mirror of
https://github.com/isar/libmdbx.git
synced 2025-01-02 00:14:14 +08:00
315 lines
8.3 KiB
C++
315 lines
8.3 KiB
C++
/*
|
|
* Copyright 2017 Leonid Yuriev <leo@yuriev.ru>
|
|
* and other libmdbx authors: please see AUTHORS file.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted only as authorized by the OpenLDAP
|
|
* Public License.
|
|
*
|
|
* A copy of this license is available in the file LICENSE in the
|
|
* top-level directory of the distribution or, alternatively, at
|
|
* <http://www.OpenLDAP.org/license.html>.
|
|
*/
|
|
|
|
#include "test.h"
|
|
#include <float.h>
|
|
#ifdef HAVE_IEEE754_H
|
|
#include <ieee754.h>
|
|
#endif
|
|
|
|
std::string format(const char *fmt, ...) {
|
|
va_list ap, ones;
|
|
va_start(ap, fmt);
|
|
va_copy(ones, ap);
|
|
#ifdef _MSC_VER
|
|
int needed = _vscprintf(fmt, ap);
|
|
#else
|
|
int needed = vsnprintf(nullptr, 0, fmt, ap);
|
|
#endif
|
|
assert(needed >= 0);
|
|
va_end(ap);
|
|
std::string result;
|
|
result.reserve((size_t)needed + 1);
|
|
result.resize((size_t)needed, '\0');
|
|
int actual = vsnprintf((char *)result.data(), result.capacity(), fmt, ones);
|
|
assert(actual == needed);
|
|
(void)actual;
|
|
va_end(ones);
|
|
return result;
|
|
}
|
|
|
|
std::string data2hex(const void *ptr, size_t bytes, simple_checksum &checksum) {
|
|
std::string result;
|
|
if (bytes > 0) {
|
|
const uint8_t *data = (const uint8_t *)ptr;
|
|
checksum.push(data, bytes);
|
|
result.reserve(bytes * 2);
|
|
const uint8_t *const end = data + bytes;
|
|
do {
|
|
char h = *data >> 4;
|
|
char l = *data & 15;
|
|
result.push_back((l < 10) ? l + '0' : l - 10 + 'a');
|
|
result.push_back((h < 10) ? h + '0' : h - 10 + 'a');
|
|
} while (++data < end);
|
|
}
|
|
assert(result.size() == bytes * 2);
|
|
return result;
|
|
}
|
|
|
|
bool hex2data(const char *hex_begin, const char *hex_end, void *ptr,
|
|
size_t bytes, simple_checksum &checksum) {
|
|
if (bytes * 2 != (size_t)(hex_end - hex_begin))
|
|
return false;
|
|
|
|
uint8_t *data = (uint8_t *)ptr;
|
|
for (const char *hex = hex_begin; hex != hex_end; hex += 2, ++data) {
|
|
unsigned l = hex[0], h = hex[1];
|
|
|
|
if (l >= '0' && l <= '9')
|
|
l = l - '0';
|
|
else if (l >= 'A' && l <= 'F')
|
|
l = l - 'A' + 10;
|
|
else if (l >= 'a' && l <= 'f')
|
|
l = l - 'a' + 10;
|
|
else
|
|
return false;
|
|
|
|
if (h >= '0' && h <= '9')
|
|
h = h - '0';
|
|
else if (h >= 'A' && h <= 'F')
|
|
h = h - 'A' + 10;
|
|
else if (h >= 'a' && h <= 'f')
|
|
h = h - 'a' + 10;
|
|
else
|
|
return false;
|
|
|
|
uint32_t c = l + (h << 4);
|
|
checksum.push(c);
|
|
*data = c;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#ifdef __mips__
|
|
static uint64_t *mips_tsc_addr;
|
|
|
|
__cold static void mips_rdtsc_init() {
|
|
int mem_fd = open("/dev/mem", O_RDONLY | O_SYNC, 0);
|
|
HIPPEUS_ENSURE(mem_fd >= 0);
|
|
|
|
mips_tsc_addr = mmap(nullptr, pagesize, PROT_READ, MAP_SHARED, mem_fd,
|
|
0x10030000 /* MIPS_ZBUS_TIMER */);
|
|
close(mem_fd);
|
|
}
|
|
#endif /* __mips__ */
