mc->mc_xcursor == NULL))
return MDB_INCOMPATIBLE;
if (unlikely(!mc->mc_snum || (mc->mc_flags & C_EOF)))
return MDB_NOTFOUND;
MDB_node *leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
*countp = 1;
} else {
if (unlikely(!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)))
return EINVAL;
*countp = mc->mc_xcursor->mx_db.md_entries;
}
#endif /* MDBX_MODE_ENABLED */
return MDB_SUCCESS;
}
void
mdb_cursor_close(MDB_cursor *mc)
{
if (mc) {
mdb_ensure(NULL, mc->mc_signature == MDBX_MC_SIGNATURE);
if (!mc->mc_backup) {
/* Remove from txn, if tracked.
* A read-only txn (!C_UNTRACK) may have been freed already,
* so do not peek inside it. Only write txns track cursors.
*/
if ((mc->mc_flags & C_UNTRACK) && mc->mc_txn->mt_cursors) {
MDB_cursor **prev = &mc->mc_txn->mt_cursors[mc->mc_dbi];
while (*prev && *prev != mc) prev = &(*prev)->mc_next;
if (*prev == mc)
*prev = mc->mc_next;
}
mc->mc_signature = 0;
free(mc);
}
}
}
MDB_txn *
mdb_cursor_txn(MDB_cursor *mc)
{
if (unlikely(!mc || mc->mc_signature != MDBX_MC_SIGNATURE))
return NULL;
return mc->mc_txn;
}
MDB_dbi
mdb_cursor_dbi(MDB_cursor *mc)
{
if (unlikely(!mc || mc->mc_signature != MDBX_MC_SIGNATURE))
return INT_MIN;
return mc->mc_dbi;
}
/** Replace the key for a branch node with a new key.
* Set #MDB_TXN_ERROR on failure.
* @param[in] mc Cursor pointing to the node to operate on.
* @param[in] key The new key to use.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_update_key(MDB_cursor *mc, MDB_val *key)
{
MDB_page *mp;
MDB_node *node;
char *base;
size_t len;
int delta, ksize, oksize;
indx_t ptr, i, numkeys, indx;
DKBUF;
indx = mc->mc_ki[mc->mc_top];
mp = mc->mc_pg[mc->mc_top];
node = NODEPTR(mp, indx);
ptr = mp->mp_ptrs[indx];
{
MDB_val k2;
char kbuf2[DKBUF_MAXKEYSIZE*2+1];
k2.mv_data = NODEKEY(node);
k2.mv_size = node->mn_ksize;
mdb_debug("update key %u (ofs %u) [%s] to [%s] on page %zu",
indx, ptr,
mdb_dkey(&k2, kbuf2),
DKEY(key),
mp->mp_pgno);
}
/* Sizes must be 2-byte aligned. */
ksize = EVEN(key->mv_size);
oksize = EVEN(node->mn_ksize);
delta = ksize - oksize;
/* Shift node contents if EVEN(key length) changed. */
if (delta) {
if (delta > 0 && SIZELEFT(mp) < delta) {
pgno_t pgno;
/* not enough space left, do a delete and split */
mdb_debug("Not enough room, delta = %d, splitting...", delta);
pgno = NODEPGNO(node);
mdb_node_del(mc, 0);
return mdb_page_split(mc, key, NULL, pgno, MDB_SPLIT_REPLACE);
}
numkeys = NUMKEYS(mp);
for (i = 0; i < numkeys; i++) {
if (mp->mp_ptrs[i] <= ptr)
mp->mp_ptrs[i] -= delta;
}
base = (char *)mp + mp->mp_upper + PAGEBASE;
len = ptr - mp->mp_upper + NODESIZE;
memmove(base - delta, base, len);
mp->mp_upper -= delta;
node = NODEPTR(mp, indx);
}
/* But even if no shift was needed, update ksize */
if (node->mn_ksize != key->mv_size)
node->mn_ksize = key->mv_size;
if (key->mv_size)
memcpy(NODEKEY(node), key->mv_data, key->mv_size);
return MDB_SUCCESS;
}
static void
mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst);
/** Perform \b act while tracking temporary cursor \b mn */
#define WITH_CURSOR_TRACKING(mn, act) do { \
MDB_cursor dummy, *tracked, **tp = &(mn).mc_txn->mt_cursors[mn.mc_dbi]; \
if ((mn).mc_flags & C_SUB) { \
dummy.mc_flags = C_INITIALIZED; \
dummy.mc_xcursor = (MDB_xcursor *)&(mn); \
tracked = &dummy; \
} else { \
tracked = &(mn); \
} \
tracked->mc_next = *tp; \
*tp = tracked; \
{ act; } \
*tp = tracked->mc_next; \
} while (0)
/** Move a node from csrc to cdst.
*/
static int
mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst, int fromleft)
{
MDB_node *srcnode;
MDB_val key, data;
pgno_t srcpg;
MDB_cursor mn;
int rc;
unsigned short flags;
DKBUF;
/* Mark src and dst as dirty. */
if (unlikely((rc = mdb_page_touch(csrc)) ||
(rc = mdb_page_touch(cdst))))
return rc;
if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
key.mv_size = csrc->mc_db->md_xsize;
key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top], key.mv_size);
data.mv_size = 0;
data.mv_data = NULL;
srcpg = 0;
flags = 0;
} else {
srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top]);
mdb_cassert(csrc, !((size_t)srcnode & 1));
srcpg = NODEPGNO(srcnode);
flags = srcnode->mn_flags;
if (csrc->mc_ki[csrc->mc_top] == 0 && IS_BRANCH(csrc->mc_pg[csrc->mc_top])) {
unsigned snum = csrc->mc_snum;
MDB_node *s2;
/* must find the lowest key below src */
rc = mdb_page_search_lowest(csrc);
if (unlikely(rc))
return rc;
if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
key.mv_size = csrc->mc_db->md_xsize;
key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size);
} else {
s2 = NODEPTR(csrc->mc_pg[csrc->mc_top], 0);
key.mv_size = NODEKSZ(s2);
key.mv_data = NODEKEY(s2);
}
csrc->mc_snum = snum--;
csrc->mc_top = snum;
} else {
key.mv_size = NODEKSZ(srcnode);
key.mv_data = NODEKEY(srcnode);
}
data.mv_size = NODEDSZ(srcnode);
data.mv_data = NODEDATA(srcnode);
}
mn.mc_xcursor = NULL;
if (IS_BRANCH(cdst->mc_pg[cdst->mc_top]) && cdst->mc_ki[cdst->mc_top] == 0) {
unsigned snum = cdst->mc_snum;
MDB_node *s2;
MDB_val bkey;
/* must find the lowest key below dst */
mdb_cursor_copy(cdst, &mn);
rc = mdb_page_search_lowest(&mn);
if (unlikely(rc))
return rc;
if (IS_LEAF2(mn.mc_pg[mn.mc_top])) {
bkey.mv_size = mn.mc_db->md_xsize;
bkey.mv_data = LEAF2KEY(mn.mc_pg[mn.mc_top], 0, bkey.mv_size);
} else {
s2 = NODEPTR(mn.mc_pg[mn.mc_top], 0);
bkey.mv_size = NODEKSZ(s2);
bkey.mv_data = NODEKEY(s2);
}
mn.mc_snum = snum--;
mn.mc_top = snum;
mn.mc_ki[snum] = 0;
rc = mdb_update_key(&mn, &bkey);
if (unlikely(rc))
return rc;
}
mdb_debug("moving %s node %u [%s] on page %zu to node %u on page %zu",
IS_LEAF(csrc->mc_pg[csrc->mc_top]) ? "leaf" : "branch",
csrc->mc_ki[csrc->mc_top],
DKEY(&key),
csrc->mc_pg[csrc->mc_top]->mp_pgno,
cdst->mc_ki[cdst->mc_top], cdst->mc_pg[cdst->mc_top]->mp_pgno);
/* Add the node to the destination page. */
rc = mdb_node_add(cdst, cdst->mc_ki[cdst->mc_top], &key, &data, srcpg, flags);
if (unlikely(rc != MDB_SUCCESS))
return rc;
/* Delete the node from the source page. */
mdb_node_del(csrc, key.mv_size);
{
/* Adjust other cursors pointing to mp */
MDB_cursor *m2, *m3;
MDB_dbi dbi = csrc->mc_dbi;
MDB_page *mpd, *mps;
mps = csrc->mc_pg[csrc->mc_top];
/* If we're adding on the left, bump others up */
if (fromleft) {
mpd = cdst->mc_pg[csrc->mc_top];
for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (csrc->mc_flags & C_SUB)
m3 = &m2->mc_xcursor->mx_cursor;
else
m3 = m2;
if (!(m3->mc_flags & C_INITIALIZED) || m3->mc_top < csrc->mc_top)
continue;
if (m3 != cdst &&
m3->mc_pg[csrc->mc_top] == mpd &&
m3->mc_ki[csrc->mc_top] >= cdst->mc_ki[csrc->mc_top]) {
m3->mc_ki[csrc->mc_top]++;
}
if (m3 !=csrc &&
m3->mc_pg[csrc->mc_top] == mps &&
m3->mc_ki[csrc->mc_top] == csrc->mc_ki[csrc->mc_top]) {
m3->mc_pg[csrc->mc_top] = cdst->mc_pg[cdst->mc_top];
m3->mc_ki[csrc->mc_top] = cdst->mc_ki[cdst->mc_top];
m3->mc_ki[csrc->mc_top-1]++;
}
if (XCURSOR_INITED(m3) && IS_LEAF(mps))
XCURSOR_REFRESH(m3, m3->mc_pg[csrc->mc_top], m3->mc_ki[csrc->mc_top]);
}
} else
/* Adding on the right, bump others down */
{
for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (csrc->mc_flags & C_SUB)
m3 = &m2->mc_xcursor->mx_cursor;
else
m3 = m2;
if (m3 == csrc) continue;
if (!(m3->mc_flags & C_INITIALIZED) || m3->mc_top < csrc->mc_top)
continue;
if (m3->mc_pg[csrc->mc_top] == mps) {
if (!m3->mc_ki[csrc->mc_top]) {
m3->mc_pg[csrc->mc_top] = cdst->mc_pg[cdst->mc_top];
m3->mc_ki[csrc->mc_top] = cdst->mc_ki[cdst->mc_top];
m3->mc_ki[csrc->mc_top-1]--;
} else {
m3->mc_ki[csrc->mc_top]--;
}
if (XCURSOR_INITED(m3) && IS_LEAF(mps))
XCURSOR_REFRESH(m3, m3->mc_pg[csrc->mc_top], m3->mc_ki[csrc->mc_top]);
}
}
}
}
/* Update the parent separators. */
if (csrc->mc_ki[csrc->mc_top] == 0) {
if (csrc->mc_ki[csrc->mc_top-1] != 0) {
if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size);
} else {
srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], 0);
key.mv_size = NODEKSZ(srcnode);
key.mv_data = NODEKEY(srcnode);
}
mdb_debug("update separator for source page %zu to [%s]",
csrc->mc_pg[csrc->mc_top]->mp_pgno, DKEY(&key));
mdb_cursor_copy(csrc, &mn);
mn.mc_snum--;
mn.mc_top--;
/* We want mdb_rebalance to find mn when doing fixups */
WITH_CURSOR_TRACKING(mn, rc = mdb_update_key(&mn, &key));
if (unlikely(rc != MDB_SUCCESS))
return rc;
}
if (IS_BRANCH(csrc->mc_pg[csrc->mc_top])) {
MDB_val nullkey;
indx_t ix = csrc->mc_ki[csrc->mc_top];
nullkey.mv_size = 0;
csrc->mc_ki[csrc->mc_top] = 0;
rc = mdb_update_key(csrc, &nullkey);
csrc->mc_ki[csrc->mc_top] = ix;
mdb_cassert(csrc, rc == MDB_SUCCESS);
}
}
if (cdst->mc_ki[cdst->mc_top] == 0) {
if (cdst->mc_ki[cdst->mc_top-1] != 0) {
if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
key.mv_data = LEAF2KEY(cdst->mc_pg[cdst->mc_top], 0, key.mv_size);
} else {
srcnode = NODEPTR(cdst->mc_pg[cdst->mc_top], 0);
key.mv_size = NODEKSZ(srcnode);
key.mv_data = NODEKEY(srcnode);
}
mdb_debug("update separator for destination page %zu to [%s]",
cdst->mc_pg[cdst->mc_top]->mp_pgno, DKEY(&key));
mdb_cursor_copy(cdst, &mn);
mn.mc_snum--;
mn.mc_top--;
/* We want mdb_rebalance to find mn when doing fixups */
WITH_CURSOR_TRACKING(mn, rc = mdb_update_key(&mn, &key));
if (unlikely(rc != MDB_SUCCESS))
return rc;
}
if (IS_BRANCH(cdst->mc_pg[cdst->mc_top])) {
MDB_val nullkey;
indx_t ix = cdst->mc_ki[cdst->mc_top];
nullkey.mv_size = 0;
cdst->mc_ki[cdst->mc_top] = 0;
rc = mdb_update_key(cdst, &nullkey);
cdst->mc_ki[cdst->mc_top] = ix;
mdb_cassert(cdst, rc == MDB_SUCCESS);
}
}
return MDB_SUCCESS;
}
/** Merge one page into another.
