libmdbx/mdbx.h++
2024-11-13 15:05:26 +03:00

7503 lines
288 KiB
C++

/// \copyright SPDX-License-Identifier: Apache-2.0
/// \author Леонид Юрьев aka Leonid Yuriev <leo@yuriev.ru> \date 2020-2024
///
/// \file mdbx.h++
/// \brief The libmdbx C++ API header file.
///
/// Tested with:
/// - Elbrus LCC >= 1.23 (http://www.mcst.ru/lcc);
/// - GNU C++ >= 4.8;
/// - clang >= 3.9;
/// - MSVC >= 14.0 (Visual Studio 2015),
/// but 19.2x could hang due optimizer bug;
/// - AppleClang, but without C++20 concepts.
///
///
/// The origin has been migrated to https://gitflic.ru/project/erthink/libmdbx
/// since on 2022-04-15 the Github administration, without any warning nor
/// explanation, deleted libmdbx along with a lot of other projects,
/// simultaneously blocking access for many developers.
/// For the same reason Github is blacklisted forever.
///
#pragma once
/* Workaround for modern libstdc++ with CLANG < 4.x */
#if defined(__SIZEOF_INT128__) && !defined(__GLIBCXX_TYPE_INT_N_0) && \
defined(__clang__) && __clang_major__ < 4
#define __GLIBCXX_BITSIZE_INT_N_0 128
#define __GLIBCXX_TYPE_INT_N_0 __int128
#endif /* Workaround for modern libstdc++ with CLANG < 4.x */
#if !defined(__cplusplus) || __cplusplus < 201103L
#if !defined(_MSC_VER) || _MSC_VER < 1900
#error "C++11 compiler or better is required"
#elif _MSC_VER >= 1910
#error \
"Please add `/Zc:__cplusplus` to MSVC compiler options to enforce it conform ISO C++"
#endif /* MSVC is mad and don't define __cplusplus properly */
#endif /* __cplusplus < 201103L */
#if (defined(_WIN32) || defined(_WIN64)) && MDBX_WITHOUT_MSVC_CRT
#error \
"CRT is required for C++ API, the MDBX_WITHOUT_MSVC_CRT option must be disabled"
#endif /* Windows */
#ifndef __has_include
#define __has_include(header) (0)
#endif /* __has_include */
#if __has_include(<version>)
#include <version>
#endif /* <version> */
/* Disable min/max macros from C' headers */
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <algorithm> // for std::min/max
#include <cassert> // for assert()
#include <climits> // for CHAR_BIT
#include <cstring> // for std::strlen, str:memcmp
#include <exception> // for std::exception_ptr
#include <ostream> // for std::ostream
#include <sstream> // for std::ostringstream
#include <stdexcept> // for std::invalid_argument
#include <string> // for std::string
#include <type_traits> // for std::is_pod<>, etc.
#include <utility> // for std::make_pair
#include <vector> // for std::vector<> as template args
#if defined(__cpp_lib_memory_resource) && __cpp_lib_memory_resource >= 201603L
#include <memory_resource>
#endif
#if defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L
#include <string_view>
#endif
#ifndef MDBX_USING_CXX_EXPERIMETAL_FILESYSTEM
#ifdef INCLUDE_STD_FILESYSTEM_EXPERIMENTAL
#define MDBX_USING_CXX_EXPERIMETAL_FILESYSTEM 1
#elif defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L && \
__cplusplus >= 201703L
#define MDBX_USING_CXX_EXPERIMETAL_FILESYSTEM 0
#elif (!defined(_MSC_VER) || __cplusplus >= 201403L || \
(defined(_MSC_VER) && \
defined(_SILENCE_EXPERIMENTAL_FILESYSTEM_DEPRECATION_WARNING) && \
__cplusplus >= 201403L))
#if defined(__cpp_lib_experimental_filesystem) && \
__cpp_lib_experimental_filesystem >= 201406L
#define MDBX_USING_CXX_EXPERIMETAL_FILESYSTEM 1
#elif defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L && \
__has_include(<experimental/filesystem>)
#define MDBX_USING_CXX_EXPERIMETAL_FILESYSTEM 1
#else
#define MDBX_USING_CXX_EXPERIMETAL_FILESYSTEM 0
#endif
#else
#define MDBX_USING_CXX_EXPERIMETAL_FILESYSTEM 0
#endif
#endif /* MDBX_USING_CXX_EXPERIMETAL_FILESYSTEM */
#if MDBX_USING_CXX_EXPERIMETAL_FILESYSTEM
#include <experimental/filesystem>
#elif defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L
#include <filesystem>
#endif
#if defined(__cpp_lib_span) && __cpp_lib_span >= 202002L
#include <span>
#endif
#if __cplusplus >= 201103L
#include <chrono>
#include <ratio>
#endif
#include "mdbx.h"
#if (defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L) || \
(defined(__cpp_lib_endian) && __cpp_lib_endian >= 201907L) || \
(defined(__cpp_lib_bitops) && __cpp_lib_bitops >= 201907L) || \
(defined(__cpp_lib_int_pow2) && __cpp_lib_int_pow2 >= 202002L)
#include <bit>
#elif !(defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
defined(__ORDER_BIG_ENDIAN__))
#if defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && defined(__BIG_ENDIAN)
#define __ORDER_LITTLE_ENDIAN__ __LITTLE_ENDIAN
#define __ORDER_BIG_ENDIAN__ __BIG_ENDIAN
#define __BYTE_ORDER__ __BYTE_ORDER
#elif defined(_BYTE_ORDER) && defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)
#define __ORDER_LITTLE_ENDIAN__ _LITTLE_ENDIAN
#define __ORDER_BIG_ENDIAN__ _BIG_ENDIAN
#define __BYTE_ORDER__ _BYTE_ORDER
#else
#define __ORDER_LITTLE_ENDIAN__ 1234
#define __ORDER_BIG_ENDIAN__ 4321
#if defined(__LITTLE_ENDIAN__) || \
(defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)) || \
defined(__ARMEL__) || defined(__THUMBEL__) || defined(__AARCH64EL__) || \
defined(__MIPSEL__) || defined(_MIPSEL) || defined(__MIPSEL) || \
defined(_M_ARM) || defined(_M_ARM64) || defined(__e2k__) || \
defined(__elbrus_4c__) || defined(__elbrus_8c__) || defined(__bfin__) || \
defined(__BFIN__) || defined(__ia64__) || defined(_IA64) || \
defined(__IA64__) || defined(__ia64) || defined(_M_IA64) || \
defined(__itanium__) || defined(__ia32__) || defined(__CYGWIN__) || \
defined(_WIN64) || defined(_WIN32) || defined(__TOS_WIN__) || \
defined(__WINDOWS__)
#define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__
#elif defined(__BIG_ENDIAN__) || \
(defined(_BIG_ENDIAN) && !defined(_LITTLE_ENDIAN)) || \
defined(__ARMEB__) || defined(__THUMBEB__) || defined(__AARCH64EB__) || \
defined(__MIPSEB__) || defined(_MIPSEB) || defined(__MIPSEB) || \
defined(__m68k__) || defined(M68000) || defined(__hppa__) || \
defined(__hppa) || defined(__HPPA__) || defined(__sparc__) || \
defined(__sparc) || defined(__370__) || defined(__THW_370__) || \
defined(__s390__) || defined(__s390x__) || defined(__SYSC_ZARCH__)
#define __BYTE_ORDER__ __ORDER_BIG_ENDIAN__
#endif
#endif
#endif /* Byte Order */
/** Workaround for old compilers without properly support for `C++17 constexpr`.
*/
#if defined(DOXYGEN)
#define MDBX_CXX17_CONSTEXPR constexpr
#elif defined(__cpp_constexpr) && __cpp_constexpr >= 201603L && \
((defined(_MSC_VER) && _MSC_VER >= 1915) || \
(defined(__clang__) && __clang_major__ > 5) || \
(defined(__GNUC__) && __GNUC__ > 7) || \
(!defined(__GNUC__) && !defined(__clang__) && !defined(_MSC_VER)))
#define MDBX_CXX17_CONSTEXPR constexpr
#else
#define MDBX_CXX17_CONSTEXPR inline
#endif /* MDBX_CXX17_CONSTEXPR */
/** Workaround for old compilers without properly support for C++20 `constexpr`.
*/
#if defined(DOXYGEN)
#define MDBX_CXX20_CONSTEXPR constexpr
#elif defined(__cpp_lib_is_constant_evaluated) && \
__cpp_lib_is_constant_evaluated >= 201811L && \
defined(__cpp_lib_constexpr_string) && \
__cpp_lib_constexpr_string >= 201907L
#define MDBX_CXX20_CONSTEXPR constexpr
#else
#define MDBX_CXX20_CONSTEXPR inline
#endif /* MDBX_CXX20_CONSTEXPR */
#if CONSTEXPR_ENUM_FLAGS_OPERATIONS || defined(DOXYGEN)
#define MDBX_CXX01_CONSTEXPR_ENUM MDBX_CXX01_CONSTEXPR
#define MDBX_CXX11_CONSTEXPR_ENUM MDBX_CXX11_CONSTEXPR
#define MDBX_CXX14_CONSTEXPR_ENUM MDBX_CXX14_CONSTEXPR
#define MDBX_CXX17_CONSTEXPR_ENUM MDBX_CXX17_CONSTEXPR
#define MDBX_CXX20_CONSTEXPR_ENUM MDBX_CXX20_CONSTEXPR
#else
#define MDBX_CXX01_CONSTEXPR_ENUM inline
#define MDBX_CXX11_CONSTEXPR_ENUM inline
#define MDBX_CXX14_CONSTEXPR_ENUM inline
#define MDBX_CXX17_CONSTEXPR_ENUM inline
#define MDBX_CXX20_CONSTEXPR_ENUM inline
#endif /* CONSTEXPR_ENUM_FLAGS_OPERATIONS */
/** Workaround for old compilers without support assertion inside `constexpr`
* functions. */
#if defined(CONSTEXPR_ASSERT)
#define MDBX_CONSTEXPR_ASSERT(expr) CONSTEXPR_ASSERT(expr)
#elif defined NDEBUG
#define MDBX_CONSTEXPR_ASSERT(expr) void(0)
#else
#define MDBX_CONSTEXPR_ASSERT(expr) \
((expr) ? void(0) : [] { assert(!#expr); }())
#endif /* MDBX_CONSTEXPR_ASSERT */
#ifndef MDBX_LIKELY
#if defined(DOXYGEN) || \
(defined(__GNUC__) || __has_builtin(__builtin_expect)) && \
!defined(__COVERITY__)
#define MDBX_LIKELY(cond) __builtin_expect(!!(cond), 1)
#else
#define MDBX_LIKELY(x) (x)
#endif
#endif /* MDBX_LIKELY */
#ifndef MDBX_UNLIKELY
#if defined(DOXYGEN) || \
(defined(__GNUC__) || __has_builtin(__builtin_expect)) && \
!defined(__COVERITY__)
#define MDBX_UNLIKELY(cond) __builtin_expect(!!(cond), 0)
#else
#define MDBX_UNLIKELY(x) (x)
#endif
#endif /* MDBX_UNLIKELY */
/** Workaround for old compilers without properly support for C++20 `if
* constexpr`. */
#if defined(DOXYGEN)
#define MDBX_IF_CONSTEXPR constexpr
#elif defined(__cpp_if_constexpr) && __cpp_if_constexpr >= 201606L
#define MDBX_IF_CONSTEXPR constexpr
#else
#define MDBX_IF_CONSTEXPR
#endif /* MDBX_IF_CONSTEXPR */
#if defined(DOXYGEN) || \
(__has_cpp_attribute(fallthrough) && \
(!defined(__clang__) || __clang__ > 4)) || \
__cplusplus >= 201703L
#define MDBX_CXX17_FALLTHROUGH [[fallthrough]]
#else
#define MDBX_CXX17_FALLTHROUGH
#endif /* MDBX_CXX17_FALLTHROUGH */
#if defined(DOXYGEN) || (__has_cpp_attribute(likely) >= 201803L && \
(!defined(__GNUC__) || __GNUC__ > 9))