|
|
|
|
uint64_t entropy_ticks(void) {
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#if defined(__ia64__)
|
|
uint64_t ticks;
|
|
__asm("mov %0=ar.itc" : "=r"(ticks));
|
|
return ticks;
|
|
#elif defined(__hppa__)
|
|
uint64_t ticks;
|
|
__asm("mfctl 16, %0" : "=r"(ticks));
|
|
return ticks;
|
|
#elif defined(__s390__)
|
|
uint64_t ticks;
|
|
__asm("stck 0(%0)" : : "a"(&(ticks)) : "memory", "cc");
|
|
return ticks;
|
|
#elif defined(__alpha__)
|
|
uint64_t ticks;
|
|
__asm("rpcc %0" : "=r"(ticks));
|
|
return ticks;
|
|
#elif defined(__sparc_v9__)
|
|
uint64_t ticks;
|
|
__asm("rd %%tick, %0" : "=r"(ticks));
|
|
return ticks;
|
|
#elif defined(__powerpc64__) || defined(__ppc64__)
|
|
uint64_t ticks;
|
|
__asm("mfspr %0, 268" : "=r"(ticks));
|
|
return ticks;
|
|
#elif defined(__ppc__) || defined(__powerpc__)
|
|
unsigned tbl, tbu;
|
|
|
|
/* LY: Here not a problem if a high-part (tbu)
|
|
* would been updated during reading. */
|
|
__asm("mftb %0" : "=r"(tbl));
|
|
__asm("mftbu %0" : "=r"(tbu));
|
|
|
|
return (((uin64_t)tbu0) << 32) | tbl;
|
|
#elif defined(__mips__)
|
|
if (mips_tsc_addr != MAP_FAILED) {
|
|
if (unlikely(!mips_tsc_addr)) {
|
|
static pthread_once_t is_initialized = PTHREAD_ONCE_INIT;
|
|
int rc = pthread_once(&is_initialized, mips_rdtsc_init);
|
|
if (unlikely(rc))
|
|
failure_perror("pthread_once()", rc);
|
|
}
|
|
if (mips_tsc_addr != MAP_FAILED)
|
|
return *mips_tsc_addr;
|
|
}
|
|
#elif defined(__x86_64__) || defined(__i386__)
|
|
unsigned lo, hi;
|
|
|
|
/* LY: Using the "a" and "d" constraints is important for correct code. */
|
|
__asm("rdtsc" : "=a"(lo), "=d"(hi));
|
|
|
|
return (((uint64_t)hi) << 32) + lo;
|
|
#endif /* arch selector */
|
|
|
|
#elif defined(_M_IX86) || defined(_M_X64)
|
|
return __rdtsc();
|
|
#endif /* __GNUC__ || __clang__ */
|
|
|
|
#if defined(_WIN32) || defined(_WIN64) || defined(_WINDOWS)
|
|
LARGE_INTEGER PerformanceCount;
|
|
if (QueryPerformanceCounter(&PerformanceCount))
|
|
return PerformanceCount.QuadPart;
|
|
return GetTickCount64();
|
|
#else
|
|
struct timespec ts;
|
|
#if defined(CLOCK_MONOTONIC_COARSE)
|
|
clockid_t clock = CLOCK_MONOTONIC_COARSE;
|
|
#elif defined(CLOCK_MONOTONIC_RAW)
|
|
clockid_t clock = CLOCK_MONOTONIC_RAW;
|
|
#else
|
|
clockid_t clock = CLOCK_MONOTONIC;
|
|
#endif
|
|
int rc = clock_gettime(clock, &ts);
|
|
if (unlikely(rc))
|
|
failure_perror("clock_gettime()", rc);
|
|
|
|
return (((uint64_t)ts.tv_sec) << 32) + ts.tv_nsec;
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
static __inline uint64_t bleach64(uint64_t dirty) {
|
|
return mul_64x64_high(bswap64(dirty), UINT64_C(17048867929148541611));
|
|
}
|
|
|
|
static __inline uint32_t bleach32(uint32_t dirty) {
|
|
return (uint32_t)((bswap32(dirty) * UINT64_C(2175734609)) >> 32);
|
|
}
|
|
|
|
uint64_t prng64_careless(uint64_t &state) {
|
|
state = state * UINT64_C(6364136223846793005) + 1;
|
|
return state;
|
|
}
|
|
|
|
uint64_t prng64_white(uint64_t &state) {
|
|