* The nodes from the page pointed to by \b csrc will
* be copied to the page pointed to by \b cdst and then
* the \b csrc page will be freed.
* @param[in] csrc Cursor pointing to the source page.
* @param[in] cdst Cursor pointing to the destination page.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst)
{
MDB_page *psrc, *pdst;
MDB_node *srcnode;
MDB_val key, data;
unsigned nkeys;
int rc;
indx_t i, j;
psrc = csrc->mc_pg[csrc->mc_top];
pdst = cdst->mc_pg[cdst->mc_top];
mdb_debug("merging page %zu into %zu", psrc->mp_pgno, pdst->mp_pgno);
mdb_cassert(csrc, csrc->mc_snum > 1); /* can't merge root page */
mdb_cassert(csrc, cdst->mc_snum > 1);
/* Mark dst as dirty. */
if (unlikely(rc = mdb_page_touch(cdst)))
return rc;
/* get dst page again now that we've touched it. */
pdst = cdst->mc_pg[cdst->mc_top];
/* Move all nodes from src to dst.
*/
j = nkeys = NUMKEYS(pdst);
if (IS_LEAF2(psrc)) {
key.mv_size = csrc->mc_db->md_xsize;
key.mv_data = PAGEDATA(psrc);
for (i = 0; i < NUMKEYS(psrc); i++, j++) {
rc = mdb_node_add(cdst, j, &key, NULL, 0, 0);
if (unlikely(rc != MDB_SUCCESS))
return rc;
key.mv_data = (char *)key.mv_data + key.mv_size;
}
} else {
for (i = 0; i < NUMKEYS(psrc); i++, j++) {
srcnode = NODEPTR(psrc, i);
if (i == 0 && IS_BRANCH(psrc)) {
MDB_cursor mn;
MDB_node *s2;
mdb_cursor_copy(csrc, &mn);
mn.mc_xcursor = NULL;
/* must find the lowest key below src */
rc = mdb_page_search_lowest(&mn);
if (unlikely(rc))
return rc;
if (IS_LEAF2(mn.mc_pg[mn.mc_top])) {
key.mv_size = mn.mc_db->md_xsize;
key.mv_data = LEAF2KEY(mn.mc_pg[mn.mc_top], 0, key.mv_size);
} else {
s2 = NODEPTR(mn.mc_pg[mn.mc_top], 0);
key.mv_size = NODEKSZ(s2);
key.mv_data = NODEKEY(s2);
}
} else {
key.mv_size = srcnode->mn_ksize;
key.mv_data = NODEKEY(srcnode);
}
data.mv_size = NODEDSZ(srcnode);
data.mv_data = NODEDATA(srcnode);
rc = mdb_node_add(cdst, j, &key, &data, NODEPGNO(srcnode), srcnode->mn_flags);
if (unlikely(rc != MDB_SUCCESS))
return rc;
}
}
mdb_debug("dst page %zu now has %u keys (%.1f%% filled)",
pdst->mp_pgno, NUMKEYS(pdst),
(float)PAGEFILL(cdst->mc_txn->mt_env, pdst) / 10);
/* Unlink the src page from parent and add to free list.
*/
csrc->mc_top--;
mdb_node_del(csrc, 0);
if (csrc->mc_ki[csrc->mc_top] == 0) {
key.mv_size = 0;
rc = mdb_update_key(csrc, &key);
if (unlikely(rc)) {
csrc->mc_top++;
return rc;
}
}
csrc->mc_top++;
psrc = csrc->mc_pg[csrc->mc_top];
/* If not operating on FreeDB, allow this page to be reused
* in this txn. Otherwise just add to free list.
*/
rc = mdb_page_loose(csrc, psrc);
if (unlikely(rc))
return rc;
if (IS_LEAF(psrc))
csrc->mc_db->md_leaf_pages--;
else
csrc->mc_db->md_branch_pages--;
{
/* Adjust other cursors pointing to mp */
MDB_cursor *m2, *m3;
MDB_dbi dbi = csrc->mc_dbi;
unsigned top = csrc->mc_top;
for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (csrc->mc_flags & C_SUB)
m3 = &m2->mc_xcursor->mx_cursor;
else
m3 = m2;
if (m3 == csrc) continue;
if (m3->mc_snum < csrc->mc_snum) continue;
if (m3->mc_pg[top] == psrc) {
m3->mc_pg[top] = pdst;
m3->mc_ki[top] += nkeys;
m3->mc_ki[top-1] = cdst->mc_ki[top-1];
} else if (m3->mc_pg[top-1] == csrc->mc_pg[top-1] &&
m3->mc_ki[top-1] > csrc->mc_ki[top-1]) {
m3->mc_ki[top-1]--;
}
if (XCURSOR_INITED(m3) && IS_LEAF(psrc))
XCURSOR_REFRESH(m3, m3->mc_pg[top], m3->mc_ki[top]);
}
}
{
unsigned snum = cdst->mc_snum;
uint16_t depth = cdst->mc_db->md_depth;
mdb_cursor_pop(cdst);
rc = mdb_rebalance(cdst);
/* Did the tree height change? */
if (depth != cdst->mc_db->md_depth)
snum += cdst->mc_db->md_depth - depth;
cdst->mc_snum = snum;
cdst->mc_top = snum-1;
}
return rc;
}
/** Copy the contents of a cursor.
* @param[in] csrc The cursor to copy from.
* @param[out] cdst The cursor to copy to.
*/
static void
mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst)
{
unsigned i;
cdst->mc_txn = csrc->mc_txn;
cdst->mc_dbi = csrc->mc_dbi;
cdst->mc_db = csrc->mc_db;
cdst->mc_dbx = csrc->mc_dbx;
cdst->mc_snum = csrc->mc_snum;
cdst->mc_top = csrc->mc_top;
cdst->mc_flags = csrc->mc_flags;
for (i=0; i<csrc->mc_snum; i++) {
cdst->mc_pg[i] = csrc->mc_pg[i];
cdst->mc_ki[i] = csrc->mc_ki[i];
}
}
/** Rebalance the tree after a delete operation.
* @param[in] mc Cursor pointing to the page where rebalancing
* should begin.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_rebalance(MDB_cursor *mc)
{
MDB_node *node;
int rc, fromleft;
unsigned ptop, minkeys, thresh;
MDB_cursor mn;
indx_t oldki;
if (IS_BRANCH(mc->mc_pg[mc->mc_top])) {
minkeys = 2;
thresh = 1;
} else {
minkeys = 1;
thresh = FILL_THRESHOLD;
}
mdb_debug("rebalancing %s page %zu (has %u keys, %.1f%% full)",
IS_LEAF(mc->mc_pg[mc->mc_top]) ? "leaf" : "branch",
mdb_dbg_pgno(mc->mc_pg[mc->mc_top]), NUMKEYS(mc->mc_pg[mc->mc_top]),
(float)PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) / 10);
if (PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) >= thresh &&
NUMKEYS(mc->mc_pg[mc->mc_top]) >= minkeys) {
mdb_debug("no need to rebalance page %zu, above fill threshold",
mdb_dbg_pgno(mc->mc_pg[mc->mc_top]));
return MDB_SUCCESS;
}
if (mc->mc_snum < 2) {
MDB_page *mp = mc->mc_pg[0];
if (IS_SUBP(mp)) {
mdb_debug("Can't rebalance a subpage, ignoring");
return MDB_SUCCESS;
}
if (NUMKEYS(mp) == 0) {
mdb_debug("tree is completely empty");
mc->mc_db->md_root = P_INVALID;
mc->mc_db->md_depth = 0;
mc->mc_db->md_leaf_pages = 0;
rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno);
if (unlikely(rc))
return rc;
/* Adjust cursors pointing to mp */
mc->mc_snum = 0;
mc->mc_top = 0;
mc->mc_flags &= ~C_INITIALIZED;
{
MDB_cursor *m2, *m3;
MDB_dbi dbi = mc->mc_dbi;
for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (mc->mc_flags & C_SUB)
m3 = &m2->mc_xcursor->mx_cursor;
else
m3 = m2;
if (!(m3->mc_flags & C_INITIALIZED) || (m3->mc_snum < mc->mc_snum))
continue;
if (m3->mc_pg[0] == mp) {
m3->mc_snum = 0;
m3->mc_top = 0;
m3->mc_flags &= ~C_INITIALIZED;
}
}
}
} else if (IS_BRANCH(mp) && NUMKEYS(mp) == 1) {
int i;
mdb_debug("collapsing root page!");
rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno);
if (unlikely(rc))
return rc;
mc->mc_db->md_root = NODEPGNO(NODEPTR(mp, 0));
rc = mdb_page_get(mc, mc->mc_db->md_root, &mc->mc_pg[0], NULL);
if (unlikely(rc))
return rc;
mc->mc_db->md_depth--;
mc->mc_db->md_branch_pages--;
mc->mc_ki[0] = mc->mc_ki[1];
for (i = 1; i<mc->mc_db->md_depth; i++) {
mc->mc_pg[i] = mc->mc_pg[i+1];
mc->mc_ki[i] = mc->mc_ki[i+1];
}
{
/* Adjust other cursors pointing to mp */
MDB_cursor *m2, *m3;
MDB_dbi dbi = mc->mc_dbi;
for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (mc->mc_flags & C_SUB)
m3 = &m2->mc_xcursor->mx_cursor;
else
m3 = m2;
if (m3 == mc) continue;
if (!(m3->mc_flags & C_INITIALIZED))
continue;
if (m3->mc_pg[0] == mp) {
for (i=0; i<mc->mc_db->md_depth; i++) {
m3->mc_pg[i] = m3->mc_pg[i+1];
m3->mc_ki[i] = m3->mc_ki[i+1];
}
m3->mc_snum--;
m3->mc_top--;
}
}
}
} else
mdb_debug("root page doesn't need rebalancing");
return MDB_SUCCESS;
}
/* The parent (branch page) must have at least 2 pointers,
* otherwise the tree is invalid.