#define MDBX_CXX20_LIKELY [[likely]]
#else
#define MDBX_CXX20_LIKELY
#endif /* MDBX_CXX20_LIKELY */
#ifndef MDBX_CXX20_UNLIKELY
#if defined(DOXYGEN) || (__has_cpp_attribute(unlikely) >= 201803L && \
(!defined(__GNUC__) || __GNUC__ > 9))
#define MDBX_CXX20_UNLIKELY [[unlikely]]
#else
#define MDBX_CXX20_UNLIKELY
#endif
#endif /* MDBX_CXX20_UNLIKELY */
#ifndef MDBX_HAVE_CXX20_CONCEPTS
#if defined(__cpp_lib_concepts) && __cpp_lib_concepts >= 202002L
#include <concepts>
#define MDBX_HAVE_CXX20_CONCEPTS 1
#elif defined(DOXYGEN)
#define MDBX_HAVE_CXX20_CONCEPTS 1
#else
#define MDBX_HAVE_CXX20_CONCEPTS 0
#endif /* <concepts> */
#endif /* MDBX_HAVE_CXX20_CONCEPTS */
#ifndef MDBX_CXX20_CONCEPT
#if MDBX_HAVE_CXX20_CONCEPTS || defined(DOXYGEN)
#define MDBX_CXX20_CONCEPT(CONCEPT, NAME) CONCEPT NAME
#else
#define MDBX_CXX20_CONCEPT(CONCEPT, NAME) typename NAME
#endif
#endif /* MDBX_CXX20_CONCEPT */
#ifndef MDBX_ASSERT_CXX20_CONCEPT_SATISFIED
#if MDBX_HAVE_CXX20_CONCEPTS || defined(DOXYGEN)
#define MDBX_ASSERT_CXX20_CONCEPT_SATISFIED(CONCEPT, TYPE) \
static_assert(CONCEPT<TYPE>)
#else
#define MDBX_ASSERT_CXX20_CONCEPT_SATISFIED(CONCEPT, NAME) \
static_assert(true, MDBX_STRINGIFY(CONCEPT) "<" MDBX_STRINGIFY(TYPE) ">")
#endif
#endif /* MDBX_ASSERT_CXX20_CONCEPT_SATISFIED */
#ifdef _MSC_VER
#pragma warning(push, 4)
#pragma warning(disable : 4127) /* conditional expression is constant */
#pragma warning(disable : 4251) /* 'std::FOO' needs to have dll-interface to \
be used by clients of 'mdbx::BAR' */
#pragma warning(disable : 4275) /* non dll-interface 'std::FOO' used as \
base for dll-interface 'mdbx::BAR' */
/* MSVC is mad and can generate this warning for its own intermediate
* automatically generated code, which becomes unreachable after some kinds of
* optimization (copy elision, etc). */
#pragma warning(disable : 4702) /* unreachable code */
#endif /* _MSC_VER (warnings) */
#if defined(__LCC__) && __LCC__ >= 126
#pragma diagnostic push
#if __LCC__ < 127
#pragma diag_suppress 3058 /* workaround: call to is_constant_evaluated() \
appearing in a constant expression `true` */
#pragma diag_suppress 3060 /* workaround: call to is_constant_evaluated() \
appearing in a constant expression `false` */
#endif
#endif /* E2K LCC (warnings) */
//------------------------------------------------------------------------------
/// \brief The libmdbx C++ API namespace
/// \ingroup cxx_api
namespace mdbx {
/// \defgroup cxx_api C++ API
/// @{
// Functions whose signature depends on the `mdbx::byte` type
// must be strictly defined as inline!
#if defined(DOXYGEN) || (defined(__cpp_char8_t) && __cpp_char8_t >= 201811)
// To enable all kinds of an compiler optimizations we use a byte-like type
// that don't presumes aliases for pointers as does the `char` type and its
// derivatives/typedefs.
// Please see https://libmdbx.dqdkfa.ru/dead-github/issues/263
// for reasoning of the use of `char8_t` type and switching to `__restrict__`.
using byte = char8_t;
#else
// Avoid `std::byte` since it doesn't add features but inconvenient
// restrictions.
using byte = unsigned char;
#endif /* __cpp_char8_t >= 201811*/
#if defined(__cpp_lib_endian) && __cpp_lib_endian >= 201907L
using endian = ::std::endian;
#elif defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
defined(__ORDER_BIG_ENDIAN__)
enum class endian {
little = __ORDER_LITTLE_ENDIAN__,
big = __ORDER_BIG_ENDIAN__,
native = __BYTE_ORDER__
};
#else
#error \
"Please use a C++ compiler provides byte order information or C++20 support"
#endif /* Byte Order enum */
/// \copydoc MDBX_version_info
using version_info = ::MDBX_version_info;
/// \brief Returns libmdbx version information.
MDBX_CXX11_CONSTEXPR const version_info &get_version() noexcept;
/// \copydoc MDBX_build_info
using build_info = ::MDBX_build_info;
/// \brief Returns libmdbx build information.
MDBX_CXX11_CONSTEXPR const build_info &get_build() noexcept;
/// \brief constexpr-enabled strlen().
static MDBX_CXX17_CONSTEXPR size_t strlen(const char *c_str) noexcept;
/// \brief constexpr-enabled memcpy().
static MDBX_CXX20_CONSTEXPR void *memcpy(void *dest, const void *src,
size_t bytes) noexcept;
/// \brief constexpr-enabled memcmp().
static MDBX_CXX20_CONSTEXPR int memcmp(const void *a, const void *b,
size_t bytes) noexcept;
/// \brief Legacy allocator
/// but it is recommended to use \ref polymorphic_allocator.
using legacy_allocator = ::std::string::allocator_type;
#if defined(DOXYGEN) || \
(defined(__cpp_lib_memory_resource) && \
__cpp_lib_memory_resource >= 201603L && _GLIBCXX_USE_CXX11_ABI)
/// \brief Default polymorphic allocator for modern code.
using polymorphic_allocator = ::std::pmr::string::allocator_type;
using default_allocator = polymorphic_allocator;
#else
using default_allocator = legacy_allocator;
#endif /* __cpp_lib_memory_resource >= 201603L */
struct slice;
struct default_capacity_policy;
template <class ALLOCATOR = default_allocator,
class CAPACITY_POLICY = default_capacity_policy>
class buffer;
class env;
class env_managed;
class txn;
class txn_managed;
class cursor;
class cursor_managed;
/// \brief Default buffer.
using default_buffer = buffer<default_allocator, default_capacity_policy>;
/// \brief Default single-byte string.
template <class ALLOCATOR = default_allocator>
using string = ::std::basic_string<char, ::std::char_traits<char>, ALLOCATOR>;
using filehandle = ::mdbx_filehandle_t;
#if MDBX_USING_CXX_EXPERIMETAL_FILESYSTEM
#ifdef _MSC_VER
namespace filesystem = ::std::experimental::filesystem::v1;
#else
namespace filesystem = ::std::experimental::filesystem;
#endif
#define MDBX_STD_FILESYSTEM_PATH ::mdbx::filesystem::path
#elif defined(DOXYGEN) || \
(defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L && \
defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L && \
(!defined(__MAC_OS_X_VERSION_MIN_REQUIRED) || \
__MAC_OS_X_VERSION_MIN_REQUIRED >= 101500) && \
(!defined(__IPHONE_OS_VERSION_MIN_REQUIRED) || \
__IPHONE_OS_VERSION_MIN_REQUIRED >= 130100)) && \
(!defined(_MSC_VER) || __cplusplus >= 201703L)
namespace filesystem = ::std::filesystem;
/// \brief Defined if `mdbx::filesystem::path` is available.
/// \details If defined, it is always `mdbx::filesystem::path`,
/// which in turn can be refs to `std::filesystem::path`
/// or `std::experimental::filesystem::path`.
/// Nonetheless `MDBX_STD_FILESYSTEM_PATH` not defined if the `::mdbx::path`
/// is fallbacked to c `std::string` or `std::wstring`.
#define MDBX_STD_FILESYSTEM_PATH ::mdbx::filesystem::path
#endif /* MDBX_STD_FILESYSTEM_PATH */
#ifdef MDBX_STD_FILESYSTEM_PATH
using path = MDBX_STD_FILESYSTEM_PATH;
#elif defined(_WIN32) || defined(_WIN64)
using path = ::std::wstring;
#else
using path = ::std::string;
#endif /* mdbx::path */
#if defined(__SIZEOF_INT128__) || \
(defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
#ifndef MDBX_U128_TYPE
#define MDBX_U128_TYPE __uint128_t
#endif /* MDBX_U128_TYPE */
#ifndef MDBX_I128_TYPE
#define MDBX_I128_TYPE __int128_t
#endif /* MDBX_I128_TYPE */
#endif /* __SIZEOF_INT128__ || _INTEGRAL_MAX_BITS >= 128 */
#if __cplusplus >= 201103L || defined(DOXYGEN)
/// \brief Duration in 1/65536 units of second.
using duration = ::std::chrono::duration<unsigned, ::std::ratio<1, 65536>>;
#endif /* Duration for C++11 */
/// \defgroup cxx_exceptions exceptions and errors
/// @{
/// \brief Transfers C++ exceptions thru C callbacks.
/// \details Implements saving exceptions before returning
/// from an C++'s environment to the intermediate C code and re-throwing after
/// returning from C to the C++'s environment.
class LIBMDBX_API_TYPE exception_thunk {
::std::exception_ptr captured_;
public:
exception_thunk() noexcept = default;
exception_thunk(const exception_thunk &) = delete;
exception_thunk(exception_thunk &&) = delete;
exception_thunk &operator=(const exception_thunk &) = delete;
exception_thunk &operator=(exception_thunk &&) = delete;
inline bool is_clean() const noexcept;
inline void capture() noexcept;
inline void rethrow_captured() const;
};
/// \brief Implements error information and throwing corresponding exceptions.
class LIBMDBX_API_TYPE error {
MDBX_error_t code_;
inline error &operator=(MDBX_error_t error_code) noexcept;
public:
MDBX_CXX11_CONSTEXPR error(MDBX_error_t error_code) noexcept;
error(const error &) = default;
error(error &&) = default;
error &operator=(const error &) = default;
error &operator=(error &&) = default;
MDBX_CXX11_CONSTEXPR friend bool operator==(const error &a,
const error &b) noexcept;
MDBX_CXX11_CONSTEXPR friend bool operator!=(const error &a,
const error &b) noexcept;
MDBX_CXX11_CONSTEXPR bool is_success() const noexcept;
MDBX_CXX11_CONSTEXPR bool is_result_true() const noexcept;
MDBX_CXX11_CONSTEXPR bool is_result_false() const noexcept;
MDBX_CXX11_CONSTEXPR bool is_failure() const noexcept;
/// \brief Returns error code.
MDBX_CXX11_CONSTEXPR MDBX_error_t code() const noexcept;
/// \brief Returns message for MDBX's errors only and "SYSTEM" for others.
const char *what() const noexcept;
/// \brief Returns message for any errors.
::std::string message() const;
/// \brief Returns true for MDBX's errors.
MDBX_CXX11_CONSTEXPR bool is_mdbx_error() const noexcept;
/// \brief Panics on unrecoverable errors inside destructors etc.