state = state * UINT64_C(6364136223846793005) + UINT64_C(1442695040888963407);
|
|
return bleach64(state);
|
|
}
|
|
|
|
uint32_t prng32(uint64_t &state) {
|
|
return (uint32_t)(prng64_careless(state) >> 32);
|
|
}
|
|
|
|
void prng_fill(uint64_t &state, void *ptr, size_t bytes) {
|
|
while (bytes >= 4) {
|
|
*((uint32_t *)ptr) = prng32(state);
|
|
ptr = (uint32_t *)ptr + 1;
|
|
bytes -= 4;
|
|
}
|
|
|
|
switch (bytes & 3) {
|
|
case 3: {
|
|
uint32_t u32 = prng32(state);
|
|
memcpy(ptr, &u32, 3);
|
|
} break;
|
|
case 2:
|
|
*((uint16_t *)ptr) = (uint16_t)prng32(state);
|
|
break;
|
|
case 1:
|
|
*((uint8_t *)ptr) = (uint8_t)prng32(state);
|
|
break;
|
|
case 0:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static __thread uint64_t prng_state;
|
|
|
|
void prng_seed(uint64_t seed) { prng_state = bleach64(seed); }
|
|
|
|
uint32_t prng32(void) { return prng32(prng_state); }
|
|
|
|
uint64_t prng64(void) { return prng64_white(prng_state); }
|
|
|
|
void prng_fill(void *ptr, size_t bytes) { prng_fill(prng_state, ptr, bytes); }
|
|
|
|
uint64_t entropy_white() { return bleach64(entropy_ticks()); }
|
|
|
|
double double_from_lower(uint64_t salt) {
|
|
#ifdef IEEE754_DOUBLE_BIAS
|
|
ieee754_double r;
|
|
r.ieee.negative = 0;
|
|
r.ieee.exponent = IEEE754_DOUBLE_BIAS;
|
|
r.ieee.mantissa0 = (unsigned)(salt >> 32);
|
|
r.ieee.mantissa1 = (unsigned)salt;
|
|
return r.d;
|
|
#else
|
|
const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1;
|
|
const double scale = 1.0 / (double)top;
|
|
return (salt & top) * scale;
|
|
#endif
|
|
}
|
|
|
|
double double_from_upper(uint64_t salt) {
|
|
#ifdef IEEE754_DOUBLE_BIAS
|
|
ieee754_double r;
|
|
r.ieee.negative = 0;
|
|
r.ieee.exponent = IEEE754_DOUBLE_BIAS;
|
|
salt >>= 64 - DBL_MANT_DIG;
|
|
r.ieee.mantissa0 = (unsigned)(salt >> 32);
|
|
r.ieee.mantissa1 = (unsigned)salt;
|
|
return r.d;
|
|
#else
|
|
const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1;
|
|
const double scale = 1.0 / (double)top;
|
|
return (salt >> (64 - DBL_MANT_DIG)) * scale;
|
|
#endif
|
|
}
|
|
|
|
bool flipcoin() { return bleach32((uint32_t)entropy_ticks()) & 1; }
|
|
|
|
bool jitter(unsigned probability_percent) {
|
|
const uint32_t top = UINT32_MAX - UINT32_MAX % 100;
|
|
uint32_t dice, edge = (top) / 100 * probability_percent;
|
|
do
|
|
dice = bleach32((uint32_t)entropy_ticks());
|
|
while (dice >= top);
|
|
return dice < edge;
|
|
}
|
|
|
|
void jitter_delay(bool extra) {
|
|
unsigned dice = entropy_white() & 3;
|
|
if (dice == 0) {
|
|
log_trace("== jitter.no-delay");
|
|
} else {
|
|
log_trace(">> jitter.delay: dice %u", dice);
|
|
do {
|
|
cpu_relax();
|
|
memory_barrier();
|
|
cpu_relax();
|
|
if (dice > 1) {
|
|
osal_yield();
|
|
cpu_relax();
|
|
if (dice > 2) {
|
|
unsigned us = entropy_white() &
|
|
(extra ? 0xfffff /* 1.05 s */ : 0x3ff /* 1 ms */);
|
|
log_trace("== jitter.delay: %0.6f", us / 1000000.0);
|
|
osal_udelay(us);
|
|
}
|
|
}
|
|
} while (flipcoin());
|
|
log_trace("<< jitter.delay: dice %u", dice);
|
|
}
|
|
}
|