libmdbx/test/utils.c++

214 lines
5.4 KiB
C++

/// \author Леонид Юрьев aka Leonid Yuriev <leo@yuriev.ru> \date 2015-2024
/// \copyright SPDX-License-Identifier: Apache-2.0
#include "test.h++"
#include <float.h>
#if defined(HAVE_IEEE754_H) || __has_include(<ieee754.h>)
#include <ieee754.h>
#endif
#if defined(__APPLE__) || defined(__MACH__)
#include <mach/mach_time.h>
#endif /* defined(__APPLE__) || defined(__MACH__) */
std::string format(const char *fmt, ...) {
va_list ap, ones;
va_start(ap, fmt);
va_copy(ones, ap);
#ifdef _MSC_VER
int needed = _vscprintf(fmt, ap);
#else
int needed = vsnprintf(nullptr, 0, fmt, ap);
#endif
assert(needed >= 0);
va_end(ap);
std::string result;
result.reserve((size_t)needed + 1);
result.resize((size_t)needed, '\0');
MDBX_MAYBE_UNUSED int actual =
vsnprintf((char *)result.data(), result.capacity(), fmt, ones);
assert(actual == needed);
(void)actual;
va_end(ones);
return result;
}
std::string data2hex(const void *ptr, size_t bytes, simple_checksum &checksum) {
std::string result;
if (bytes > 0) {
const uint8_t *data = (const uint8_t *)ptr;
checksum.push(data, bytes);
result.reserve(bytes * 2);
const uint8_t *const end = data + bytes;
do {
char h = *data >> 4;
char l = *data & 15;
result.push_back((l < 10) ? l + '0' : l - 10 + 'a');
result.push_back((h < 10) ? h + '0' : h - 10 + 'a');
} while (++data < end);
}
assert(result.size() == bytes * 2);
return result;
}
bool hex2data(const char *hex_begin, const char *hex_end, void *ptr,
size_t bytes, simple_checksum &checksum) {
if (bytes * 2 != (size_t)(hex_end - hex_begin))
return false;
uint8_t *data = (uint8_t *)ptr;
for (const char *hex = hex_begin; hex != hex_end; hex += 2, ++data) {
unsigned l = hex[0], h = hex[1];
if (l >= '0' && l <= '9')
l = l - '0';
else if (l >= 'A' && l <= 'F')
l = l - 'A' + 10;
else if (l >= 'a' && l <= 'f')
l = l - 'a' + 10;
else
return false;
if (h >= '0' && h <= '9')
h = h - '0';
else if (h >= 'A' && h <= 'F')
h = h - 'A' + 10;
else if (h >= 'a' && h <= 'f')
h = h - 'a' + 10;
else
return false;
uint32_t c = l + (h << 4);
checksum.push(c);
*data = (uint8_t)c;
}
return true;
}
bool is_samedata(const MDBX_val *a, const MDBX_val *b) {
return a->iov_len == b->iov_len &&
memcmp(a->iov_base, b->iov_base, a->iov_len) == 0;
}
//-----------------------------------------------------------------------------
uint64_t prng64_white(uint64_t &state) {
state = prng64_map2_careless(state);
return bleach64(state);
}
uint32_t prng32_fast(uint64_t &state) {
return uint32_t(prng64_careless(state) >> 32);
}
uint32_t prng32_white(uint64_t &state) {
return bleach32(uint32_t(prng64_careless(state) >> 32));
}
void prng_fill(uint64_t &state, void *ptr, size_t bytes) {
uint32_t u32 = prng32_fast(state);
while (bytes >= 4) {
memcpy(ptr, &u32, 4);
ptr = (uint32_t *)ptr + 1;
bytes -= 4;
u32 = prng32_fast(state);
}
switch (bytes & 3) {
case 3:
memcpy(ptr, &u32, 3);
break;
case 2:
memcpy(ptr, &u32, 2);
break;
case 1:
memcpy(ptr, &u32, 1);
break;
case 0:
break;
}
}
/* __thread */ uint64_t prng_state;
void prng_seed(uint64_t seed) { prng_state = bleach64(seed); }
uint32_t prng32(void) { return prng32_white(prng_state); }
uint64_t prng64(void) { return prng64_white(prng_state); }
void prng_fill(void *ptr, size_t bytes) { prng_fill(prng_state, ptr, bytes); }
double double_from_lower(uint64_t salt) {
#ifdef IEEE754_DOUBLE_BIAS
ieee754_double r;
r.ieee.negative = 0;
r.ieee.exponent = IEEE754_DOUBLE_BIAS;
r.ieee.mantissa0 = (unsigned)(salt >> 32);
r.ieee.mantissa1 = (unsigned)salt;
return r.d;
#else
const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1;
const double scale = 1.0 / (double)top;
return (salt & top) * scale;
#endif
}
double double_from_upper(uint64_t salt) {
#ifdef IEEE754_DOUBLE_BIAS
ieee754_double r;
r.ieee.negative = 0;
r.ieee.exponent = IEEE754_DOUBLE_BIAS;
salt >>= 64 - DBL_MANT_DIG;
r.ieee.mantissa0 = unsigned(salt >> 32);
r.ieee.mantissa1 = unsigned(salt);
return r.d;
#else
const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1;
const double scale = 1.0 / (double)top;
return (salt >> (64 - DBL_MANT_DIG)) * scale;
#endif
}
bool flipcoin() { return prng32() & 1; }
bool flipcoin_x2() { return (prng32() & 3) == 0; }
bool flipcoin_x3() { return (prng32() & 7) == 0; }
bool flipcoin_x4() { return (prng32() & 15) == 0; }
bool flipcoin_n(unsigned n) {
return (prng64() & ((UINT64_C(1) << n) - 1)) == 0;
}
bool jitter(unsigned probability_percent) {
const uint32_t top = UINT32_MAX - UINT32_MAX % 100;
uint32_t dice, edge = (top) / 100 * probability_percent;
do
dice = prng32();
while (dice >= top);
return dice < edge;
}
void jitter_delay(bool extra) {
unsigned dice = prng32() & 3;
if (dice == 0) {
log_trace("== jitter.no-delay");
} else {
log_trace(">> jitter.delay: dice %u", dice);
do {
cpu_relax();
memory_barrier();
cpu_relax();
if (dice > 1) {
osal_yield();
cpu_relax();
if (dice > 2) {
size_t us =
prng32() & (extra ? 0xffff /* 656 ms */ : 0x3ff /* 1 ms */);
log_trace("== jitter.delay: %0.6f", us / 1000000.0);
osal_udelay(us);
}
}
} while (flipcoin());
log_trace("<< jitter.delay: dice %u", dice);
}
}