[[noreturn]] void panic(const char *context_where_when,
const char *func_who_what) const noexcept;
[[noreturn]] void throw_exception() const;
[[noreturn]] static inline void throw_exception(int error_code);
inline void throw_on_failure() const;
inline void success_or_throw() const;
inline void success_or_throw(const exception_thunk &) const;
inline void panic_on_failure(const char *context_where,
const char *func_who) const noexcept;
inline void success_or_panic(const char *context_where,
const char *func_who) const noexcept;
static inline void throw_on_nullptr(const void *ptr, MDBX_error_t error_code);
static inline void success_or_throw(MDBX_error_t error_code);
static void success_or_throw(int error_code) {
success_or_throw(static_cast<MDBX_error_t>(error_code));
}
static inline void throw_on_failure(int error_code);
static inline bool boolean_or_throw(int error_code);
static inline void success_or_throw(int error_code, const exception_thunk &);
static inline bool boolean_or_throw(int error_code, const exception_thunk &);
static inline void panic_on_failure(int error_code, const char *context_where,
const char *func_who) noexcept;
static inline void success_or_panic(int error_code, const char *context_where,
const char *func_who) noexcept;
};
/// \brief Base class for all libmdbx's exceptions that are corresponds
/// to libmdbx errors.
///
/// \see MDBX_error_t
class LIBMDBX_API_TYPE exception : public ::std::runtime_error {
using base = ::std::runtime_error;
::mdbx::error error_;
public:
exception(const ::mdbx::error &) noexcept;
exception(const exception &) = default;
exception(exception &&) = default;
exception &operator=(const exception &) = default;
exception &operator=(exception &&) = default;
virtual ~exception() noexcept;
const ::mdbx::error error() const noexcept { return error_; }
};
/// \brief Fatal exception that lead termination anyway
/// in dangerous unrecoverable cases.
class LIBMDBX_API_TYPE fatal : public exception {
using base = exception;
public:
fatal(const ::mdbx::error &) noexcept;
fatal(const exception &src) noexcept : fatal(src.error()) {}
fatal(exception &&src) noexcept : fatal(src.error()) {}
fatal(const fatal &src) noexcept : fatal(src.error()) {}
fatal(fatal &&src) noexcept : fatal(src.error()) {}
fatal &operator=(fatal &&) = default;
fatal &operator=(const fatal &) = default;
virtual ~fatal() noexcept;
};
#define MDBX_DECLARE_EXCEPTION(NAME) \
struct LIBMDBX_API_TYPE NAME : public exception { \
NAME(const ::mdbx::error &); \
virtual ~NAME() noexcept; \
}
MDBX_DECLARE_EXCEPTION(bad_map_id);
MDBX_DECLARE_EXCEPTION(bad_transaction);
MDBX_DECLARE_EXCEPTION(bad_value_size);
MDBX_DECLARE_EXCEPTION(db_corrupted);
MDBX_DECLARE_EXCEPTION(db_full);
MDBX_DECLARE_EXCEPTION(db_invalid);
MDBX_DECLARE_EXCEPTION(db_too_large);
MDBX_DECLARE_EXCEPTION(db_unable_extend);
MDBX_DECLARE_EXCEPTION(db_version_mismatch);
MDBX_DECLARE_EXCEPTION(db_wanna_write_for_recovery);
MDBX_DECLARE_EXCEPTION(incompatible_operation);
MDBX_DECLARE_EXCEPTION(internal_page_full);
MDBX_DECLARE_EXCEPTION(internal_problem);
MDBX_DECLARE_EXCEPTION(key_exists);
MDBX_DECLARE_EXCEPTION(key_mismatch);
MDBX_DECLARE_EXCEPTION(max_maps_reached);
MDBX_DECLARE_EXCEPTION(max_readers_reached);
MDBX_DECLARE_EXCEPTION(multivalue);
MDBX_DECLARE_EXCEPTION(no_data);
MDBX_DECLARE_EXCEPTION(not_found);
MDBX_DECLARE_EXCEPTION(operation_not_permitted);
MDBX_DECLARE_EXCEPTION(permission_denied_or_not_writeable);
MDBX_DECLARE_EXCEPTION(reader_slot_busy);
MDBX_DECLARE_EXCEPTION(remote_media);
MDBX_DECLARE_EXCEPTION(something_busy);
MDBX_DECLARE_EXCEPTION(thread_mismatch);
MDBX_DECLARE_EXCEPTION(transaction_full);
MDBX_DECLARE_EXCEPTION(transaction_overlapping);
MDBX_DECLARE_EXCEPTION(duplicated_lck_file);
MDBX_DECLARE_EXCEPTION(dangling_map_id);
MDBX_DECLARE_EXCEPTION(transaction_ousted);
MDBX_DECLARE_EXCEPTION(mvcc_retarded);
#undef MDBX_DECLARE_EXCEPTION
[[noreturn]] LIBMDBX_API void throw_too_small_target_buffer();
[[noreturn]] LIBMDBX_API void throw_max_length_exceeded();
[[noreturn]] LIBMDBX_API void throw_out_range();
[[noreturn]] LIBMDBX_API void throw_allocators_mismatch();
[[noreturn]] LIBMDBX_API void throw_bad_value_size();
[[noreturn]] LIBMDBX_API void throw_incomparable_cursors();
static MDBX_CXX14_CONSTEXPR size_t check_length(size_t bytes);
static MDBX_CXX14_CONSTEXPR size_t check_length(size_t headroom,
size_t payload);
static MDBX_CXX14_CONSTEXPR size_t check_length(size_t headroom, size_t payload,
size_t tailroom);
/// end of cxx_exceptions @}
//------------------------------------------------------------------------------
/// \defgroup cxx_data slices and buffers
/// @{
#if MDBX_HAVE_CXX20_CONCEPTS || defined(DOXYGEN)
/** \concept MutableByteProducer
* \interface MutableByteProducer
* \brief MutableByteProducer C++20 concept */
template <typename T>
concept MutableByteProducer = requires(T a, char array[42]) {
{ a.is_empty() } -> std::same_as<bool>;
{ a.envisage_result_length() } -> std::same_as<size_t>;
{ a.write_bytes(&array[0], size_t(42)) } -> std::same_as<char *>;
};
/** \concept ImmutableByteProducer
* \interface ImmutableByteProducer
* \brief ImmutableByteProducer C++20 concept */
template <typename T>
concept ImmutableByteProducer = requires(const T &a, char array[42]) {
{ a.is_empty() } -> std::same_as<bool>;
{ a.envisage_result_length() } -> std::same_as<size_t>;
{ a.write_bytes(&array[0], size_t(42)) } -> std::same_as<char *>;
};
/** \concept SliceTranscoder
* \interface SliceTranscoder
* \brief SliceTranscoder C++20 concept */
template <typename T>
concept SliceTranscoder =
ImmutableByteProducer<T> && requires(const slice &source, const T &a) {
T(source);
{ a.is_erroneous() } -> std::same_as<bool>;
};
#endif /* MDBX_HAVE_CXX20_CONCEPTS */
template <class ALLOCATOR = default_allocator,
typename CAPACITY_POLICY = default_capacity_policy,
MDBX_CXX20_CONCEPT(MutableByteProducer, PRODUCER)>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
make_buffer(PRODUCER &producer, const ALLOCATOR &allocator = ALLOCATOR());
template <class ALLOCATOR = default_allocator,
typename CAPACITY_POLICY = default_capacity_policy,
MDBX_CXX20_CONCEPT(ImmutableByteProducer, PRODUCER)>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
make_buffer(const PRODUCER &producer, const ALLOCATOR &allocator = ALLOCATOR());
template <class ALLOCATOR = default_allocator,
MDBX_CXX20_CONCEPT(MutableByteProducer, PRODUCER)>
inline string<ALLOCATOR> make_string(PRODUCER &producer,
const ALLOCATOR &allocator = ALLOCATOR());
template <class ALLOCATOR = default_allocator,
MDBX_CXX20_CONCEPT(ImmutableByteProducer, PRODUCER)>
inline string<ALLOCATOR> make_string(const PRODUCER &producer,
const ALLOCATOR &allocator = ALLOCATOR());
/// \brief References a data located outside the slice.
///
/// The `slice` is similar in many ways to `std::string_view`, but it
/// implements specific capabilities and manipulates with bytes but
/// not a characters.
///
/// \copydetails MDBX_val
struct LIBMDBX_API_TYPE slice : public ::MDBX_val {
/// \todo slice& operator<<(slice&, ...) for reading
/// \todo key-to-value (parse/unpack) functions
/// \todo template<class X> key(X); for decoding keys while reading
enum { max_length = MDBX_MAXDATASIZE };
/// \brief Create an empty slice.
MDBX_CXX11_CONSTEXPR slice() noexcept;
/// \brief Create a slice that refers to [0,bytes-1] of memory bytes pointed
/// by ptr.
MDBX_CXX14_CONSTEXPR slice(const void *ptr, size_t bytes);
/// \brief Create a slice that refers to [begin,end] of memory bytes.
MDBX_CXX14_CONSTEXPR slice(const void *begin, const void *end);
/// \brief Create a slice that refers to text[0,strlen(text)-1].
template <size_t SIZE>
MDBX_CXX14_CONSTEXPR slice(const char (&text)[SIZE]) : slice(text, SIZE - 1) {
MDBX_CONSTEXPR_ASSERT(SIZE > 0 && text[SIZE - 1] == '\0');
}
/// \brief Create a slice that refers to c_str[0,strlen(c_str)-1].
explicit MDBX_CXX17_CONSTEXPR slice(const char *c_str);
/// \brief Create a slice that refers to the contents of "str".
/// \note 'explicit' to avoid reference to the temporary std::string instance.
template <class CHAR, class T, class A>
explicit MDBX_CXX20_CONSTEXPR
slice(const ::std::basic_string<CHAR, T, A> &str)
: slice(str.data(), str.length() * sizeof(CHAR)) {}
MDBX_CXX14_CONSTEXPR slice(const MDBX_val &src);
MDBX_CXX11_CONSTEXPR slice(const slice &) noexcept = default;
MDBX_CXX14_CONSTEXPR slice(MDBX_val &&src);
MDBX_CXX14_CONSTEXPR slice(slice &&src) noexcept;
#if defined(DOXYGEN) || (defined(__cpp_lib_span) && __cpp_lib_span >= 202002L)
template <typename POD>
MDBX_CXX14_CONSTEXPR slice(const ::std::span<POD> &span)
: slice(span.begin(), span.end()) {
static_assert(::std::is_standard_layout<POD>::value &&
!::std::is_pointer<POD>::value,
"Must be a standard layout type!");
}
template <typename POD>
MDBX_CXX14_CONSTEXPR ::std::span<const POD> as_span() const {
static_assert(::std::is_standard_layout<POD>::value &&
!::std::is_pointer<POD>::value,
"Must be a standard layout type!");
if (MDBX_LIKELY(size() % sizeof(POD) == 0))
MDBX_CXX20_LIKELY
return ::std::span<const POD>(static_cast<const POD *>(data()),
size() / sizeof(POD));
throw_bad_value_size();
}
template <typename POD> MDBX_CXX14_CONSTEXPR ::std::span<POD> as_span() {
static_assert(::std::is_standard_layout<POD>::value &&
!::std::is_pointer<POD>::value,
"Must be a standard layout type!");
if (MDBX_LIKELY(size() % sizeof(POD) == 0))
MDBX_CXX20_LIKELY
return ::std::span<POD>(static_cast<POD *>(data()), size() / sizeof(POD));
throw_bad_value_size();
}
MDBX_CXX14_CONSTEXPR ::std::span<const byte> bytes() const {
return as_span<const byte>();
}
MDBX_CXX14_CONSTEXPR ::std::span<byte> bytes() { return as_span<byte>(); }
MDBX_CXX14_CONSTEXPR ::std::span<const char> chars() const {
return as_span<const char>();
}
MDBX_CXX14_CONSTEXPR ::std::span<char> chars() { return as_span<char>(); }
#endif /* __cpp_lib_span >= 202002L */
#if defined(DOXYGEN) || \
(defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L)
/// \brief Create a slice that refers to the same contents as "string_view"
template <class CHAR, class T>
MDBX_CXX14_CONSTEXPR slice(const ::std::basic_string_view<CHAR, T> &sv)
: slice(sv.data(), sv.data() + sv.length()) {}
template <class CHAR, class T>
slice(::std::basic_string_view<CHAR, T> &&sv) : slice(sv) {
sv = {};
}
#endif /* __cpp_lib_string_view >= 201606L */
template <size_t SIZE>
static MDBX_CXX14_CONSTEXPR slice wrap(const char (&text)[SIZE]) {
return slice(text);
}
template <typename POD>
MDBX_CXX14_CONSTEXPR static slice wrap(const POD &pod) {
static_assert(::std::is_standard_layout<POD>::value &&
!::std::is_pointer<POD>::value,
"Must be a standard layout type!");
return slice(&pod, sizeof(pod));
}
inline slice &assign(const void *ptr, size_t bytes);
inline slice &assign(const slice &src) noexcept;
inline slice &assign(const ::MDBX_val &src);
inline slice &assign(slice &&src) noexcept;
inline slice &assign(::MDBX_val &&src);
inline slice &assign(const void *begin, const void *end);
template <class CHAR, class T, class ALLOCATOR>
slice &assign(const ::std::basic_string<CHAR, T, ALLOCATOR> &str) {
return assign(str.data(), str.length() * sizeof(CHAR));
}
inline slice &assign(const char *c_str);
#if defined(DOXYGEN) || \
(defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L)
template <class CHAR, class T>
slice &assign(const ::std::basic_string_view<CHAR, T> &view) {
return assign(view.begin(), view.end());
}
template <class CHAR, class T>
slice &assign(::std::basic_string_view<CHAR, T> &&view) {
assign(view);
view = {};
return *this;
}
#endif /* __cpp_lib_string_view >= 201606L */
slice &operator=(const slice &) noexcept = default;
inline slice &operator=(slice &&src) noexcept;
inline slice &operator=(::MDBX_val &&src);
operator MDBX_val *() noexcept { return this; }
operator const MDBX_val *() const noexcept { return this; }
#if defined(DOXYGEN) || \
(defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L)
template <class CHAR, class T>
slice &operator=(const ::std::basic_string_view<CHAR, T> &view) {
return assign(view);
}
template <class CHAR, class T>
slice &operator=(::std::basic_string_view<CHAR, T> &&view) {
return assign(view);
}
/// \brief Return a string_view that references the same data as this slice.