*/
ptop = mc->mc_top-1;
mdb_cassert(mc, NUMKEYS(mc->mc_pg[ptop]) > 1);
/* Leaf page fill factor is below the threshold.
* Try to move keys from left or right neighbor, or
* merge with a neighbor page.
*/
/* Find neighbors.
*/
mdb_cursor_copy(mc, &mn);
mn.mc_xcursor = NULL;
oldki = mc->mc_ki[mc->mc_top];
if (mc->mc_ki[ptop] == 0) {
/* We're the leftmost leaf in our parent.
*/
mdb_debug("reading right neighbor");
mn.mc_ki[ptop]++;
node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]);
rc = mdb_page_get(mc, NODEPGNO(node), &mn.mc_pg[mn.mc_top], NULL);
if (unlikely(rc))
return rc;
mn.mc_ki[mn.mc_top] = 0;
mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]);
fromleft = 0;
} else {
/* There is at least one neighbor to the left.
*/
mdb_debug("reading left neighbor");
mn.mc_ki[ptop]--;
node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]);
rc = mdb_page_get(mc, NODEPGNO(node), &mn.mc_pg[mn.mc_top], NULL);
if (unlikely(rc))
return rc;
mn.mc_ki[mn.mc_top] = NUMKEYS(mn.mc_pg[mn.mc_top]) - 1;
mc->mc_ki[mc->mc_top] = 0;
fromleft = 1;
}
mdb_debug("found neighbor page %zu (%u keys, %.1f%% full)",
mn.mc_pg[mn.mc_top]->mp_pgno, NUMKEYS(mn.mc_pg[mn.mc_top]),
(float)PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) / 10);
/* If the neighbor page is above threshold and has enough keys,
* move one key from it. Otherwise we should try to merge them.
* (A branch page must never have less than 2 keys.)
*/
if (PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) >= thresh && NUMKEYS(mn.mc_pg[mn.mc_top]) > minkeys) {
rc = mdb_node_move(&mn, mc, fromleft);
if (fromleft) {
/* if we inserted on left, bump position up */
oldki++;
}
} else {
if (!fromleft) {
rc = mdb_page_merge(&mn, mc);
} else {
oldki += NUMKEYS(mn.mc_pg[mn.mc_top]);
mn.mc_ki[mn.mc_top] += mc->mc_ki[mn.mc_top] + 1;
/* We want mdb_rebalance to find mn when doing fixups */
WITH_CURSOR_TRACKING(mn,
rc = mdb_page_merge(mc, &mn));
mdb_cursor_copy(&mn, mc);
}
mc->mc_flags &= ~C_EOF;
}
mc->mc_ki[mc->mc_top] = oldki;
return rc;
}
/** Complete a delete operation started by #mdb_cursor_del(). */
static int
mdb_cursor_del0(MDB_cursor *mc)
{
int rc;
MDB_page *mp;
indx_t ki;
unsigned nkeys;
MDB_cursor *m2, *m3;
MDB_dbi dbi = mc->mc_dbi;
ki = mc->mc_ki[mc->mc_top];
mp = mc->mc_pg[mc->mc_top];
mdb_node_del(mc, mc->mc_db->md_xsize);
mc->mc_db->md_entries--;
{
/* Adjust other cursors pointing to mp */
for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
m3 = (mc->mc_flags & C_SUB) ? &m2->mc_xcursor->mx_cursor : m2;
if (! (m2->mc_flags & m3->mc_flags & C_INITIALIZED))
continue;
if (m3 == mc || m3->mc_snum < mc->mc_snum)
continue;
if (m3->mc_pg[mc->mc_top] == mp) {
if (m3->mc_ki[mc->mc_top] == ki) {
m3->mc_flags |= C_DEL;
if (mc->mc_db->md_flags & MDB_DUPSORT) {
/* Sub-cursor referred into dataset which is gone */
m3->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
}
continue;
} else if (m3->mc_ki[mc->mc_top] > ki) {
m3->mc_ki[mc->mc_top]--;
}
if (XCURSOR_INITED(m3))
XCURSOR_REFRESH(m3, m3->mc_pg[mc->mc_top], m3->mc_ki[mc->mc_top]);
}
}
}
rc = mdb_rebalance(mc);
if (likely(rc == MDB_SUCCESS)) {
/* DB is totally empty now, just bail out.
* Other cursors adjustments were already done
* by mdb_rebalance and aren't needed here.
*/
if (!mc->mc_snum)
return rc;
mp = mc->mc_pg[mc->mc_top];
nkeys = NUMKEYS(mp);
/* Adjust other cursors pointing to mp */
for (m2 = mc->mc_txn->mt_cursors[dbi]; !rc && m2; m2=m2->mc_next) {
m3 = (mc->mc_flags & C_SUB) ? &m2->mc_xcursor->mx_cursor : m2;
if (! (m2->mc_flags & m3->mc_flags & C_INITIALIZED))
continue;
if (m3->mc_snum < mc->mc_snum)
continue;
if (m3->mc_pg[mc->mc_top] == mp) {
/* if m3 points past last node in page, find next sibling */
if (m3->mc_ki[mc->mc_top] >= mc->mc_ki[mc->mc_top]) {
if (m3->mc_ki[mc->mc_top] >= nkeys) {
rc = mdb_cursor_sibling(m3, 1);
if (rc == MDB_NOTFOUND) {
m3->mc_flags |= C_EOF;
rc = MDB_SUCCESS;
continue;
}
}
if (mc->mc_db->md_flags & MDB_DUPSORT) {
MDB_node *node = NODEPTR(m3->mc_pg[m3->mc_top], m3->mc_ki[m3->mc_top]);
/* If this node is a fake page, it needs to be reinited
* because its data has moved. But just reset mc_pg[0]
* if the xcursor is already live.
*/
if ((node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) {
if (m3->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)
m3->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(node);
else
mdb_xcursor_init1(m3, node);
}
}
}
}
}
mc->mc_flags |= C_DEL;
}
if (unlikely(rc))
mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
return rc;
}
int
mdb_del(MDB_txn *txn, MDB_dbi dbi,
MDB_val *key, MDB_val *data)
{
if (unlikely(!key || !txn))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)))
return EINVAL;
if (unlikely(txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED)))
return (txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
if (!F_ISSET(txn->mt_dbs[dbi].md_flags, MDB_DUPSORT)) {
/* must ignore any data */
data = NULL;
}
return mdb_del0(txn, dbi, key, data, 0);
}
static int
mdb_del0(MDB_txn *txn, MDB_dbi dbi,
MDB_val *key, MDB_val *data, unsigned flags)
{
MDB_cursor mc;
MDB_xcursor mx;
MDB_cursor_op op;
MDB_val rdata, *xdata;
int rc, exact = 0;
DKBUF;
mdb_debug("====> delete db %u key [%s]", dbi, DKEY(key));
mdb_cursor_init(&mc, txn, dbi, &mx);
if (data) {
op = MDB_GET_BOTH;
rdata = *data;
xdata = &rdata;
} else {
op = MDB_SET;
xdata = NULL;
flags |= MDB_NODUPDATA;
}
rc = mdb_cursor_set(&mc, key, xdata, op, &exact);
if (likely(rc == 0)) {
/* let mdb_page_split know about this cursor if needed:
* delete will trigger a rebalance; if it needs to move
* a node from one page to another, it will have to
* update the parent's separator key(s). If the new sepkey
* is larger than the current one, the parent page may
* run out of space, triggering a split. We need this
* cursor to be consistent until the end of the rebalance.
*/
mc.mc_next = txn->mt_cursors[dbi];
txn->mt_cursors[dbi] = &mc;
rc = mdb_cursor_del(&mc, flags);
txn->mt_cursors[dbi] = mc.mc_next;
}
return rc;
}
/** Split a page and insert a new node.
* Set #MDB_TXN_ERROR on failure.
* @param[in,out] mc Cursor pointing to the page and desired insertion index.
* The cursor will be updated to point to the actual page and index where
* the node got inserted after the split.
* @param[in] newkey The key for the newly inserted node.
* @param[in] newdata The data for the newly inserted node.
* @param[in] newpgno The page number, if the new node is a branch node.
* @param[in] nflags The #NODE_ADD_FLAGS for the new node.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata, pgno_t newpgno,
unsigned nflags)
{
unsigned flags;
int rc = MDB_SUCCESS, new_root = 0, did_split = 0;
indx_t newindx;
pgno_t pgno = 0;
int i, j, split_indx, nkeys, pmax;
MDB_env *env = mc->mc_txn->mt_env;
MDB_node *node;
MDB_val sepkey, rkey, xdata, *rdata = &xdata;
MDB_page *copy = NULL;
MDB_page *mp, *rp, *pp;
int ptop;
MDB_cursor mn;
DKBUF;
mp = mc->mc_pg[mc->mc_top];
newindx = mc->mc_ki[mc->mc_top];
nkeys = NUMKEYS(mp);
mdb_debug("-----> splitting %s page %zu and adding [%s] at index %i/%i",
IS_LEAF(mp) ? "leaf" : "branch", mp->mp_pgno,
DKEY(newkey), mc->mc_ki[mc->mc_top], nkeys);
/* Create a right sibling. */
if ((rc = mdb_page_new(mc, mp->mp_flags, 1, &rp)))
return rc;
rp->mp_leaf2_ksize = mp->mp_leaf2_ksize;
mdb_debug("new right sibling: page %zu", rp->mp_pgno);
/* Usually when splitting the root page, the cursor
* height is 1. But when called from mdb_update_key,
* the cursor height may be greater because it walks
* up the stack while finding the branch slot to update.