template <class CHAR = char, class T = ::std::char_traits<CHAR>>
MDBX_CXX11_CONSTEXPR ::std::basic_string_view<CHAR, T>
string_view() const noexcept {
static_assert(sizeof(CHAR) == 1, "Must be single byte characters");
return ::std::basic_string_view<CHAR, T>(char_ptr(), length());
}
/// \brief Return a string_view that references the same data as this slice.
template <class CHAR, class T>
MDBX_CXX11_CONSTEXPR explicit
operator ::std::basic_string_view<CHAR, T>() const noexcept {
return this->string_view<CHAR, T>();
}
#endif /* __cpp_lib_string_view >= 201606L */
template <class CHAR = char, class T = ::std::char_traits<CHAR>,
class ALLOCATOR = default_allocator>
MDBX_CXX20_CONSTEXPR ::std::basic_string<CHAR, T, ALLOCATOR>
as_string(const ALLOCATOR &allocator = ALLOCATOR()) const {
static_assert(sizeof(CHAR) == 1, "Must be single byte characters");
return ::std::basic_string<CHAR, T, ALLOCATOR>(char_ptr(), length(),
allocator);
}
template <class CHAR, class T, class ALLOCATOR>
MDBX_CXX20_CONSTEXPR explicit
operator ::std::basic_string<CHAR, T, ALLOCATOR>() const {
return as_string<CHAR, T, ALLOCATOR>();
}
/// \brief Returns a string with a hexadecimal dump of the slice content.
template <class ALLOCATOR = default_allocator>
inline string<ALLOCATOR>
as_hex_string(bool uppercase = false, unsigned wrap_width = 0,
const ALLOCATOR &allocator = ALLOCATOR()) const;
/// \brief Returns a string with a
/// [Base58](https://en.wikipedia.org/wiki/Base58) dump of the slice content.
template <class ALLOCATOR = default_allocator>
inline string<ALLOCATOR>
as_base58_string(unsigned wrap_width = 0,
const ALLOCATOR &allocator = ALLOCATOR()) const;
/// \brief Returns a string with a
/// [Base58](https://en.wikipedia.org/wiki/Base64) dump of the slice content.
template <class ALLOCATOR = default_allocator>
inline string<ALLOCATOR>
as_base64_string(unsigned wrap_width = 0,
const ALLOCATOR &allocator = ALLOCATOR()) const;
/// \brief Returns a buffer with a hexadecimal dump of the slice content.
template <class ALLOCATOR = default_allocator,
class CAPACITY_POLICY = default_capacity_policy>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
encode_hex(bool uppercase = false, unsigned wrap_width = 0,
const ALLOCATOR &allocator = ALLOCATOR()) const;
/// \brief Returns a buffer with a
/// [Base58](https://en.wikipedia.org/wiki/Base58) dump of the slice content.
template <class ALLOCATOR = default_allocator,
class CAPACITY_POLICY = default_capacity_policy>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
encode_base58(unsigned wrap_width = 0,
const ALLOCATOR &allocator = ALLOCATOR()) const;
/// \brief Returns a buffer with a
/// [Base64](https://en.wikipedia.org/wiki/Base64) dump of the slice content.
template <class ALLOCATOR = default_allocator,
class CAPACITY_POLICY = default_capacity_policy>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
encode_base64(unsigned wrap_width = 0,
const ALLOCATOR &allocator = ALLOCATOR()) const;
/// \brief Decodes hexadecimal dump from the slice content to returned buffer.
template <class ALLOCATOR = default_allocator,
class CAPACITY_POLICY = default_capacity_policy>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
hex_decode(bool ignore_spaces = false,
const ALLOCATOR &allocator = ALLOCATOR()) const;
/// \brief Decodes [Base58](https://en.wikipedia.org/wiki/Base58) dump
/// from the slice content to returned buffer.
template <class ALLOCATOR = default_allocator,
class CAPACITY_POLICY = default_capacity_policy>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
base58_decode(bool ignore_spaces = false,
const ALLOCATOR &allocator = ALLOCATOR()) const;
/// \brief Decodes [Base64](https://en.wikipedia.org/wiki/Base64) dump
/// from the slice content to returned buffer.
template <class ALLOCATOR = default_allocator,
class CAPACITY_POLICY = default_capacity_policy>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
base64_decode(bool ignore_spaces = false,
const ALLOCATOR &allocator = ALLOCATOR()) const;
/// \brief Checks whether the content of the slice is printable.
/// \param [in] disable_utf8 By default if `disable_utf8` is `false` function
/// checks that content bytes are printable ASCII-7 characters or a valid UTF8
/// sequences. Otherwise, if if `disable_utf8` is `true` function checks that
/// content bytes are printable extended 8-bit ASCII codes.
MDBX_NOTHROW_PURE_FUNCTION bool
is_printable(bool disable_utf8 = false) const noexcept;
/// \brief Checks whether the content of the slice is a hexadecimal dump.
/// \param [in] ignore_spaces If `true` function will skips spaces surrounding
/// (before, between and after) a encoded bytes. However, spaces should not
/// break a pair of characters encoding a single byte.
MDBX_NOTHROW_PURE_FUNCTION inline bool
is_hex(bool ignore_spaces = false) const noexcept;
/// \brief Checks whether the content of the slice is a
/// [Base58](https://en.wikipedia.org/wiki/Base58) dump.
/// \param [in] ignore_spaces If `true` function will skips spaces surrounding
/// (before, between and after) a encoded bytes. However, spaces should not
/// break a code group of characters.
MDBX_NOTHROW_PURE_FUNCTION inline bool
is_base58(bool ignore_spaces = false) const noexcept;
/// \brief Checks whether the content of the slice is a
/// [Base64](https://en.wikipedia.org/wiki/Base64) dump.
/// \param [in] ignore_spaces If `true` function will skips spaces surrounding
/// (before, between and after) a encoded bytes. However, spaces should not
/// break a code group of characters.
MDBX_NOTHROW_PURE_FUNCTION inline bool
is_base64(bool ignore_spaces = false) const noexcept;
inline void swap(slice &other) noexcept;
#if defined(DOXYGEN) || \
(defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L)
template <class CHAR, class T>
void swap(::std::basic_string_view<CHAR, T> &view) noexcept {
static_assert(sizeof(CHAR) == 1, "Must be single byte characters");
const auto temp = ::std::basic_string_view<CHAR, T>(*this);
*this = view;
view = temp;
}
#endif /* __cpp_lib_string_view >= 201606L */
/// \brief Returns casted to pointer to byte an address of data.
MDBX_CXX11_CONSTEXPR const byte *byte_ptr() const noexcept;
MDBX_CXX11_CONSTEXPR byte *byte_ptr() noexcept;
/// \brief Returns casted to pointer to byte an end of data.
MDBX_CXX11_CONSTEXPR const byte *end_byte_ptr() const noexcept;
MDBX_CXX11_CONSTEXPR byte *end_byte_ptr() noexcept;
/// \brief Returns casted to pointer to char an address of data.
MDBX_CXX11_CONSTEXPR const char *char_ptr() const noexcept;
MDBX_CXX11_CONSTEXPR char *char_ptr() noexcept;
/// \brief Returns casted to pointer to char an end of data.
MDBX_CXX11_CONSTEXPR const char *end_char_ptr() const noexcept;
MDBX_CXX11_CONSTEXPR char *end_char_ptr() noexcept;
/// \brief Return a pointer to the beginning of the referenced data.
MDBX_CXX11_CONSTEXPR const void *data() const noexcept;
MDBX_CXX11_CONSTEXPR void *data() noexcept;
/// \brief Return a pointer to the ending of the referenced data.
MDBX_CXX11_CONSTEXPR const void *end() const noexcept;
MDBX_CXX11_CONSTEXPR void *end() noexcept;
/// \brief Returns the number of bytes.
MDBX_CXX11_CONSTEXPR size_t length() const noexcept;
/// \brief Set slice length.
MDBX_CXX14_CONSTEXPR slice &set_length(size_t bytes);
/// \brief Sets the length by specifying the end of the slice data.
MDBX_CXX14_CONSTEXPR slice &set_end(const void *ptr);
/// \brief Checks whether the slice is empty.
MDBX_CXX11_CONSTEXPR bool empty() const noexcept;
/// \brief Checks whether the slice data pointer is nullptr.
MDBX_CXX11_CONSTEXPR bool is_null() const noexcept;
/// \brief Returns the number of bytes.
MDBX_CXX11_CONSTEXPR size_t size() const noexcept;
/// \brief Returns true if slice is not empty.
MDBX_CXX11_CONSTEXPR operator bool() const noexcept;
/// \brief Depletes content of slice and make it invalid.
MDBX_CXX14_CONSTEXPR void invalidate() noexcept;
/// \brief Makes the slice empty and referencing to nothing.
MDBX_CXX14_CONSTEXPR void clear() noexcept;
/// \brief Drops the first "n" bytes from this slice.
/// \pre REQUIRES: `n <= size()`
inline void remove_prefix(size_t n) noexcept;
/// \brief Drops the last "n" bytes from this slice.
/// \pre REQUIRES: `n <= size()`
inline void remove_suffix(size_t n) noexcept;
/// \brief Drops the first "n" bytes from this slice.
/// \throws std::out_of_range if `n > size()`
inline void safe_remove_prefix(size_t n);
/// \brief Drops the last "n" bytes from this slice.
/// \throws std::out_of_range if `n > size()`
inline void safe_remove_suffix(size_t n);
/// \brief Checks if the data starts with the given prefix.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
starts_with(const slice &prefix) const noexcept;
/// \brief Checks if the data ends with the given suffix.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
ends_with(const slice &suffix) const noexcept;
/// \brief Returns the nth byte in the referenced data.
/// \pre REQUIRES: `n < size()`
MDBX_CXX11_CONSTEXPR byte operator[](size_t n) const noexcept;
/// \brief Returns the nth byte in the referenced data with bounds checking.