*/
if (mc->mc_top < 1) {
if ((rc = mdb_page_new(mc, P_BRANCH, 1, &pp)))
goto done;
/* shift current top to make room for new parent */
for (i=mc->mc_snum; i>0; i--) {
mc->mc_pg[i] = mc->mc_pg[i-1];
mc->mc_ki[i] = mc->mc_ki[i-1];
}
mc->mc_pg[0] = pp;
mc->mc_ki[0] = 0;
mc->mc_db->md_root = pp->mp_pgno;
mdb_debug("root split! new root = %zu", pp->mp_pgno);
new_root = mc->mc_db->md_depth++;
/* Add left (implicit) pointer. */
if (unlikely((rc = mdb_node_add(mc, 0, NULL, NULL, mp->mp_pgno, 0)) != MDB_SUCCESS)) {
/* undo the pre-push */
mc->mc_pg[0] = mc->mc_pg[1];
mc->mc_ki[0] = mc->mc_ki[1];
mc->mc_db->md_root = mp->mp_pgno;
mc->mc_db->md_depth--;
goto done;
}
mc->mc_snum++;
mc->mc_top++;
ptop = 0;
} else {
ptop = mc->mc_top-1;
mdb_debug("parent branch page is %zu", mc->mc_pg[ptop]->mp_pgno);
}
mdb_cursor_copy(mc, &mn);
mn.mc_xcursor = NULL;
mn.mc_pg[mn.mc_top] = rp;
mn.mc_ki[ptop] = mc->mc_ki[ptop]+1;
if (nflags & MDB_APPEND) {
mn.mc_ki[mn.mc_top] = 0;
sepkey = *newkey;
split_indx = newindx;
nkeys = 0;
} else {
split_indx = (nkeys+1) / 2;
if (IS_LEAF2(rp)) {
char *split, *ins;
int x;
unsigned lsize, rsize, ksize;
/* Move half of the keys to the right sibling */
x = mc->mc_ki[mc->mc_top] - split_indx;
ksize = mc->mc_db->md_xsize;
split = LEAF2KEY(mp, split_indx, ksize);
rsize = (nkeys - split_indx) * ksize;
lsize = (nkeys - split_indx) * sizeof(indx_t);
mp->mp_lower -= lsize;
rp->mp_lower += lsize;
mp->mp_upper += rsize - lsize;
rp->mp_upper -= rsize - lsize;
sepkey.mv_size = ksize;
if (newindx == split_indx) {
sepkey.mv_data = newkey->mv_data;
} else {
sepkey.mv_data = split;
}
if (x<0) {
ins = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], ksize);
memcpy(rp->mp_ptrs, split, rsize);
sepkey.mv_data = rp->mp_ptrs;
memmove(ins+ksize, ins, (split_indx - mc->mc_ki[mc->mc_top]) * ksize);
memcpy(ins, newkey->mv_data, ksize);
mp->mp_lower += sizeof(indx_t);
mp->mp_upper -= ksize - sizeof(indx_t);
} else {
if (x)
memcpy(rp->mp_ptrs, split, x * ksize);
ins = LEAF2KEY(rp, x, ksize);
memcpy(ins, newkey->mv_data, ksize);
memcpy(ins+ksize, split + x * ksize, rsize - x * ksize);
rp->mp_lower += sizeof(indx_t);
rp->mp_upper -= ksize - sizeof(indx_t);
mc->mc_ki[mc->mc_top] = x;
}
} else {
int psize, nsize, k;
/* Maximum free space in an empty page */
pmax = env->me_psize - PAGEHDRSZ;
if (IS_LEAF(mp))
nsize = mdb_leaf_size(env, newkey, newdata);
else
nsize = mdb_branch_size(env, newkey);
nsize = EVEN(nsize);
/* grab a page to hold a temporary copy */
copy = mdb_page_malloc(mc->mc_txn, 1);
if (unlikely(copy == NULL)) {
rc = ENOMEM;
goto done;
}
copy->mp_pgno = mp->mp_pgno;
copy->mp_flags = mp->mp_flags;
copy->mp_lower = (PAGEHDRSZ-PAGEBASE);
copy->mp_upper = env->me_psize - PAGEBASE;
/* prepare to insert */
for (i=0, j=0; i<nkeys; i++) {
if (i == newindx) {
copy->mp_ptrs[j++] = 0;
}
copy->mp_ptrs[j++] = mp->mp_ptrs[i];
}
/* When items are relatively large the split point needs
* to be checked, because being off-by-one will make the
* difference between success or failure in mdb_node_add.
*
* It's also relevant if a page happens to be laid out
* such that one half of its nodes are all "small" and
* the other half of its nodes are "large." If the new
* item is also "large" and falls on the half with
* "large" nodes, it also may not fit.
*
* As a final tweak, if the new item goes on the last
* spot on the page (and thus, onto the new page), bias
* the split so the new page is emptier than the old page.
* This yields better packing during sequential inserts.
*/
if (nkeys < 20 || nsize > pmax/16 || newindx >= nkeys) {
/* Find split point */
psize = 0;
if (newindx <= split_indx || newindx >= nkeys) {
i = 0; j = 1;
k = newindx >= nkeys ? nkeys : split_indx+1+IS_LEAF(mp);
} else {
i = nkeys; j = -1;
k = split_indx-1;
}
for (; i!=k; i+=j) {
if (i == newindx) {
psize += nsize;
node = NULL;
} else {
node = (MDB_node *)((char *)mp + copy->mp_ptrs[i] + PAGEBASE);
psize += NODESIZE + NODEKSZ(node) + sizeof(indx_t);
if (IS_LEAF(mp)) {
if (F_ISSET(node->mn_flags, F_BIGDATA))
psize += sizeof(pgno_t);
else
psize += NODEDSZ(node);
}
psize = EVEN(psize);
}
if (psize > pmax || i == k-j) {
split_indx = i + (j<0);
break;
}
}
}
if (split_indx == newindx) {
sepkey.mv_size = newkey->mv_size;
sepkey.mv_data = newkey->mv_data;
} else {
node = (MDB_node *)((char *)mp + copy->mp_ptrs[split_indx] + PAGEBASE);
sepkey.mv_size = node->mn_ksize;
sepkey.mv_data = NODEKEY(node);
}
}
}
mdb_debug("separator is %d [%s]", split_indx, DKEY(&sepkey));
/* Copy separator key to the parent. */
if (SIZELEFT(mn.mc_pg[ptop]) < mdb_branch_size(env, &sepkey)) {
int snum = mc->mc_snum;
mn.mc_snum--;
mn.mc_top--;
did_split = 1;
/* We want other splits to find mn when doing fixups */
WITH_CURSOR_TRACKING(mn, rc = mdb_page_split(&mn, &sepkey, NULL, rp->mp_pgno, 0));
if (unlikely(rc != MDB_SUCCESS))
goto done;
/* root split? */
if (mc->mc_snum > snum) {
ptop++;
}
/* Right page might now have changed parent.
* Check if left page also changed parent.
*/
if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
for (i=0; i<ptop; i++) {
mc->mc_pg[i] = mn.mc_pg[i];
mc->mc_ki[i] = mn.mc_ki[i];
}
mc->mc_pg[ptop] = mn.mc_pg[ptop];
if (mn.mc_ki[ptop]) {
mc->mc_ki[ptop] = mn.mc_ki[ptop] - 1;
} else {
/* find right page's left sibling */
mc->mc_ki[ptop] = mn.mc_ki[ptop];
rc = mdb_cursor_sibling(mc, 0);
}
}
} else {
mn.mc_top--;
rc = mdb_node_add(&mn, mn.mc_ki[ptop], &sepkey, NULL, rp->mp_pgno, 0);
mn.mc_top++;
}
if (unlikely(rc != MDB_SUCCESS)) {
if (rc == MDB_NOTFOUND) /* improper mdb_cursor_sibling() result */
rc = MDB_PROBLEM;
goto done;
}
if (nflags & MDB_APPEND) {
mc->mc_pg[mc->mc_top] = rp;
mc->mc_ki[mc->mc_top] = 0;
rc = mdb_node_add(mc, 0, newkey, newdata, newpgno, nflags);
if (rc)
goto done;
for (i=0; i<mc->mc_top; i++)
mc->mc_ki[i] = mn.mc_ki[i];
} else if (!IS_LEAF2(mp)) {
/* Move nodes */
mc->mc_pg[mc->mc_top] = rp;
i = split_indx;
j = 0;
do {
if (i == newindx) {
rkey.mv_data = newkey->mv_data;
rkey.mv_size = newkey->mv_size;
if (IS_LEAF(mp)) {
rdata = newdata;
} else
pgno = newpgno;
flags = nflags;
/* Update index for the new key. */
mc->mc_ki[mc->mc_top] = j;
} else {
node = (MDB_node *)((char *)mp + copy->mp_ptrs[i] + PAGEBASE);
rkey.mv_data = NODEKEY(node);
rkey.mv_size = node->mn_ksize;
if (IS_LEAF(mp)) {
xdata.mv_data = NODEDATA(node);
xdata.mv_size = NODEDSZ(node);
rdata = &xdata;
} else
pgno = NODEPGNO(node);
flags = node->mn_flags;
}
if (!IS_LEAF(mp) && j == 0) {
/* First branch index doesn't need key data. */
rkey.mv_size = 0;
}
rc = mdb_node_add(mc, j, &rkey, rdata, pgno, flags);
if (rc)
goto done;
if (i == nkeys) {
i = 0;
j = 0;
mc->mc_pg[mc->mc_top] = copy;
} else {
i++;
j++;
}
} while (i != split_indx);
nkeys = NUMKEYS(copy);
for (i=0; i<nkeys; i++)
mp->mp_ptrs[i] = copy->mp_ptrs[i];
mp->mp_lower = copy->mp_lower;
mp->mp_upper = copy->mp_upper;
memcpy(NODEPTR(mp, nkeys-1), NODEPTR(copy, nkeys-1),
env->me_psize - copy->mp_upper - PAGEBASE);
/* reset back to original page */
if (newindx < split_indx) {
mc->mc_pg[mc->mc_top] = mp;
} else {
mc->mc_pg[mc->mc_top] = rp;
mc->mc_ki[ptop]++;
/* Make sure mc_ki is still valid.
*/
if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
for (i=0; i<=ptop; i++) {
mc->mc_pg[i] = mn.mc_pg[i];
mc->mc_ki[i] = mn.mc_ki[i];
}
}
}
if (nflags & MDB_RESERVE) {
node = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
if (!(node->mn_flags & F_BIGDATA))
newdata->mv_data = NODEDATA(node);
}
} else {
if (newindx >= split_indx) {
mc->mc_pg[mc->mc_top] = rp;
mc->mc_ki[ptop]++;
/* Make sure mc_ki is still valid.