/// \throws std::out_of_range if `n >= size()`
MDBX_CXX11_CONSTEXPR byte at(size_t n) const;
/// \brief Returns the first "n" bytes of the slice.
/// \pre REQUIRES: `n <= size()`
MDBX_CXX14_CONSTEXPR slice head(size_t n) const noexcept;
/// \brief Returns the last "n" bytes of the slice.
/// \pre REQUIRES: `n <= size()`
MDBX_CXX14_CONSTEXPR slice tail(size_t n) const noexcept;
/// \brief Returns the middle "n" bytes of the slice.
/// \pre REQUIRES: `from + n <= size()`
MDBX_CXX14_CONSTEXPR slice middle(size_t from, size_t n) const noexcept;
/// \brief Returns the first "n" bytes of the slice.
/// \throws std::out_of_range if `n >= size()`
MDBX_CXX14_CONSTEXPR slice safe_head(size_t n) const;
/// \brief Returns the last "n" bytes of the slice.
/// \throws std::out_of_range if `n >= size()`
MDBX_CXX14_CONSTEXPR slice safe_tail(size_t n) const;
/// \brief Returns the middle "n" bytes of the slice.
/// \throws std::out_of_range if `from + n >= size()`
MDBX_CXX14_CONSTEXPR slice safe_middle(size_t from, size_t n) const;
/// \brief Returns the hash value of referenced data.
/// \attention Function implementation and returned hash values may changed
/// version to version, and in future the t1ha3 will be used here. Therefore
/// values obtained from this function shouldn't be persisted anywhere.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR size_t
hash_value() const noexcept;
/// \brief Three-way fast non-lexicographically length-based comparison.
/// \details Firstly compares length and if it equal then compare content
/// lexicographically. \return value:
/// `== 0` if `a` the same as `b`;
/// `< 0` if `a` shorter than `b`,
/// or the same length and lexicographically less than `b`;
/// `> 0` if `a` longer than `b`,
/// or the same length and lexicographically great than `b`.
MDBX_NOTHROW_PURE_FUNCTION static MDBX_CXX14_CONSTEXPR intptr_t
compare_fast(const slice &a, const slice &b) noexcept;
/// \brief Three-way lexicographically comparison.
/// \return value:
/// `== 0` if `a` lexicographically equal `b`;
/// `< 0` if `a` lexicographically less than `b`;
/// `> 0` if `a` lexicographically great than `b`.
MDBX_NOTHROW_PURE_FUNCTION static MDBX_CXX14_CONSTEXPR intptr_t
compare_lexicographically(const slice &a, const slice &b) noexcept;
friend MDBX_CXX14_CONSTEXPR bool operator==(const slice &a,
const slice &b) noexcept;
friend MDBX_CXX14_CONSTEXPR bool operator<(const slice &a,
const slice &b) noexcept;
friend MDBX_CXX14_CONSTEXPR bool operator>(const slice &a,
const slice &b) noexcept;
friend MDBX_CXX14_CONSTEXPR bool operator<=(const slice &a,
const slice &b) noexcept;
friend MDBX_CXX14_CONSTEXPR bool operator>=(const slice &a,
const slice &b) noexcept;
friend MDBX_CXX14_CONSTEXPR bool operator!=(const slice &a,
const slice &b) noexcept;
/// \brief Checks the slice is not refers to null address or has zero length.
MDBX_CXX11_CONSTEXPR bool is_valid() const noexcept {
return !(iov_base == nullptr && iov_len != 0);
}
/// \brief Build an invalid slice which non-zero length and refers to null
/// address.
MDBX_CXX14_CONSTEXPR static slice invalid() noexcept {
return slice(size_t(-1));
}
template <typename POD> MDBX_CXX14_CONSTEXPR POD as_pod() const {
static_assert(::std::is_standard_layout<POD>::value &&
!::std::is_pointer<POD>::value,
"Must be a standard layout type!");
if (MDBX_LIKELY(size() == sizeof(POD)))
MDBX_CXX20_LIKELY {
POD r;
memcpy(&r, data(), sizeof(r));
return r;
}
throw_bad_value_size();
}
#ifdef MDBX_U128_TYPE
MDBX_CXX14_CONSTEXPR MDBX_U128_TYPE as_uint128() const {
return as_pod<MDBX_U128_TYPE>();
}
#endif /* MDBX_U128_TYPE */
MDBX_CXX14_CONSTEXPR uint64_t as_uint64() const { return as_pod<uint64_t>(); }
MDBX_CXX14_CONSTEXPR uint32_t as_uint32() const { return as_pod<uint32_t>(); }
MDBX_CXX14_CONSTEXPR uint16_t as_uint16() const { return as_pod<uint16_t>(); }
MDBX_CXX14_CONSTEXPR uint8_t as_uint8() const { return as_pod<uint8_t>(); }
#ifdef MDBX_I128_TYPE
MDBX_CXX14_CONSTEXPR MDBX_I128_TYPE as_int128() const {
return as_pod<MDBX_I128_TYPE>();
}
#endif /* MDBX_I128_TYPE */
MDBX_CXX14_CONSTEXPR int64_t as_int64() const { return as_pod<int64_t>(); }
MDBX_CXX14_CONSTEXPR int32_t as_int32() const { return as_pod<int32_t>(); }
MDBX_CXX14_CONSTEXPR int16_t as_int16() const { return as_pod<int16_t>(); }
MDBX_CXX14_CONSTEXPR int8_t as_int8() const { return as_pod<int8_t>(); }
#ifdef MDBX_U128_TYPE
MDBX_U128_TYPE as_uint128_adapt() const;
#endif /* MDBX_U128_TYPE */
uint64_t as_uint64_adapt() const;
uint32_t as_uint32_adapt() const;
uint16_t as_uint16_adapt() const;
uint8_t as_uint8_adapt() const;
#ifdef MDBX_I128_TYPE
MDBX_I128_TYPE as_int128_adapt() const;
#endif /* MDBX_I128_TYPE */
int64_t as_int64_adapt() const;
int32_t as_int32_adapt() const;
int16_t as_int16_adapt() const;
int8_t as_int8_adapt() const;
protected:
MDBX_CXX11_CONSTEXPR slice(size_t invalid_length) noexcept
: ::MDBX_val({nullptr, invalid_length}) {}
};
//------------------------------------------------------------------------------
namespace allocation_aware_details {
template <typename A> constexpr bool allocator_is_always_equal() noexcept {
#if defined(__cpp_lib_allocator_traits_is_always_equal) && \
__cpp_lib_allocator_traits_is_always_equal >= 201411L
return ::std::allocator_traits<A>::is_always_equal::value;
#else
return ::std::is_empty<A>::value;
#endif /* __cpp_lib_allocator_traits_is_always_equal */
}
template <typename T, typename A = typename T::allocator_type,
bool PoCMA = ::std::allocator_traits<
A>::propagate_on_container_move_assignment::value>
struct move_assign_alloc;
template <typename T, typename A> struct move_assign_alloc<T, A, false> {
static constexpr bool is_nothrow() noexcept {
return allocator_is_always_equal<A>();
}
static MDBX_CXX20_CONSTEXPR bool is_moveable(T *target, T &source) noexcept {
return allocator_is_always_equal<A>() ||
target->get_allocator() == source.get_allocator();
}
static MDBX_CXX20_CONSTEXPR void propagate(T *target, T &source) noexcept {
assert(target->get_allocator() != source.get_allocator());
(void)target;
(void)source;
}
};
template <typename T, typename A> struct move_assign_alloc<T, A, true> {
static constexpr bool is_nothrow() noexcept {
return allocator_is_always_equal<A>() ||
::std::is_nothrow_move_assignable<A>::value;
}
static constexpr bool is_moveable(T *, T &) noexcept { return true; }
static MDBX_CXX20_CONSTEXPR void propagate(T *target, T &source) {
assert(target->get_allocator() != source.get_allocator());
target->get_allocator() = ::std::move(source.get_allocator());
}
};
template <typename T, typename A = typename T::allocator_type,
bool PoCCA = ::std::allocator_traits<
A>::propagate_on_container_copy_assignment::value>
struct copy_assign_alloc;
template <typename T, typename A> struct copy_assign_alloc<T, A, false> {
static constexpr bool is_nothrow() noexcept { return false; }
static MDBX_CXX20_CONSTEXPR void propagate(T *target,
const T &source) noexcept {
assert(target->get_allocator() != source.get_allocator());
(void)target;
(void)source;
}
};
template <typename T, typename A> struct copy_assign_alloc<T, A, true> {
static constexpr bool is_nothrow() noexcept {
return allocator_is_always_equal<A>() ||
::std::is_nothrow_copy_assignable<A>::value;
}
static MDBX_CXX20_CONSTEXPR void
propagate(T *target, const T &source) noexcept(is_nothrow()) {
if MDBX_IF_CONSTEXPR (!allocator_is_always_equal<A>()) {
if (MDBX_UNLIKELY(target->get_allocator() != source.get_allocator()))
MDBX_CXX20_UNLIKELY target->get_allocator() =
::std::allocator_traits<A>::select_on_container_copy_construction(
source.get_allocator());
} else {
/* gag for buggy compilers */
(void)target;
(void)source;
}
}
};
template <typename T, typename A = typename T::allocator_type,
bool PoCS =
::std::allocator_traits<A>::propagate_on_container_swap::value>
struct swap_alloc;
template <typename T, typename A> struct swap_alloc<T, A, false> {
static constexpr bool is_nothrow() noexcept {
return allocator_is_always_equal<A>();
}
static MDBX_CXX20_CONSTEXPR void propagate(T *target,
T &source) noexcept(is_nothrow()) {
if MDBX_IF_CONSTEXPR (!allocator_is_always_equal<A>()) {
if (MDBX_UNLIKELY(target->get_allocator() != source.get_allocator()))
MDBX_CXX20_UNLIKELY throw_allocators_mismatch();
} else {
/* gag for buggy compilers */
(void)target;
(void)source;
}
}
};
template <typename T, typename A> struct swap_alloc<T, A, true> {
static constexpr bool is_nothrow() noexcept {
return allocator_is_always_equal<A>() ||
#if defined(__cpp_lib_is_swappable) && __cpp_lib_is_swappable >= 201603L
::std::is_nothrow_swappable<A>() ||
#endif /* __cpp_lib_is_swappable >= 201603L */
(::std::is_nothrow_move_constructible<A>::value &&
::std::is_nothrow_move_assignable<A>::value);
}
static MDBX_CXX20_CONSTEXPR void propagate(T *target,
T &source) noexcept(is_nothrow()) {
if MDBX_IF_CONSTEXPR (!allocator_is_always_equal<A>()) {
if (MDBX_UNLIKELY(target->get_allocator() != source.get_allocator()))
MDBX_CXX20_UNLIKELY ::std::swap(*target, source);
} else {
/* gag for buggy compilers */
(void)target;
(void)source;
}
}
};
} // namespace allocation_aware_details
struct default_capacity_policy {
enum : size_t {
extra_inplace_storage = 0,
pettiness_threshold = 64,
max_reserve = 65536
};
static MDBX_CXX11_CONSTEXPR size_t round(const size_t value) {
static_assert((pettiness_threshold & (pettiness_threshold - 1)) == 0,
"pettiness_threshold must be a power of 2");
static_assert(pettiness_threshold % 2 == 0,
"pettiness_threshold must be even");
static_assert(pettiness_threshold >= sizeof(uint64_t),
"pettiness_threshold must be > 7");
constexpr const auto pettiness_mask = ~size_t(pettiness_threshold - 1);
return (value + pettiness_threshold - 1) & pettiness_mask;
}
static MDBX_CXX11_CONSTEXPR size_t advise(const size_t current,
const size_t wanna) {
static_assert(max_reserve % pettiness_threshold == 0,
"max_reserve must be a multiple of pettiness_threshold");
static_assert(max_reserve / 3 > pettiness_threshold,
"max_reserve must be > pettiness_threshold * 3");
if (wanna > current)
/* doubling capacity, but don't made reserve more than max_reserve */
return round(wanna + ::std::min(size_t(max_reserve), current));
if (current - wanna >
/* shrink if reserve will more than half of current or max_reserve,
* but not less than pettiness_threshold */
::std::min(wanna + pettiness_threshold, size_t(max_reserve)))
return round(wanna);
/* keep unchanged */
return current;
}
};
/// \brief Hexadecimal encoder which satisfy \ref SliceTranscoder concept.
struct LIBMDBX_API to_hex {
const slice source;
const bool uppercase = false;
const unsigned wrap_width = 0;
MDBX_CXX11_CONSTEXPR to_hex(const slice &source, bool uppercase = false,
unsigned wrap_width = 0) noexcept
: source(source), uppercase(uppercase), wrap_width(wrap_width) {
MDBX_ASSERT_CXX20_CONCEPT_SATISFIED(SliceTranscoder, to_hex);
}
/// \brief Returns a string with a hexadecimal dump of a passed slice.
template <class ALLOCATOR = default_allocator>
string<ALLOCATOR> as_string(const ALLOCATOR &allocator = ALLOCATOR()) const {
return make_string<ALLOCATOR>(*this, allocator);
}
/// \brief Returns a buffer with a hexadecimal dump of a passed slice.
template <class ALLOCATOR = default_allocator,
typename CAPACITY_POLICY = default_capacity_policy>
buffer<ALLOCATOR, CAPACITY_POLICY>
as_buffer(const ALLOCATOR &allocator = ALLOCATOR()) const {
return make_buffer<ALLOCATOR>(*this, allocator);
}
/// \brief Returns the buffer size in bytes needed for hexadecimal
/// dump of a passed slice.