*/
if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
for (i=0; i<=ptop; i++) {
mc->mc_pg[i] = mn.mc_pg[i];
mc->mc_ki[i] = mn.mc_ki[i];
}
}
}
}
{
/* Adjust other cursors pointing to mp */
MDB_cursor *m2, *m3;
MDB_dbi dbi = mc->mc_dbi;
nkeys = NUMKEYS(mp);
for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
if (mc->mc_flags & C_SUB)
m3 = &m2->mc_xcursor->mx_cursor;
else
m3 = m2;
if (m3 == mc)
continue;
if (!(m2->mc_flags & m3->mc_flags & C_INITIALIZED))
continue;
if (new_root) {
int k;
/* sub cursors may be on different DB */
if (m3->mc_pg[0] != mp)
continue;
/* root split */
for (k=new_root; k>=0; k--) {
m3->mc_ki[k+1] = m3->mc_ki[k];
m3->mc_pg[k+1] = m3->mc_pg[k];
}
if (m3->mc_ki[0] >= nkeys) {
m3->mc_ki[0] = 1;
} else {
m3->mc_ki[0] = 0;
}
m3->mc_pg[0] = mc->mc_pg[0];
m3->mc_snum++;
m3->mc_top++;
}
if (m3->mc_top >= mc->mc_top && m3->mc_pg[mc->mc_top] == mp) {
if (m3->mc_ki[mc->mc_top] >= newindx && !(nflags & MDB_SPLIT_REPLACE))
m3->mc_ki[mc->mc_top]++;
if (m3->mc_ki[mc->mc_top] >= nkeys) {
m3->mc_pg[mc->mc_top] = rp;
m3->mc_ki[mc->mc_top] -= nkeys;
for (i=0; i<mc->mc_top; i++) {
m3->mc_ki[i] = mn.mc_ki[i];
m3->mc_pg[i] = mn.mc_pg[i];
}
}
} else if (!did_split && m3->mc_top >= ptop && m3->mc_pg[ptop] == mc->mc_pg[ptop] &&
m3->mc_ki[ptop] >= mc->mc_ki[ptop]) {
m3->mc_ki[ptop]++;
}
if (XCURSOR_INITED(m3) && IS_LEAF(mp))
XCURSOR_REFRESH(m3, m3->mc_pg[mc->mc_top], m3->mc_ki[mc->mc_top]);
}
}
mdb_debug("mp left: %d, rp left: %d", SIZELEFT(mp), SIZELEFT(rp));
done:
if (copy) /* tmp page */
mdb_page_free(env, copy);
if (unlikely(rc))
mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
return rc;
}
int
mdb_put(MDB_txn *txn, MDB_dbi dbi,
MDB_val *key, MDB_val *data, unsigned flags)
{
MDB_cursor mc;
MDB_xcursor mx;
if (unlikely(!key || !data || !txn))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)))
return EINVAL;
if (unlikely(flags & ~(MDB_NOOVERWRITE|MDB_NODUPDATA|MDB_RESERVE|MDB_APPEND|MDB_APPENDDUP
/* LY: MDB_CURRENT indicates explicit overwrite (update) for MDBX */
| (MDBX_MODE_ENABLED ? MDB_CURRENT : 0))))
return EINVAL;
if (unlikely(txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED)))
return (txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
mdb_cursor_init(&mc, txn, dbi, &mx);
mc.mc_next = txn->mt_cursors[dbi];
txn->mt_cursors[dbi] = &mc;
int rc = MDB_SUCCESS;
#if MDBX_MODE_ENABLED
/* LY: support for update (explicit overwrite) */
if (flags & MDB_CURRENT) {
rc = mdb_cursor_get(&mc, key, NULL, MDB_SET);
if (likely(rc == MDB_SUCCESS) && (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT)) {
/* LY: allows update (explicit overwrite) only for unique keys */
MDB_node *leaf = NODEPTR(mc.mc_pg[mc.mc_top], mc.mc_ki[mc.mc_top]);
if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
mdb_tassert(txn, XCURSOR_INITED(&mc) && mc.mc_xcursor->mx_db.md_entries > 1);
rc = MDB_KEYEXIST;
}
}
}
#endif /* MDBX_MODE_ENABLED */
if (likely(rc == MDB_SUCCESS))
rc = mdb_cursor_put(&mc, key, data, flags);
txn->mt_cursors[dbi] = mc.mc_next;
return rc;
}
#ifndef MDB_WBUF
# define MDB_WBUF (1024*1024)
#endif
#define MDB_EOF 0x10 /**< #mdb_env_copyfd1() is done reading */
/** State needed for a double-buffering compacting copy. */
typedef struct mdb_copy {
MDB_env *mc_env;
MDB_txn *mc_txn;
pthread_mutex_t mc_mutex;
pthread_cond_t mc_cond; /**< Condition variable for #mc_new */
char *mc_wbuf[2];
char *mc_over[2];
int mc_wlen[2];
int mc_olen[2];
pgno_t mc_next_pgno;
HANDLE mc_fd;
int mc_toggle; /**< Buffer number in provider */
int mc_new; /**< (0-2 buffers to write) | (#MDB_EOF at end) */
/** Error code. Never cleared if set. Both threads can set nonzero
* to fail the copy. Not mutex-protected, LMDB expects atomic int.
*/
volatile int mc_error;
} mdb_copy;
/** Dedicated writer thread for compacting copy. */
static void* __cold
mdb_env_copythr(void *arg)
{
mdb_copy *my = arg;
char *ptr;
int toggle = 0, wsize, rc = 0;
int len;
#ifdef SIGPIPE
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGPIPE);
if ((rc = pthread_sigmask(SIG_BLOCK, &set, NULL)) != 0)
my->mc_error = rc;
#endif
pthread_mutex_lock(&my->mc_mutex);
for(;;) {
while (!my->mc_new)
pthread_cond_wait(&my->mc_cond, &my->mc_mutex);
if (my->mc_new == 0 + MDB_EOF) /* 0 buffers, just EOF */
break;
wsize = my->mc_wlen[toggle];
ptr = my->mc_wbuf[toggle];
again:
rc = MDB_SUCCESS;
while (wsize > 0 && !my->mc_error) {
len = write(my->mc_fd, ptr, wsize);
if (len < 0) {
rc = errno;
#ifdef SIGPIPE
if (rc == EPIPE) {
/* Collect the pending SIGPIPE, otherwise at least OS X
* gives it to the process on thread-exit (ITS#8504).
*/
int tmp;
sigwait(&set, &tmp);
}
#endif
break;
} else if (len > 0) {
rc = MDB_SUCCESS;
ptr += len;
wsize -= len;
continue;
} else {
rc = EIO;
break;
}
}
if (rc) {
my->mc_error = rc;
}
/* If there's an overflow page tail, write it too */
if (my->mc_olen[toggle]) {
wsize = my->mc_olen[toggle];
ptr = my->mc_over[toggle];
my->mc_olen[toggle] = 0;
goto again;
}
my->mc_wlen[toggle] = 0;
toggle ^= 1;
/* Return the empty buffer to provider */
my->mc_new--;
pthread_cond_signal(&my->mc_cond);
}
pthread_mutex_unlock(&my->mc_mutex);
return NULL;
}
/** Give buffer and/or #MDB_EOF to writer thread, await unused buffer.
*
* @param[in] my control structure.
* @param[in] adjust (1 to hand off 1 buffer) | (MDB_EOF when ending).
*/
static int __cold
mdb_env_cthr_toggle(mdb_copy *my, int adjust)
{
pthread_mutex_lock(&my->mc_mutex);
my->mc_new += adjust;
pthread_cond_signal(&my->mc_cond);
while (my->mc_new & 2) /* both buffers in use */
pthread_cond_wait(&my->mc_cond, &my->mc_mutex);
pthread_mutex_unlock(&my->mc_mutex);
my->mc_toggle ^= (adjust & 1);
/* Both threads reset mc_wlen, to be safe from threading errors */
my->mc_wlen[my->mc_toggle] = 0;
return my->mc_error;
}
/** Depth-first tree traversal for compacting copy.
* @param[in] my control structure.
* @param[in,out] pg database root.
* @param[in] flags includes #F_DUPDATA if it is a sorted-duplicate sub-DB.
*/
static int __cold
mdb_env_cwalk(mdb_copy *my, pgno_t *pg, int flags)
{
MDB_cursor mc;
MDB_node *ni;
MDB_page *mo, *mp, *leaf;
char *buf, *ptr;
int rc, toggle;
unsigned i;
/* Empty DB, nothing to do */
if (*pg == P_INVALID)
return MDB_SUCCESS;
memset(&mc, 0, sizeof(mc));
mc.mc_snum = 1;
mc.mc_txn = my->mc_txn;
rc = mdb_page_get(&mc, *pg, &mc.mc_pg[0], NULL);
if (rc)
return rc;
rc = mdb_page_search_root(&mc, NULL, MDB_PS_FIRST);
if (rc)
return rc;
/* Make cursor pages writable */
buf = ptr = malloc(my->mc_env->me_psize * mc.mc_snum);
if (buf == NULL)
return ENOMEM;
for (i=0; i<mc.mc_top; i++) {
mdb_page_copy((MDB_page *)ptr, mc.mc_pg[i], my->mc_env->me_psize);
mc.mc_pg[i] = (MDB_page *)ptr;
ptr += my->mc_env->me_psize;
}
/* This is writable space for a leaf page. Usually not needed. */
leaf = (MDB_page *)ptr;
toggle = my->mc_toggle;
while (mc.mc_snum > 0) {
unsigned n;
mp = mc.mc_pg[mc.mc_top];
n = NUMKEYS(mp);
if (IS_LEAF(mp)) {
if (!IS_LEAF2(mp) && !(flags & F_DUPDATA)) {
for (i=0; i<n; i++) {
ni = NODEPTR(mp, i);
if (ni->mn_flags & F_BIGDATA) {
MDB_page *omp;
pgno_t pg;
/* Need writable leaf */
if (mp != leaf) {
mc.mc_pg[mc.mc_top] = leaf;
mdb_page_copy(leaf, mp, my->mc_env->me_psize);
mp = leaf;
ni = NODEPTR(mp, i);
}
memcpy(&pg, NODEDATA(ni), sizeof(pg));
memcpy(NODEDATA(ni), &my->mc_next_pgno, sizeof(pgno_t));
rc = mdb_page_get(&mc, pg, &omp, NULL);
if (rc)
goto done;
if (my->mc_wlen[toggle] >= MDB_WBUF) {
rc = mdb_env_cthr_toggle(my, 1);
if (rc)
goto done;
toggle = my->mc_toggle;
}
mo = (MDB_page *)(my->mc_wbuf[toggle] + my->mc_wlen[toggle]);
memcpy(mo, omp, my->mc_env->me_psize);
mo->mp_pgno = my->mc_next_pgno;
my->mc_next_pgno += omp->mp_pages;
my->mc_wlen[toggle] += my->mc_env->me_psize;
if (omp->mp_pages > 1) {
my->mc_olen[toggle] = my->mc_env->me_psize * (omp->mp_pages - 1);
my->mc_over[toggle] = (char *)omp + my->mc_env->me_psize;
rc = mdb_env_cthr_toggle(my, 1);
if (rc)
goto done;
toggle = my->mc_toggle;
}
} else if (ni->mn_flags & F_SUBDATA) {
MDB_db db;
/* Need writable leaf */
if (mp != leaf) {
mc.mc_pg[mc.mc_top] = leaf;
mdb_page_copy(leaf, mp, my->mc_env->me_psize);
mp = leaf;
ni = NODEPTR(mp, i);
}
memcpy(&db, NODEDATA(ni), sizeof(db));
my->mc_toggle = toggle;
rc = mdb_env_cwalk(my, &db.md_root, ni->mn_flags & F_DUPDATA);
if (rc)
goto done;
toggle = my->mc_toggle;
memcpy(NODEDATA(ni), &db, sizeof(db));
}
}
}
} else {
mc.mc_ki[mc.mc_top]++;
if (mc.mc_ki[mc.mc_top] < n) {
pgno_t pg;
again:
ni = NODEPTR(mp, mc.mc_ki[mc.mc_top]);
pg = NODEPGNO(ni);
rc = mdb_page_get(&mc, pg, &mp, NULL);
if (rc)
goto done;
mc.mc_top++;
mc.mc_snum++;
mc.mc_ki[mc.mc_top] = 0;
if (IS_BRANCH(mp)) {
/* Whenever we advance to a sibling branch page,
* we must proceed all the way down to its first leaf.