MDBX_CXX11_CONSTEXPR size_t envisage_result_length() const noexcept {
const size_t bytes = source.length() << 1;
return wrap_width ? bytes + bytes / wrap_width : bytes;
}
/// \brief Fills the buffer by hexadecimal dump of a passed slice.
/// \throws std::length_error if given buffer is too small.
char *write_bytes(char *dest, size_t dest_size) const;
/// \brief Output hexadecimal dump of passed slice to the std::ostream.
/// \throws std::ios_base::failure corresponding to std::ostream::write()
/// behaviour.
::std::ostream &output(::std::ostream &out) const;
/// \brief Checks whether a passed slice is empty,
/// and therefore there will be no output bytes.
bool is_empty() const noexcept { return source.empty(); }
/// \brief Checks whether the content of a passed slice is a valid data
/// and could be encoded or unexpectedly not.
bool is_erroneous() const noexcept { return false; }
};
/// \brief [Base58](https://en.wikipedia.org/wiki/Base58) encoder which satisfy
/// \ref SliceTranscoder concept.
struct LIBMDBX_API to_base58 {
const slice source;
const unsigned wrap_width = 0;
MDBX_CXX11_CONSTEXPR
to_base58(const slice &source, unsigned wrap_width = 0) noexcept
: source(source), wrap_width(wrap_width) {
MDBX_ASSERT_CXX20_CONCEPT_SATISFIED(SliceTranscoder, to_base58);
}
/// \brief Returns a string with a
/// [Base58](https://en.wikipedia.org/wiki/Base58) dump of a passed slice.
template <class ALLOCATOR = default_allocator>
string<ALLOCATOR> as_string(const ALLOCATOR &allocator = ALLOCATOR()) const {
return make_string<ALLOCATOR>(*this, allocator);
}
/// \brief Returns a buffer with a
/// [Base58](https://en.wikipedia.org/wiki/Base58) dump of a passed slice.
template <class ALLOCATOR = default_allocator,
typename CAPACITY_POLICY = default_capacity_policy>
buffer<ALLOCATOR, CAPACITY_POLICY>
as_buffer(const ALLOCATOR &allocator = ALLOCATOR()) const {
return make_buffer<ALLOCATOR>(*this, allocator);
}
/// \brief Returns the buffer size in bytes needed for
/// [Base58](https://en.wikipedia.org/wiki/Base58) dump of passed slice.
MDBX_CXX11_CONSTEXPR size_t envisage_result_length() const noexcept {
const size_t bytes = (source.length() * 11 + 7) / 8;
return wrap_width ? bytes + bytes / wrap_width : bytes;
}
/// \brief Fills the buffer by [Base58](https://en.wikipedia.org/wiki/Base58)
/// dump of passed slice.
/// \throws std::length_error if given buffer is too small.
char *write_bytes(char *dest, size_t dest_size) const;
/// \brief Output [Base58](https://en.wikipedia.org/wiki/Base58)
/// dump of passed slice to the std::ostream.
/// \throws std::ios_base::failure corresponding to std::ostream::write()
/// behaviour.
::std::ostream &output(::std::ostream &out) const;
/// \brief Checks whether a passed slice is empty,
/// and therefore there will be no output bytes.
bool is_empty() const noexcept { return source.empty(); }
/// \brief Checks whether the content of a passed slice is a valid data
/// and could be encoded or unexpectedly not.
bool is_erroneous() const noexcept { return false; }
};
/// \brief [Base64](https://en.wikipedia.org/wiki/Base64) encoder which satisfy
/// \ref SliceTranscoder concept.
struct LIBMDBX_API to_base64 {
const slice source;
const unsigned wrap_width = 0;
MDBX_CXX11_CONSTEXPR
to_base64(const slice &source, unsigned wrap_width = 0) noexcept
: source(source), wrap_width(wrap_width) {
MDBX_ASSERT_CXX20_CONCEPT_SATISFIED(SliceTranscoder, to_base64);
}
/// \brief Returns a string with a
/// [Base64](https://en.wikipedia.org/wiki/Base64) dump of a passed slice.
template <class ALLOCATOR = default_allocator>
string<ALLOCATOR> as_string(const ALLOCATOR &allocator = ALLOCATOR()) const {
return make_string<ALLOCATOR>(*this, allocator);
}
/// \brief Returns a buffer with a
/// [Base64](https://en.wikipedia.org/wiki/Base64) dump of a passed slice.
template <class ALLOCATOR = default_allocator,
typename CAPACITY_POLICY = default_capacity_policy>
buffer<ALLOCATOR, CAPACITY_POLICY>
as_buffer(const ALLOCATOR &allocator = ALLOCATOR()) const {
return make_buffer<ALLOCATOR>(*this, allocator);
}
/// \brief Returns the buffer size in bytes needed for
/// [Base64](https://en.wikipedia.org/wiki/Base64) dump of passed slice.
MDBX_CXX11_CONSTEXPR size_t envisage_result_length() const noexcept {
const size_t bytes = (source.length() + 2) / 3 * 4;
return wrap_width ? bytes + bytes / wrap_width : bytes;
}
/// \brief Fills the buffer by [Base64](https://en.wikipedia.org/wiki/Base64)
/// dump of passed slice.
/// \throws std::length_error if given buffer is too small.
char *write_bytes(char *dest, size_t dest_size) const;
/// \brief Output [Base64](https://en.wikipedia.org/wiki/Base64)
/// dump of passed slice to the std::ostream.
/// \throws std::ios_base::failure corresponding to std::ostream::write()
/// behaviour.
::std::ostream &output(::std::ostream &out) const;
/// \brief Checks whether a passed slice is empty,
/// and therefore there will be no output bytes.
bool is_empty() const noexcept { return source.empty(); }
/// \brief Checks whether the content of a passed slice is a valid data
/// and could be encoded or unexpectedly not.
bool is_erroneous() const noexcept { return false; }
};
inline ::std::ostream &operator<<(::std::ostream &out, const to_hex &wrapper) {
return wrapper.output(out);
}
inline ::std::ostream &operator<<(::std::ostream &out,
const to_base58 &wrapper) {
return wrapper.output(out);
}
inline ::std::ostream &operator<<(::std::ostream &out,
const to_base64 &wrapper) {
return wrapper.output(out);
}
/// \brief Hexadecimal decoder which satisfy \ref SliceTranscoder concept.
struct LIBMDBX_API from_hex {
const slice source;
const bool ignore_spaces = false;
MDBX_CXX11_CONSTEXPR from_hex(const slice &source,
bool ignore_spaces = false) noexcept
: source(source), ignore_spaces(ignore_spaces) {
MDBX_ASSERT_CXX20_CONCEPT_SATISFIED(SliceTranscoder, from_hex);
}
/// \brief Decodes hexadecimal dump from a passed slice to returned string.
template <class ALLOCATOR = default_allocator>
string<ALLOCATOR> as_string(const ALLOCATOR &allocator = ALLOCATOR()) const {
return make_string<ALLOCATOR>(*this, allocator);
}
/// \brief Decodes hexadecimal dump from a passed slice to returned buffer.
template <class ALLOCATOR = default_allocator,
typename CAPACITY_POLICY = default_capacity_policy>
buffer<ALLOCATOR, CAPACITY_POLICY>
as_buffer(const ALLOCATOR &allocator = ALLOCATOR()) const {
return make_buffer<ALLOCATOR>(*this, allocator);
}
/// \brief Returns the number of bytes needed for conversion
/// hexadecimal dump from a passed slice to decoded data.
MDBX_CXX11_CONSTEXPR size_t envisage_result_length() const noexcept {
return source.length() >> 1;
}
/// \brief Fills the destination with data decoded from hexadecimal dump
/// from a passed slice.
/// \throws std::length_error if given buffer is too small.
char *write_bytes(char *dest, size_t dest_size) const;
/// \brief Checks whether a passed slice is empty,
/// and therefore there will be no output bytes.
bool is_empty() const noexcept { return source.empty(); }
/// \brief Checks whether the content of a passed slice is a valid hexadecimal
/// dump, and therefore there could be decoded or not.
bool is_erroneous() const noexcept;
};
/// \brief [Base58](https://en.wikipedia.org/wiki/Base58) decoder which satisfy
/// \ref SliceTranscoder concept.
struct LIBMDBX_API from_base58 {
const slice source;
const bool ignore_spaces = false;
MDBX_CXX11_CONSTEXPR from_base58(const slice &source,
bool ignore_spaces = false) noexcept
: source(source), ignore_spaces(ignore_spaces) {
MDBX_ASSERT_CXX20_CONCEPT_SATISFIED(SliceTranscoder, from_base58);
}
/// \brief Decodes [Base58](https://en.wikipedia.org/wiki/Base58) dump from a
/// passed slice to returned string.
template <class ALLOCATOR = default_allocator>
string<ALLOCATOR> as_string(const ALLOCATOR &allocator = ALLOCATOR()) const {
return make_string<ALLOCATOR>(*this, allocator);
}
/// \brief Decodes [Base58](https://en.wikipedia.org/wiki/Base58) dump from a
/// passed slice to returned buffer.
template <class ALLOCATOR = default_allocator,
typename CAPACITY_POLICY = default_capacity_policy>
buffer<ALLOCATOR, CAPACITY_POLICY>
as_buffer(const ALLOCATOR &allocator = ALLOCATOR()) const {
return make_buffer<ALLOCATOR>(*this, allocator);
}
/// \brief Returns the number of bytes needed for conversion
/// [Base58](https://en.wikipedia.org/wiki/Base58) dump from a passed slice to
/// decoded data.
MDBX_CXX11_CONSTEXPR size_t envisage_result_length() const noexcept {
return source.length() /* могут быть все нули кодируемые один-к-одному */;
}
/// \brief Fills the destination with data decoded from
/// [Base58](https://en.wikipedia.org/wiki/Base58) dump from a passed slice.
/// \throws std::length_error if given buffer is too small.
char *write_bytes(char *dest, size_t dest_size) const;
/// \brief Checks whether a passed slice is empty,
/// and therefore there will be no output bytes.
bool is_empty() const noexcept { return source.empty(); }
/// \brief Checks whether the content of a passed slice is a valid
/// [Base58](https://en.wikipedia.org/wiki/Base58) dump, and therefore there
/// could be decoded or not.
bool is_erroneous() const noexcept;
};
/// \brief [Base64](https://en.wikipedia.org/wiki/Base64) decoder which satisfy
/// \ref SliceTranscoder concept.
struct LIBMDBX_API from_base64 {
const slice source;
const bool ignore_spaces = false;
MDBX_CXX11_CONSTEXPR from_base64(const slice &source,
bool ignore_spaces = false) noexcept
: source(source), ignore_spaces(ignore_spaces) {
MDBX_ASSERT_CXX20_CONCEPT_SATISFIED(SliceTranscoder, from_base64);
}
/// \brief Decodes [Base64](https://en.wikipedia.org/wiki/Base64) dump from a
/// passed slice to returned string.
template <class ALLOCATOR = default_allocator>
string<ALLOCATOR> as_string(const ALLOCATOR &allocator = ALLOCATOR()) const {
return make_string<ALLOCATOR>(*this, allocator);
}
/// \brief Decodes [Base64](https://en.wikipedia.org/wiki/Base64) dump from a
/// passed slice to returned buffer.
template <class ALLOCATOR = default_allocator,
typename CAPACITY_POLICY = default_capacity_policy>
buffer<ALLOCATOR, CAPACITY_POLICY>
as_buffer(const ALLOCATOR &allocator = ALLOCATOR()) const {
return make_buffer<ALLOCATOR>(*this, allocator);
}
/// \brief Returns the number of bytes needed for conversion
/// [Base64](https://en.wikipedia.org/wiki/Base64) dump from a passed slice to
/// decoded data.
MDBX_CXX11_CONSTEXPR size_t envisage_result_length() const noexcept {
return (source.length() + 3) / 4 * 3;
}
/// \brief Fills the destination with data decoded from
/// [Base64](https://en.wikipedia.org/wiki/Base64) dump from a passed slice.
/// \throws std::length_error if given buffer is too small.
char *write_bytes(char *dest, size_t dest_size) const;
/// \brief Checks whether a passed slice is empty,
/// and therefore there will be no output bytes.
bool is_empty() const noexcept { return source.empty(); }
/// \brief Checks whether the content of a passed slice is a valid
/// [Base64](https://en.wikipedia.org/wiki/Base64) dump, and therefore there
/// could be decoded or not.
bool is_erroneous() const noexcept;
};
/// \brief The chunk of data stored inside the buffer or located outside it.
template <class ALLOCATOR, typename CAPACITY_POLICY> class buffer {
public:
#if !defined(_MSC_VER) || _MSC_VER > 1900
using allocator_type = typename ::std::allocator_traits<
ALLOCATOR>::template rebind_alloc<uint64_t>;
#else
using allocator_type = typename ALLOCATOR::template rebind<uint64_t>::other;
#endif /* MSVC is mad */
using allocator_traits = ::std::allocator_traits<allocator_type>;
using reservation_policy = CAPACITY_POLICY;
enum : size_t {
max_length = MDBX_MAXDATASIZE,
max_capacity = (max_length / 3u * 4u + 1023u) & ~size_t(1023),
extra_inplace_storage = reservation_policy::extra_inplace_storage,
pettiness_threshold = reservation_policy::pettiness_threshold
};
private:
friend class txn;
struct silo;
using swap_alloc = allocation_aware_details::swap_alloc<silo, allocator_type>;
struct silo /* Empty Base Class Optimization */ : public allocator_type {
MDBX_CXX20_CONSTEXPR const allocator_type &get_allocator() const noexcept {
return *this;
}
MDBX_CXX20_CONSTEXPR allocator_type &get_allocator() noexcept {
return *this;
}
using allocator_pointer = typename allocator_traits::pointer;
using allocator_const_pointer = typename allocator_traits::const_pointer;
MDBX_CXX20_CONSTEXPR ::std::pair<allocator_pointer, size_t>
allocate_storage(size_t bytes) {
assert(bytes >= sizeof(bin));
constexpr size_t unit = sizeof(typename allocator_type::value_type);
static_assert((unit & (unit - 1)) == 0,
"size of ALLOCATOR::value_type should be a power of 2");
static_assert(unit > 0, "size of ALLOCATOR::value_type must be > 0");
const size_t n = (bytes + unit - 1) / unit;
return ::std::make_pair(allocator_traits::allocate(get_allocator(), n),
n * unit);
}
MDBX_CXX20_CONSTEXPR void deallocate_storage(allocator_pointer ptr,
size_t bytes) {
constexpr size_t unit = sizeof(typename allocator_type::value_type);
assert(ptr && bytes >= sizeof(bin) && bytes >= unit && bytes % unit == 0);
allocator_traits::deallocate(get_allocator(), ptr, bytes / unit);
}
static MDBX_CXX17_CONSTEXPR void *
to_address(allocator_pointer ptr) noexcept {
#if defined(__cpp_lib_to_address) && __cpp_lib_to_address >= 201711L
return static_cast<void *>(::std::to_address(ptr));
#else
return static_cast<void *>(::std::addressof(*ptr));
#endif /* __cpp_lib_to_address */
}
static MDBX_CXX17_CONSTEXPR const void *
to_address(allocator_const_pointer ptr) noexcept {
#if defined(__cpp_lib_to_address) && __cpp_lib_to_address >= 201711L
return static_cast<const void *>(::std::to_address(ptr));
#else
return static_cast<const void *>(::std::addressof(*ptr));
#endif /* __cpp_lib_to_address */
}
union bin {
struct allocated {
allocator_pointer ptr_;
size_t capacity_bytes_;
constexpr allocated(allocator_pointer ptr, size_t bytes) noexcept
: ptr_(ptr), capacity_bytes_(bytes) {}
constexpr allocated(const allocated &) noexcept = default;
constexpr allocated(allocated &&) noexcept = default;
MDBX_CXX17_CONSTEXPR allocated &
operator=(const allocated &) noexcept = default;
MDBX_CXX17_CONSTEXPR allocated &
operator=(allocated &&) noexcept = default;
};
allocated allocated_;
uint64_t align_hint_;
byte inplace_[(sizeof(allocated) + extra_inplace_storage + 7u) &
~size_t(7)];
static constexpr bool
is_suitable_for_inplace(size_t capacity_bytes) noexcept {
static_assert(sizeof(bin) == sizeof(inplace_), "WTF?");
return capacity_bytes < sizeof(bin);
}
enum : byte { lastbyte_inplace_signature = byte(~byte(0)) };
enum : size_t {
inplace_signature_limit =
size_t(lastbyte_inplace_signature)
<< (sizeof(size_t /* allocated::capacity_bytes_ */) - 1) * CHAR_BIT
};
constexpr byte inplace_lastbyte() const noexcept {
return inplace_[sizeof(bin) - 1];
}
MDBX_CXX17_CONSTEXPR byte &inplace_lastbyte() noexcept {
return inplace_[sizeof(bin) - 1];
}
constexpr bool is_inplace() const noexcept {
static_assert(size_t(inplace_signature_limit) > size_t(max_capacity),
"WTF?");
static_assert(
std::numeric_limits<size_t>::max() -
(std::numeric_limits<size_t>::max() >> CHAR_BIT) ==
inplace_signature_limit,
"WTF?");
return inplace_lastbyte() == lastbyte_inplace_signature;
}
constexpr bool is_allocated() const noexcept { return !is_inplace(); }
template <bool destroy_ptr>
MDBX_CXX17_CONSTEXPR byte *make_inplace() noexcept {
if (destroy_ptr) {
MDBX_CONSTEXPR_ASSERT(is_allocated());
/* properly destroy allocator::pointer */
allocated_.~allocated();
}
if (::std::is_trivial<allocator_pointer>::value)
/* workaround for "uninitialized" warning from some compilers */
memset(&allocated_.ptr_, 0, sizeof(allocated_.ptr_));
inplace_lastbyte() = lastbyte_inplace_signature;
MDBX_CONSTEXPR_ASSERT(is_inplace() && address() == inplace_ &&
is_suitable_for_inplace(capacity()));
return address();
}
template <bool construct_ptr>
MDBX_CXX17_CONSTEXPR byte *
make_allocated(allocator_pointer ptr, size_t capacity_bytes) noexcept {
MDBX_CONSTEXPR_ASSERT(inplace_signature_limit > capacity_bytes);
if (construct_ptr)
/* properly construct allocator::pointer */
new (&allocated_) allocated(ptr, capacity_bytes);
else {
MDBX_CONSTEXPR_ASSERT(is_allocated());
allocated_.ptr_ = ptr;
allocated_.capacity_bytes_ = capacity_bytes;
}
MDBX_CONSTEXPR_ASSERT(is_allocated() && address() == to_address(ptr) &&
capacity() == capacity_bytes);
return address();
}
MDBX_CXX20_CONSTEXPR bin(size_t capacity_bytes = 0) noexcept {
MDBX_CONSTEXPR_ASSERT(is_suitable_for_inplace(capacity_bytes));
make_inplace<false>();
(void)capacity_bytes;
}
MDBX_CXX20_CONSTEXPR bin(allocator_pointer ptr,
size_t capacity_bytes) noexcept {
MDBX_CONSTEXPR_ASSERT(!is_suitable_for_inplace(capacity_bytes));
make_allocated<true>(ptr, capacity_bytes);
}
MDBX_CXX20_CONSTEXPR ~bin() {
if (is_allocated())
/* properly destroy allocator::pointer */
allocated_.~allocated();
}
MDBX_CXX20_CONSTEXPR bin(bin &&ditto) noexcept {
if (ditto.is_inplace()) {
// micro-optimization: don't use make_inplace<> here
// since memcpy() will copy the flag.
memcpy(inplace_, ditto.inplace_, sizeof(inplace_));
MDBX_CONSTEXPR_ASSERT(is_inplace());
} else {
new (&allocated_) allocated(::std::move(ditto.allocated_));
ditto.make_inplace<true>();
MDBX_CONSTEXPR_ASSERT(is_allocated());
}
}
MDBX_CXX17_CONSTEXPR bin &operator=(const bin &ditto) noexcept {
if (ditto.is_inplace()) {
// micro-optimization: don't use make_inplace<> here
// since memcpy() will copy the flag.