*/
mdb_page_copy(mc.mc_pg[mc.mc_top], mp, my->mc_env->me_psize);
goto again;
} else
mc.mc_pg[mc.mc_top] = mp;
continue;
}
}
if (my->mc_wlen[toggle] >= MDB_WBUF) {
rc = mdb_env_cthr_toggle(my, 1);
if (rc)
goto done;
toggle = my->mc_toggle;
}
mo = (MDB_page *)(my->mc_wbuf[toggle] + my->mc_wlen[toggle]);
mdb_page_copy(mo, mp, my->mc_env->me_psize);
mo->mp_pgno = my->mc_next_pgno++;
my->mc_wlen[toggle] += my->mc_env->me_psize;
if (mc.mc_top) {
/* Update parent if there is one */
ni = NODEPTR(mc.mc_pg[mc.mc_top-1], mc.mc_ki[mc.mc_top-1]);
SETPGNO(ni, mo->mp_pgno);
mdb_cursor_pop(&mc);
} else {
/* Otherwise we're done */
*pg = mo->mp_pgno;
break;
}
}
done:
free(buf);
return rc;
}
/** Copy environment with compaction. */
static int __cold
mdb_env_copyfd1(MDB_env *env, HANDLE fd)
{
MDB_meta *mm;
MDB_page *mp;
mdb_copy my;
MDB_txn *txn = NULL;
pthread_t thr;
pgno_t root, new_root;
int rc = MDB_SUCCESS;
memset(&my, 0, sizeof(my));
if ((rc = pthread_mutex_init(&my.mc_mutex, NULL)) != 0)
return rc;
if ((rc = pthread_cond_init(&my.mc_cond, NULL)) != 0)
goto done2;
my.mc_wbuf[0] = memalign(env->me_os_psize, MDB_WBUF*2);
if (my.mc_wbuf[0] == NULL) {
rc = errno;
goto done;
}
memset(my.mc_wbuf[0], 0, MDB_WBUF*2);
my.mc_wbuf[1] = my.mc_wbuf[0] + MDB_WBUF;
my.mc_next_pgno = NUM_METAS;
my.mc_env = env;
my.mc_fd = fd;
rc = pthread_create(&thr, NULL, mdb_env_copythr, &my);
if (rc)
goto done;
rc = mdb_txn_begin(env, NULL, MDB_RDONLY, &txn);
if (rc)
goto finish;
mp = (MDB_page *)my.mc_wbuf[0];
memset(mp, 0, NUM_METAS * env->me_psize);
mp->mp_pgno = 0;
mp->mp_flags = P_META;
mm = (MDB_meta *)PAGEDATA(mp);
mdb_env_init_meta0(env, mm);
mm->mm_address = METAPAGE_1(env)->mm_address;
mp = (MDB_page *)(my.mc_wbuf[0] + env->me_psize);
mp->mp_pgno = 1;
mp->mp_flags = P_META;
*(MDB_meta *)PAGEDATA(mp) = *mm;
mm = (MDB_meta *)PAGEDATA(mp);
/* Set metapage 1 with current main DB */
root = new_root = txn->mt_dbs[MAIN_DBI].md_root;
if (root != P_INVALID) {
/* Count free pages + freeDB pages. Subtract from last_pg
* to find the new last_pg, which also becomes the new root.
*/
MDB_ID freecount = 0;
MDB_cursor mc;
MDB_val key, data;
mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
while ((rc = mdb_cursor_get(&mc, &key, &data, MDB_NEXT)) == 0)
freecount += *(MDB_ID *)data.mv_data;
if (rc != MDB_NOTFOUND)
goto finish;
freecount += txn->mt_dbs[FREE_DBI].md_branch_pages +
txn->mt_dbs[FREE_DBI].md_leaf_pages +
txn->mt_dbs[FREE_DBI].md_overflow_pages;
new_root = txn->mt_next_pgno - 1 - freecount;
mm->mm_last_pg = new_root;
mm->mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI];
mm->mm_dbs[MAIN_DBI].md_root = new_root;
} else {
/* When the DB is empty, handle it specially to
* fix any breakage like page leaks from ITS#8174.
*/
mm->mm_dbs[MAIN_DBI].md_flags = txn->mt_dbs[MAIN_DBI].md_flags;
}
if (root != P_INVALID || mm->mm_dbs[MAIN_DBI].md_flags) {
mm->mm_txnid = 1; /* use metapage 1 */
}
my.mc_wlen[0] = env->me_psize * NUM_METAS;
my.mc_txn = txn;
rc = mdb_env_cwalk(&my, &root, 0);
if (rc == MDB_SUCCESS && root != new_root) {
rc = MDB_INCOMPATIBLE; /* page leak or corrupt DB */
}
finish:
if (rc)
my.mc_error = rc;
mdb_env_cthr_toggle(&my, 1 | MDB_EOF);
rc = pthread_join(thr, NULL);
mdb_txn_abort(txn);
done:
free(my.mc_wbuf[0]);
pthread_cond_destroy(&my.mc_cond);
done2:
pthread_mutex_destroy(&my.mc_mutex);
return rc ? rc : my.mc_error;
}
/** Copy environment as-is. */
static int __cold
mdb_env_copyfd0(MDB_env *env, HANDLE fd)
{
MDB_txn *txn = NULL;
pthread_mutex_t *wmutex = NULL;
int rc;
size_t wsize;
char *ptr;
ssize_t len;
size_t w2;
/* Do the lock/unlock of the reader mutex before starting the
* write txn. Otherwise other read txns could block writers.
*/
rc = mdb_txn_begin(env, NULL, MDB_RDONLY, &txn);
if (rc)
return rc;
/* We must start the actual read txn after blocking writers */
rc = mdb_txn_end(txn, MDB_END_RESET_TMP);
if (rc)
return rc;
/* Temporarily block writers until we snapshot the meta pages */
wmutex = MDB_MUTEX(env, w);
rc = mdb_mutex_lock(env, wmutex);
if (unlikely(rc))
goto leave;
rc = mdb_txn_renew0(txn, MDB_RDONLY);
if (rc) {
mdb_mutex_unlock(env, wmutex);
goto leave;
}
wsize = env->me_psize * NUM_METAS;
ptr = env->me_map;
w2 = wsize;
while (w2 > 0) {
len = write(fd, ptr, w2);
if (len < 0) {
rc = errno;
break;
} else if (len > 0) {
rc = MDB_SUCCESS;
ptr += len;
w2 -= len;
continue;
} else {
/* Non-blocking or async handles are not supported */
rc = EIO;
break;
}
}
mdb_mutex_unlock(env, wmutex);
if (rc)
goto leave;
w2 = txn->mt_next_pgno * env->me_psize;
{
size_t fsize = 0;
if ((rc = mdb_fsize(env->me_fd, &fsize)))
goto leave;
if (w2 > fsize)
w2 = fsize;
}
wsize = w2 - wsize;
while (wsize > 0) {
if (wsize > MAX_WRITE)
w2 = MAX_WRITE;
else
w2 = wsize;
len = write(fd, ptr, w2);
if (len < 0 ) {
rc = errno;
break;
} else if (len > 0) {
rc = MDB_SUCCESS;
ptr += len;
wsize -= len;
continue;
} else {
rc = EIO;
break;
}
}
leave:
mdb_txn_abort(txn);
return rc;
}
int __cold
mdb_env_copyfd2(MDB_env *env, HANDLE fd, unsigned flags)
{
if (flags & MDB_CP_COMPACT)
return mdb_env_copyfd1(env, fd);
else
return mdb_env_copyfd0(env, fd);
}
int __cold
mdb_env_copyfd(MDB_env *env, HANDLE fd)
{
return mdb_env_copyfd2(env, fd, 0);
}
int __cold
mdb_env_copy2(MDB_env *env, const char *path, unsigned flags)
{
int rc, len;
char *lpath;
HANDLE newfd = INVALID_HANDLE_VALUE;
if (env->me_flags & MDB_NOSUBDIR) {
lpath = (char *)path;
} else {
len = strlen(path);
len += sizeof(DATANAME);
lpath = malloc(len);
if (!lpath)
return ENOMEM;
sprintf(lpath, "%s" DATANAME, path);
}
/* The destination path must exist, but the destination file must not.
* We don't want the OS to cache the writes, since the source data is
* already in the OS cache.
*/
newfd = open(lpath, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC, 0666);
if (newfd == INVALID_HANDLE_VALUE) {
rc = errno;
goto leave;
}
int fdflags;
if ((fdflags = fcntl(newfd, F_GETFD) | FD_CLOEXEC) >= 0)
fcntl(newfd, F_SETFD, fdflags);
if (env->me_psize >= env->me_os_psize) {
#ifdef F_NOCACHE /* __APPLE__ */
(void) fcntl(newfd, F_NOCACHE, 1);
#elif defined O_DIRECT
/* Set O_DIRECT if the file system supports it */
if ((rc = fcntl(newfd, F_GETFL)) != -1)
(void) fcntl(newfd, F_SETFL, rc | O_DIRECT);
#endif
}
rc = mdb_env_copyfd2(env, newfd, flags);
leave:
if (!(env->me_flags & MDB_NOSUBDIR))
free(lpath);
if (newfd != INVALID_HANDLE_VALUE)
if (close(newfd) < 0 && rc == MDB_SUCCESS)
rc = errno;
return rc;
}
int __cold
mdb_env_copy(MDB_env *env, const char *path)
{
return mdb_env_copy2(env, path, 0);
}
int __cold
mdb_env_set_flags(MDB_env *env, unsigned flags, int onoff)
{
if (unlikely(flags & ~CHANGEABLE))
return EINVAL;
pthread_mutex_t *mutex = MDB_MUTEX(env, w);
int rc = mdb_mutex_lock(env, mutex);
if (unlikely(rc))
return rc;
if (onoff)
env->me_flags |= flags;
else
env->me_flags &= ~flags;
mdb_mutex_unlock(env, mutex);
return MDB_SUCCESS;
}
int __cold
mdb_env_get_flags(MDB_env *env, unsigned *arg)
{
if (unlikely(!env || !arg))
return EINVAL;
*arg = env->me_flags & (CHANGEABLE|CHANGELESS);
return MDB_SUCCESS;
}
int __cold
mdb_env_set_userctx(MDB_env *env, void *ctx)
{
if (unlikely(!env))
return EINVAL;
env->me_userctx = ctx;
return MDB_SUCCESS;
}
void * __cold
mdb_env_get_userctx(MDB_env *env)
{
return env ? env->me_userctx : NULL;
}
int __cold
mdb_env_set_assert(MDB_env *env, MDB_assert_func *func)
{
if (unlikely(!env))
return EINVAL;
#if MDB_DEBUG
env->me_assert_func = func;
return MDB_SUCCESS;
#else
(void) func;
return ENOSYS;
#endif
}
int __cold
mdb_env_get_path(MDB_env *env, const char **arg)
{
if (unlikely(!env || !arg))
return EINVAL;
*arg = env->me_path;
return MDB_SUCCESS;
}
int __cold
mdb_env_get_fd(MDB_env *env, mdb_filehandle_t *arg)
{
if (unlikely(!env || !arg))
return EINVAL;
*arg = env->me_fd;
return MDB_SUCCESS;
}
/** Common code for #mdb_stat() and #mdb_env_stat().
* @param[in] env the environment to operate in.
* @param[in] db the #MDB_db record containing the stats to return.
* @param[out] arg the address of an #MDB_stat structure to receive the stats.
* @return 0, this function always succeeds.
*/
static int __cold
mdb_stat0(MDB_env *env, MDB_db *db, MDB_stat *arg)
{
arg->ms_psize = env->me_psize;
arg->ms_depth = db->md_depth;
arg->ms_branch_pages = db->md_branch_pages;
arg->ms_leaf_pages = db->md_leaf_pages;
arg->ms_overflow_pages = db->md_overflow_pages;
arg->ms_entries = db->md_entries;
return MDB_SUCCESS;
}
MDBX_ONLY_FEATURE int __cold
mdbx_env_stat(MDB_env *env, MDBX_stat *arg, size_t bytes)
{
MDB_meta *meta;
if (unlikely(env == NULL || arg == NULL))
return EINVAL;
if (unlikely(bytes != sizeof(MDBX_stat)))
return EINVAL;
meta = mdb_meta_head_r(env);
return mdb_stat0(env, &meta->mm_dbs[MAIN_DBI], &arg->base);
}
int __cold
mdb_env_stat(MDB_env *env, MDB_stat *arg)
{
return mdbx_env_stat(env, (MDBX_stat *) arg, sizeof(MDB_stat));
}
MDBX_ONLY_FEATURE int __cold
mdbx_env_info(MDB_env *env, MDBX_envinfo *arg, size_t bytes)
{
MDB_meta *meta;
if (unlikely(env == NULL || arg == NULL))
return EINVAL;
if (bytes == sizeof(MDB_envinfo)) {
do {
meta = mdb_meta_head_r(env);
arg->base.me_last_txnid = meta->mm_txnid;
arg->base.me_last_pgno = meta->mm_last_pg;
arg->base.me_mapaddr = meta->mm_address;
arg->base.me_mapsize = env->me_mapsize;
arg->base.me_maxreaders = env->me_maxreaders;
arg->base.me_numreaders = env->me_txns->mti_numreaders;
} while (unlikely( arg->base.me_last_txnid != env->me_txns->mti_txnid));
#if MDBX_MODE_ENABLED
} else if (bytes == sizeof(MDBX_envinfo)) {
MDB_meta *m1, *m2;
MDB_reader *r;
unsigned i;
m1 = METAPAGE_1(env);
m2 = METAPAGE_2(env);
do {
meta = mdb_meta_head_r(env);
arg->base.me_last_txnid = meta->mm_txnid;
arg->base.me_last_pgno = meta->mm_last_pg;
arg->me_meta1_txnid = m1->mm_txnid;
arg->me_meta1_sign = m1->mm_datasync_sign;
arg->me_meta2_txnid = m2->mm_txnid;
arg->me_meta2_sign = m2->mm_datasync_sign;
} while (unlikely( arg->base.me_last_txnid != env->me_txns->mti_txnid
|| arg->me_meta1_sign != m1->mm_datasync_sign
|| arg->me_meta2_sign != m2->mm_datasync_sign ));
arg->base.me_mapaddr = meta->mm_address;
arg->base.me_mapsize = env->me_mapsize;
arg->base.me_maxreaders = env->me_maxreaders;
arg->base.me_numreaders = env->me_txns->mti_numreaders;
arg->me_tail_txnid = 0;
r = env->me_txns->mti_readers;
arg->me_tail_txnid = arg->base.me_last_txnid;
for (i = 0; i < arg->base.me_numreaders; ++i ) {
if (r[i].mr_pid) {
txnid_t mr = r[i].mr_txnid;
if (arg->me_tail_txnid > mr)
arg->me_tail_txnid = mr;
}
}
#endif /* MDBX_MODE_ENABLED */
} else {
return EINVAL;
}
return MDB_SUCCESS;
}
int __cold
mdb_env_info(MDB_env *env, MDB_envinfo *arg)
{
return mdbx_env_info(env, (MDBX_envinfo*) arg, sizeof(MDB_envinfo));
}
/** Set the default comparison functions for a database.
* Called immediately after a database is opened to set the defaults.
* The user can then override them with #mdb_set_compare() or
* #mdb_set_dupsort().
* @param[in] txn A transaction handle returned by #mdb_txn_begin()
* @param[in] dbi A database handle returned by #mdb_dbi_open()
*/
static void
mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi)
{
unsigned f = txn->mt_dbs[dbi].md_flags;
txn->mt_dbxs[dbi].md_cmp =
(f & MDB_REVERSEKEY) ? mdb_cmp_memnr :
(f & MDB_INTEGERKEY) ? mdb_cmp_int_a2 : mdb_cmp_memn;
txn->mt_dbxs[dbi].md_dcmp =
!(f & MDB_DUPSORT) ? 0 :
((f & MDB_INTEGERDUP) ? mdb_cmp_int_ua :
((f & MDB_REVERSEDUP) ? mdb_cmp_memnr : mdb_cmp_memn));
}
int mdb_dbi_open(MDB_txn *txn, const char *name, unsigned flags, MDB_dbi *dbi)
{
MDB_val key, data;
MDB_dbi i;
MDB_cursor mc;
MDB_db dummy;
int rc, dbflag, exact;
unsigned unused = 0, seq;
char *namedup;
size_t len;
if (unlikely(!txn || !dbi))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(flags & ~VALID_FLAGS))
return EINVAL;
if (unlikely(txn->mt_flags & MDB_TXN_BLOCKED))
return MDB_BAD_TXN;
/* main DB? */
if (!name) {
*dbi = MAIN_DBI;
if (flags & PERSISTENT_FLAGS) {
uint16_t f2 = flags & PERSISTENT_FLAGS;
/* make sure flag changes get committed */
if ((txn->mt_dbs[MAIN_DBI].md_flags | f2) != txn->mt_dbs[MAIN_DBI].md_flags) {
txn->mt_dbs[MAIN_DBI].md_flags |= f2;
txn->mt_flags |= MDB_TXN_DIRTY;
}
}
mdb_default_cmp(txn, MAIN_DBI);
return MDB_SUCCESS;
}
if (txn->mt_dbxs[MAIN_DBI].md_cmp == NULL) {
mdb_default_cmp(txn, MAIN_DBI);
}
/* Is the DB already open? */
len = strlen(name);
for (i=CORE_DBS; i<txn->mt_numdbs; i++) {
if (!txn->mt_dbxs[i].md_name.mv_size) {
/* Remember this free slot */
if (!unused) unused = i;
continue;
}
if (len == txn->mt_dbxs[i].md_name.mv_size &&
!strncmp(name, txn->mt_dbxs[i].md_name.mv_data, len)) {
*dbi = i;
return MDB_SUCCESS;
}
}
/* If no free slot and max hit, fail */
if (!unused && unlikely(txn->mt_numdbs >= txn->mt_env->me_maxdbs))
return MDB_DBS_FULL;
/* Cannot mix named databases with some mainDB flags */
if (unlikely(txn->mt_dbs[MAIN_DBI].md_flags & (MDB_DUPSORT|MDB_INTEGERKEY)))
return (flags & MDB_CREATE) ? MDB_INCOMPATIBLE : MDB_NOTFOUND;
/* Find the DB info */
dbflag = DB_NEW|DB_VALID|DB_USRVALID;
exact = 0;
key.mv_size = len;
key.mv_data = (void *)name;
mdb_cursor_init(&mc, txn, MAIN_DBI, NULL);
rc = mdb_cursor_set(&mc, &key, &data, MDB_SET, &exact);
if (likely(rc == MDB_SUCCESS)) {
/* make sure this is actually a DB */
MDB_node *node = NODEPTR(mc.mc_pg[mc.mc_top], mc.mc_ki[mc.mc_top]);
if (unlikely((node->mn_flags & (F_DUPDATA|F_SUBDATA)) != F_SUBDATA))
return MDB_INCOMPATIBLE;
} else if (! (rc == MDB_NOTFOUND && (flags & MDB_CREATE))) {
return rc;
}
/* Done here so we cannot fail after creating a new DB */
if (unlikely((namedup = strdup(name)) == NULL))
return ENOMEM;
if (unlikely(rc)) {
/* MDB_NOTFOUND and MDB_CREATE: Create new DB */
data.mv_size = sizeof(MDB_db);
data.mv_data = &dummy;
memset(&dummy, 0, sizeof(dummy));
dummy.md_root = P_INVALID;
dummy.md_flags = flags & PERSISTENT_FLAGS;
WITH_CURSOR_TRACKING(mc,
rc = mdb_cursor_put(&mc, &key, &data, F_SUBDATA));
dbflag |= DB_DIRTY;
}
if (unlikely(rc)) {
free(namedup);
} else {
/* Got info, register DBI in this txn */
unsigned slot = unused ? unused : txn->mt_numdbs;
txn->mt_dbxs[slot].md_name.mv_data = namedup;
txn->mt_dbxs[slot].md_name.mv_size = len;
txn->mt_dbxs[slot].md_rel = NULL;
txn->mt_dbflags[slot] = dbflag;
/* txn-> and env-> are the same in read txns, use
* tmp variable to avoid undefined assignment
*/
seq = ++txn->mt_env->me_dbiseqs[slot];
txn->mt_dbiseqs[slot] = seq;
memcpy(&txn->mt_dbs[slot], data.mv_data, sizeof(MDB_db));
*dbi = slot;
mdb_default_cmp(txn, slot);
if (!unused) {
txn->mt_numdbs++;
}
}
return rc;
}
MDBX_ONLY_FEATURE int __cold
mdbx_stat(MDB_txn *txn, MDB_dbi dbi, MDBX_stat *arg, size_t bytes)
{
if (unlikely(!arg || !txn))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(!TXN_DBI_EXIST(txn, dbi, DB_VALID)))
return EINVAL;
if (unlikely(bytes != sizeof(MDBX_stat)))
return EINVAL;
if (unlikely(txn->mt_flags & MDB_TXN_BLOCKED))
return MDB_BAD_TXN;
if (txn->mt_dbflags[dbi] & DB_STALE) {
MDB_cursor mc;
MDB_xcursor mx;
/* Stale, must read the DB's root. cursor_init does it for us. */
mdb_cursor_init(&mc, txn, dbi, &mx);
}
return mdb_stat0(txn->mt_env, &txn->mt_dbs[dbi], &arg->base);
}
int __cold
mdb_stat(MDB_txn *txn, MDB_dbi dbi, MDB_stat *arg)
{
return mdbx_stat(txn, dbi, (MDBX_stat*) arg, sizeof(MDB_stat));
}
void mdb_dbi_close(MDB_env *env, MDB_dbi dbi)
{
char *ptr;
if (dbi < CORE_DBS || dbi >= env->me_maxdbs)
return;
ptr = env->me_dbxs[dbi].md_name.mv_data;
/* If there was no name, this was already closed */
if (ptr) {
env->me_dbxs[dbi].md_name.mv_data = NULL;
env->me_dbxs[dbi].md_name.mv_size = 0;
env->me_dbflags[dbi] = 0;
env->me_dbiseqs[dbi]++;
free(ptr);
}
}
int mdb_dbi_flags(MDB_txn *txn, MDB_dbi dbi, unsigned *flags)
{
if (unlikely(!txn || !flags))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(!TXN_DBI_EXIST(txn, dbi, DB_VALID)))
return EINVAL;
*flags = txn->mt_dbs[dbi].md_flags & PERSISTENT_FLAGS;
return MDB_SUCCESS;
}
/** Add all the DB's pages to the free list.
* @param[in] mc Cursor on the DB to free.
* @param[in] subs non-Zero to check for sub-DBs in this DB.
* @return 0 on success, non-zero on failure.
*/
static int
mdb_drop0(MDB_cursor *mc, int subs)
{
int rc;
rc = mdb_page_search(mc, NULL, MDB_PS_FIRST);
if (likely(rc == MDB_SUCCESS)) {
MDB_txn *txn = mc->mc_txn;
MDB_node *ni;
MDB_cursor mx;
unsigned i;
/* DUPSORT sub-DBs have no ovpages/DBs. Omit scanning leaves.
* This also avoids any P_LEAF2 pages, which have no nodes.
* Also if the DB doesn't have sub-DBs and has no overflow
* pages, omit scanning leaves.
*/
if ((mc->mc_flags & C_SUB) ||
(!subs && !mc->mc_db->md_overflow_pages))
mdb_cursor_pop(mc);
mdb_cursor_copy(mc, &mx);
while (mc->mc_snum > 0) {
MDB_page *mp = mc->mc_pg[mc->mc_top];
unsigned n = NUMKEYS(mp);
if (IS_LEAF(mp)) {
for (i=0; i<n; i++) {
ni = NODEPTR(mp, i);
if (ni->mn_flags & F_BIGDATA) {
MDB_page *omp;
pgno_t pg;
memcpy(&pg, NODEDATA(ni), sizeof(pg));
rc = mdb_page_get(mc, pg, &omp, NULL);
if (unlikely(rc))
goto done;
mdb_cassert(mc, IS_OVERFLOW(omp));
rc = mdb_midl_append_range(&txn->mt_free_pgs,
pg, omp->mp_pages);
if (unlikely(rc))
goto done;
mc->mc_db->md_overflow_pages -= omp->mp_pages;
if (!mc->mc_db->md_overflow_pages && !subs)
break;
} else if (subs && (ni->mn_flags & F_SUBDATA)) {
mdb_xcursor_init1(mc, ni);
rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0);
if (unlikely(rc))
goto done;
}
}
if (!subs && !mc->mc_db->md_overflow_pages)
goto pop;
} else {
if (unlikely((rc = mdb_midl_need(&txn->mt_free_pgs, n)) != 0))
goto done;
for (i=0; i<n; i++) {
pgno_t pg;
ni = NODEPTR(mp, i);
pg = NODEPGNO(ni);
/* free it */
mdb_midl_xappend(txn->mt_free_pgs, pg);
}
}
if (!mc->mc_top)
break;
mc->mc_ki[mc->mc_top] = i;
rc = mdb_cursor_sibling(mc, 1);
if (rc) {
if (unlikely(rc != MDB_NOTFOUND))
goto done;
/* no more siblings, go back to beginning
* of previous level.
*/
pop:
mdb_cursor_pop(mc);
mc->mc_ki[0] = 0;
for (i=1; i<mc->mc_snum; i++) {
mc->mc_ki[i] = 0;
mc->mc_pg[i] = mx.mc_pg[i];
}
}
}
/* free it */
rc = mdb_midl_append(&txn->mt_free_pgs, mc->mc_db->md_root);
done:
if (unlikely(rc))
txn->mt_flags |= MDB_TXN_ERROR;
} else if (rc == MDB_NOTFOUND) {
rc = MDB_SUCCESS;
}
mc->mc_flags &= ~C_INITIALIZED;
return rc;
}
int mdb_drop(MDB_txn *txn, MDB_dbi dbi, int del)
{
MDB_cursor *mc, *m2;
int rc;
if (unlikely(1 < (unsigned) del || !txn))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)))
return EINVAL;
if (unlikely(TXN_DBI_CHANGED(txn, dbi)))
return MDB_BAD_DBI;
if (unlikely(F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)))
return EACCES;
rc = mdb_cursor_open(txn, dbi, &mc);
if (unlikely(rc))
return rc;
rc = mdb_drop0(mc, mc->mc_db->md_flags & MDB_DUPSORT);
/* Invalidate the dropped DB's cursors */
for (m2 = txn->mt_cursors[dbi]; m2; m2 = m2->mc_next)
m2->mc_flags &= ~(C_INITIALIZED|C_EOF);
if (unlikely(rc))
goto leave;
/* Can't delete the main DB */
if (del && dbi >= CORE_DBS) {
rc = mdb_del0(txn, MAIN_DBI, &mc->mc_dbx->md_name, NULL, F_SUBDATA);
if (likely(!rc)) {
txn->mt_dbflags[dbi] = DB_STALE;
mdb_dbi_close(txn->mt_env, dbi);
} else {
txn->mt_flags |= MDB_TXN_ERROR;
}
} else {
/* reset the DB record, mark it dirty */
txn->mt_dbflags[dbi] |= DB_DIRTY;
txn->mt_dbs[dbi].md_depth = 0;
txn->mt_dbs[dbi].md_branch_pages = 0;
txn->mt_dbs[dbi].md_leaf_pages = 0;
txn->mt_dbs[dbi].md_overflow_pages = 0;
txn->mt_dbs[dbi].md_entries = 0;
txn->mt_dbs[dbi].md_root = P_INVALID;
txn->mt_flags |= MDB_TXN_DIRTY;
}
leave:
mdb_cursor_close(mc);
return rc;
}
int mdb_set_compare(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp)
{
if (unlikely(!txn))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)))
return EINVAL;
txn->mt_dbxs[dbi].md_cmp = cmp;
return MDB_SUCCESS;
}
int mdb_set_dupsort(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp)
{
if (unlikely(!txn))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)))
return EINVAL;
txn->mt_dbxs[dbi].md_dcmp = cmp;
return MDB_SUCCESS;
}
int mdb_set_relfunc(MDB_txn *txn, MDB_dbi dbi, MDB_rel_func *rel)
{
if (unlikely(!txn))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)))
return EINVAL;
txn->mt_dbxs[dbi].md_rel = rel;
return MDB_SUCCESS;
}
int mdb_set_relctx(MDB_txn *txn, MDB_dbi dbi, void *ctx)
{
if (unlikely(!txn))
return EINVAL;
if (unlikely(txn->mt_signature != MDBX_MT_SIGNATURE))
return MDB_VERSION_MISMATCH;
if (unlikely(!TXN_DBI_EXIST(txn, dbi, DB_USRVALID)))
return EINVAL;
txn->mt_dbxs[dbi].md_relctx = ctx;
return MDB_SUCCESS;
}
int __cold
mdb_env_get_maxkeysize(MDB_env *env)
{
if (!env || env->me_signature != MDBX_ME_SIGNATURE)
return EINVAL;
return ENV_MAXKEY(env);
}
int __cold
mdb_reader_list(MDB_env *env, MDB_msg_func *func, void *ctx)
{
unsigned i, rdrs;
MDB_reader *mr;
char buf[64];
int rc = 0, first = 1;
if (unlikely(!env || !func))
return -EINVAL;
if (unlikely(env->me_signature != MDBX_ME_SIGNATURE))
return MDB_VERSION_MISMATCH;
rdrs = env->me_txns->mti_numreaders;
mr = env->me_txns->mti_readers;
for (i=0; i<rdrs; i++) {
if (mr[i].mr_pid) {
txnid_t txnid = mr[i].mr_txnid;
if (txnid == ~(txnid_t)0)
sprintf(buf, "%10d %zx -\n",
(int) mr[i].mr_pid, (size_t) mr[i].mr_tid);
else
sprintf(buf, "%10d %zx %zu\n",
(int) mr[i].mr_pid, (size_t) mr[i].mr_tid, txnid);
if (first) {
first = 0;
rc = func(" pid thread txnid\n", ctx);
if (rc < 0)
break;
}
rc = func(buf, ctx);
if (rc < 0)
break;
}
}
if (first) {
rc = func("(no active readers)\n", ctx);
}
return rc;
}
/** Insert pid into list if not already present.
* return -1 if already present.
*/
static int __cold
mdb_pid_insert(pid_t *ids, pid_t pid)
{
/* binary search of pid in list */
unsigned base = 0;
unsigned cursor = 1;
int val = 0;
unsigned n = ids[0];
while( 0 < n ) {
unsigned pivot = n >> 1;
cursor = base + pivot + 1;
val = pid - ids[cursor];
if( val < 0 ) {
n = pivot;
} else if ( val > 0 ) {
base = cursor;
n -= pivot + 1;
} else {
/* found, so it's a duplicate */
return -1;
}
}
if( val > 0 ) {
++cursor;
}
ids[0]++;
for (n = ids[0]; n > cursor; n--)
ids[n] = ids[n-1];
ids[n] = pid;
return 0;
}
int __cold
mdb_reader_check(MDB_env *env, int *dead)
{
if (unlikely(!env || env->me_signature != MDBX_ME_SIGNATURE))
return EINVAL;
if (dead)
*dead = 0;
return mdb_reader_check0(env, 0, dead);
}
/** As #mdb_reader_check(). \b rlocked is set if caller locked #me_rmutex. */
static int __cold
mdb_reader_check0(MDB_env *env, int rlocked, int *dead)
{
pthread_mutex_t *rmutex = rlocked ? NULL : MDB_MUTEX(env, r);
unsigned i, j, rdrs;
MDB_reader *mr;
pid_t *pids, pid;
int rc = MDB_SUCCESS, count = 0;
if (unlikely(env->me_pid != getpid())) {
env->me_flags |= MDB_FATAL_ERROR;
return MDB_PANIC;
}
rdrs = env->me_txns->mti_numreaders;
pids = malloc((rdrs+1) * sizeof(pid_t));
if (!pids)
return ENOMEM;
pids[0] = 0;
mr = env->me_txns->mti_readers;
for (i=0; i<rdrs; i++) {
pid = mr[i].mr_pid;
if (pid && pid != env->me_pid) {
if (mdb_pid_insert(pids, pid) == 0) {
if (!mdb_reader_pid(env, F_GETLK, pid)) {
/* Stale reader found */
j = i;
if (rmutex) {
if ((rc = pthread_mutex_lock(rmutex)) != 0) {
if ((rc = mdb_mutex_failed(env, rmutex, rc)))
break;
rdrs = 0; /* the above checked all readers */
} else {
/* Recheck, a new process may have reused pid */
if (mdb_reader_pid(env, F_GETLK, pid))
j = rdrs;
}
}
for (; j < rdrs; j++) {
if (mr[j].mr_pid == pid) {
mdb_debug("clear stale reader pid %u txn %zd",
(unsigned) pid, mr[j].mr_txnid);
mr[j].mr_pid = 0;
count++;
}
}
if (rmutex)
mdb_mutex_unlock(env, rmutex);
}
}
}
}
free(pids);
if (dead)
*dead = count;
return rc;
}
static int __cold
mdb_mutex_failed(MDB_env *env, pthread_mutex_t *mutex, int rc)
{
#if MDB_USE_ROBUST
if (unlikely(rc == EOWNERDEAD)) {
int rlocked, rc2;
/* We own the mutex. Clean up after dead previous owner. */
rc = MDB_SUCCESS;
rlocked = (mutex == MDB_MUTEX(env, r));
if (!rlocked) {
/* Keep mti_txnid updated, otherwise next writer can
* overwrite data which latest meta page refers to.
*/
#if 0
/* LY: Hm, how this can happen, if the mti_txnid
* is updating only at the finish of a successful commit ? */
MDB_meta *meta = mdb_env_meta_head(env);
env->me_txns->mti_txnid = meta->mm_txnid;
#endif
/* env is hosed if the dead thread was ours */
if (env->me_txn) {
env->me_flags |= MDB_FATAL_ERROR;
env->me_txn = NULL;
rc = MDB_PANIC;
}
}
mdb_debug("%cmutex owner died, %s", (rlocked ? 'r' : 'w'),
(rc ? "this process' env is hosed" : "recovering"));
rc2 = mdb_reader_check0(env, rlocked, NULL);
if (rc2 == 0)
rc2 = pthread_mutex_consistent(mutex);
if (rc || (rc = rc2)) {
mdb_debug("mutex recovery failed, %s", mdb_strerror(rc));
pthread_mutex_unlock(mutex);
}
}
#endif /* MDB_USE_ROBUST */
if (unlikely(rc)) {
mdb_debug("lock mutex failed, %s", mdb_strerror(rc));
if (rc != EDEADLK) {
env->me_flags |= MDB_FATAL_ERROR;
rc = MDB_PANIC;
}
}
return rc;
}
static int mdb_mutex_lock(MDB_env *env, pthread_mutex_t *mutex) {
int rc = pthread_mutex_lock(mutex);
if (unlikely(rc))
rc = mdb_mutex_failed(env, mutex, rc);
return rc;
}
static void mdb_mutex_unlock(MDB_env *env, pthread_mutex_t *mutex) {
int rc = pthread_mutex_unlock(mutex);
mdb_assert(env, rc == 0);
(void) env;
(void) rc;
}
/** @} */
#include "./midl.c"