if (is_allocated())
/* properly destroy allocator::pointer */
allocated_.~allocated();
memcpy(inplace_, ditto.inplace_, sizeof(inplace_));
MDBX_CONSTEXPR_ASSERT(is_inplace());
} else if (is_inplace())
make_allocated<true>(ditto.allocated_.ptr_,
ditto.allocated_.capacity_bytes_);
else
make_allocated<false>(ditto.allocated_.ptr_,
ditto.allocated_.capacity_bytes_);
return *this;
}
MDBX_CXX17_CONSTEXPR bin &operator=(bin &&ditto) noexcept {
operator=(const_cast<const bin &>(ditto));
if (ditto.is_allocated())
ditto.make_inplace<true>();
return *this;
}
static MDBX_CXX20_CONSTEXPR size_t advise_capacity(const size_t current,
const size_t wanna) {
if (MDBX_UNLIKELY(wanna > max_capacity))
MDBX_CXX20_UNLIKELY throw_max_length_exceeded();
const size_t advised = reservation_policy::advise(current, wanna);
assert(advised >= wanna);
return ::std::min(size_t(max_capacity),
::std::max(sizeof(bin) - 1, advised));
}
constexpr const byte *address() const noexcept {
return is_inplace()
? inplace_
: static_cast<const byte *>(to_address(allocated_.ptr_));
}
MDBX_CXX17_CONSTEXPR byte *address() noexcept {
return is_inplace() ? inplace_
: static_cast<byte *>(to_address(allocated_.ptr_));
}
constexpr size_t capacity() const noexcept {
return is_inplace() ? sizeof(bin) - 1 : allocated_.capacity_bytes_;
}
} bin_;
MDBX_CXX20_CONSTEXPR void *init(size_t capacity) {
capacity = bin::advise_capacity(0, capacity);
if (bin_.is_suitable_for_inplace(capacity))
new (&bin_) bin();
else {
const auto pair = allocate_storage(capacity);
assert(pair.second >= capacity);
new (&bin_) bin(pair.first, pair.second);
}
return bin_.address();
}
MDBX_CXX20_CONSTEXPR void release() noexcept {
if (bin_.is_allocated()) {
deallocate_storage(bin_.allocated_.ptr_,
bin_.allocated_.capacity_bytes_);
bin_.template make_inplace<true>();
}
}
template <bool external_content>
MDBX_CXX20_CONSTEXPR void *
reshape(const size_t wanna_capacity, const size_t wanna_headroom,
const void *const content, const size_t length) {
assert(wanna_capacity >= wanna_headroom + length);
const size_t old_capacity = bin_.capacity();
const size_t new_capacity =
bin::advise_capacity(old_capacity, wanna_capacity);
if (MDBX_LIKELY(new_capacity == old_capacity))
MDBX_CXX20_LIKELY {
assert(bin_.is_inplace() ==
bin::is_suitable_for_inplace(new_capacity));
byte *const new_place = bin_.address() + wanna_headroom;
if (MDBX_LIKELY(length))
MDBX_CXX20_LIKELY {
if (external_content)
memcpy(new_place, content, length);
else {
const size_t old_headroom =
bin_.address() - static_cast<const byte *>(content);
assert(old_capacity >= old_headroom + length);
if (MDBX_UNLIKELY(old_headroom != wanna_headroom))
MDBX_CXX20_UNLIKELY ::std::memmove(new_place, content,
length);
}
}
return new_place;
}
if (bin::is_suitable_for_inplace(new_capacity)) {
assert(bin_.is_allocated());
const auto old_allocated = ::std::move(bin_.allocated_.ptr_);
byte *const new_place =
bin_.template make_inplace<true>() + wanna_headroom;
if (MDBX_LIKELY(length))
MDBX_CXX20_LIKELY memcpy(new_place, content, length);
deallocate_storage(old_allocated, old_capacity);
return new_place;
}
if (!bin_.is_allocated()) {
const auto pair = allocate_storage(new_capacity);
assert(pair.second >= new_capacity);
byte *const new_place =
static_cast<byte *>(to_address(pair.first)) + wanna_headroom;
if (MDBX_LIKELY(length))
MDBX_CXX20_LIKELY memcpy(new_place, content, length);
bin_.template make_allocated<true>(pair.first, pair.second);
return new_place;
}
const auto old_allocated = ::std::move(bin_.allocated_.ptr_);
if (external_content)
deallocate_storage(old_allocated, old_capacity);
const auto pair = allocate_storage(new_capacity);
assert(pair.second >= new_capacity);
byte *const new_place =
bin_.template make_allocated<false>(pair.first, pair.second) +
wanna_headroom;
if (MDBX_LIKELY(length))
MDBX_CXX20_LIKELY memcpy(new_place, content, length);
if (!external_content)
deallocate_storage(old_allocated, old_capacity);
return new_place;
}
MDBX_CXX20_CONSTEXPR const byte *get(size_t offset = 0) const noexcept {
assert(capacity() >= offset);
return bin_.address() + offset;
}
MDBX_CXX20_CONSTEXPR byte *get(size_t offset = 0) noexcept {
assert(capacity() >= offset);
return bin_.address() + offset;
}
MDBX_CXX20_CONSTEXPR byte *put(size_t offset, const void *ptr,
size_t length) {
assert(capacity() >= offset + length);
return static_cast<byte *>(memcpy(get(offset), ptr, length));
}
//--------------------------------------------------------------------------
MDBX_CXX20_CONSTEXPR
silo() noexcept : allocator_type() { init(0); }
MDBX_CXX20_CONSTEXPR
silo(const allocator_type &alloc) noexcept : allocator_type(alloc) {
init(0);
}
MDBX_CXX20_CONSTEXPR silo(size_t capacity) { init(capacity); }
MDBX_CXX20_CONSTEXPR silo(size_t capacity, const allocator_type &alloc)
: silo(alloc) {
init(capacity);
}
MDBX_CXX20_CONSTEXPR silo(silo &&ditto) noexcept(
::std::is_nothrow_move_constructible<allocator_type>::value)
: allocator_type(::std::move(ditto.get_allocator())),
bin_(::std::move(ditto.bin_)) {}
MDBX_CXX20_CONSTEXPR silo(size_t capacity, size_t headroom, const void *ptr,
size_t length)
: silo(capacity) {
assert(capacity >= headroom + length);
if (length)
put(headroom, ptr, length);
}
// select_on_container_copy_construction()
MDBX_CXX20_CONSTEXPR silo(size_t capacity, size_t headroom, const void *ptr,
size_t length, const allocator_type &alloc)
: silo(capacity, alloc) {
assert(capacity >= headroom + length);
if (length)
put(headroom, ptr, length);
}
MDBX_CXX20_CONSTEXPR silo(const void *ptr, size_t length)
: silo(length, 0, ptr, length) {}
MDBX_CXX20_CONSTEXPR silo(const void *ptr, size_t length,
const allocator_type &alloc)
: silo(length, 0, ptr, length, alloc) {}
~silo() { release(); }
//--------------------------------------------------------------------------
MDBX_CXX20_CONSTEXPR void *assign(size_t headroom, const void *ptr,
size_t length, size_t tailroom) {
return reshape<true>(headroom + length + tailroom, headroom, ptr, length);
}
MDBX_CXX20_CONSTEXPR void *assign(const void *ptr, size_t length) {
return assign(0, ptr, length, 0);
}
MDBX_CXX20_CONSTEXPR silo &assign(const silo &ditto, size_t headroom,
slice &content) {
assert(ditto.get() + headroom == content.byte_ptr());
if MDBX_IF_CONSTEXPR (!allocation_aware_details::
allocator_is_always_equal<allocator_type>()) {
if (MDBX_UNLIKELY(get_allocator() != ditto.get_allocator()))
MDBX_CXX20_UNLIKELY {
release();
allocation_aware_details::copy_assign_alloc<
silo, allocator_type>::propagate(this, ditto);
}
}
content.iov_base = reshape<true>(ditto.capacity(), headroom,
content.data(), content.length());
return *this;
}
MDBX_CXX20_CONSTEXPR silo &
assign(silo &&ditto, size_t headroom, slice &content) noexcept(
allocation_aware_details::move_assign_alloc<
silo, allocator_type>::is_nothrow()) {
assert(ditto.get() + headroom == content.byte_ptr());
if (allocation_aware_details::move_assign_alloc<
silo, allocator_type>::is_moveable(this, ditto)) {
release();
allocation_aware_details::move_assign_alloc<
silo, allocator_type>::propagate(this, ditto);
/* no reallocation nor copying required */
bin_ = ::std::move(ditto.bin_);
assert(get() + headroom == content.byte_ptr());
} else {
/* copy content since allocators are different */
content.iov_base = reshape<true>(ditto.capacity(), headroom,
content.data(), content.length());
ditto.release();
}
return *this;
}
MDBX_CXX20_CONSTEXPR void *clear() {
return reshape<true>(0, 0, nullptr, 0);
}
MDBX_CXX20_CONSTEXPR void *clear_and_reserve(size_t whole_capacity,
size_t headroom) {
return reshape<false>(whole_capacity, headroom, nullptr, 0);
}
MDBX_CXX20_CONSTEXPR void resize(size_t capacity, size_t headroom,
slice &content) {
content.iov_base =
reshape<false>(capacity, headroom, content.iov_base, content.iov_len);
}
MDBX_CXX20_CONSTEXPR void swap(silo &ditto) noexcept(
allocation_aware_details::swap_alloc<silo,
allocator_type>::is_nothrow()) {
allocation_aware_details::swap_alloc<silo, allocator_type>::propagate(
this, ditto);
::std::swap(bin_, ditto.bin_);
}
/* MDBX_CXX20_CONSTEXPR void shrink_to_fit() { TODO } */
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX11_CONSTEXPR size_t
capacity() const noexcept {
return bin_.capacity();
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX11_CONSTEXPR const void *
data(size_t offset = 0) const noexcept {
return get(offset);
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX11_CONSTEXPR void *
data(size_t offset = 0) noexcept {
return get(offset);
}
};
silo silo_;
::mdbx::slice slice_;
void insulate() {
assert(is_reference());
silo_.assign(slice_.char_ptr(), slice_.length());
slice_.iov_base = silo_.data();
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX20_CONSTEXPR const byte *
silo_begin() const noexcept {
return static_cast<const byte *>(silo_.data());
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX20_CONSTEXPR const byte *
silo_end() const noexcept {
return silo_begin() + silo_.capacity();
}
struct data_preserver : public exception_thunk {
buffer data;
data_preserver(allocator_type &allocator) : data(allocator) {}
static int callback(void *context, MDBX_val *target, const void *src,
size_t bytes) noexcept {
auto self = static_cast<data_preserver *>(context);
assert(self->is_clean());
assert(&self->data.slice_ == target);
(void)target;
try {
self->data.assign(src, bytes, false);
return MDBX_RESULT_FALSE;
} catch (... /* capture any exception to rethrow it over C code */) {
self->capture();
return MDBX_RESULT_TRUE;
}
}
MDBX_CXX11_CONSTEXPR operator MDBX_preserve_func() const noexcept {
return callback;
}
MDBX_CXX11_CONSTEXPR operator const buffer &() const noexcept {
return data;
}
MDBX_CXX11_CONSTEXPR operator buffer &() noexcept { return data; }
};
public:
/// \todo buffer& operator<<(buffer&, ...) for writing
/// \todo buffer& operator>>(buffer&, ...) for reading (delegated to slice)
/// \todo template<class X> key(X) for encoding keys while writing
using move_assign_alloc =
allocation_aware_details::move_assign_alloc<silo, allocator_type>;
using copy_assign_alloc =
allocation_aware_details::copy_assign_alloc<silo, allocator_type>;
/// \brief Returns the associated allocator.
MDBX_CXX20_CONSTEXPR allocator_type get_allocator() const {
return silo_.get_allocator();
}
/// \brief Checks whether data chunk stored inside the buffer, otherwise
/// buffer just refers to data located outside the buffer.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX20_CONSTEXPR bool
is_freestanding() const noexcept {
static_assert(size_t(-long(max_length)) > max_length, "WTF?");
return size_t(byte_ptr() - silo_begin()) < silo_.capacity();
}
/// \brief Checks whether the buffer just refers to data located outside
/// the buffer, rather than stores it.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX20_CONSTEXPR bool
is_reference() const noexcept {
return !is_freestanding();
}
/// \brief Returns the number of bytes that can be held in currently allocated
/// storage.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX20_CONSTEXPR size_t
capacity() const noexcept {
return is_freestanding() ? silo_.capacity() : 0;
}
/// \brief Returns the number of bytes that available in currently allocated
/// storage ahead the currently beginning of data.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX20_CONSTEXPR size_t
headroom() const noexcept {
return is_freestanding() ? slice_.byte_ptr() - silo_begin() : 0;
}
/// \brief Returns the number of bytes that available in currently allocated
/// storage after the currently data end.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX20_CONSTEXPR size_t
tailroom() const noexcept {
return is_freestanding() ? capacity() - headroom() - slice_.length() : 0;
}
/// \brief Returns casted to const pointer to byte an address of data.
MDBX_CXX11_CONSTEXPR const byte *byte_ptr() const noexcept {
return slice_.byte_ptr();
}
/// \brief Returns casted to const pointer to byte an end of data.
MDBX_CXX11_CONSTEXPR const byte *end_byte_ptr() const noexcept {
return slice_.end_byte_ptr();
}
/// \brief Returns casted to pointer to byte an address of data.
/// \pre REQUIRES: The buffer should store data chunk, but not referenced to
/// an external one.
MDBX_CXX11_CONSTEXPR byte *byte_ptr() noexcept {
MDBX_CONSTEXPR_ASSERT(is_freestanding());
return const_cast<byte *>(slice_.byte_ptr());
}
/// \brief Returns casted to pointer to byte an end of data.
/// \pre REQUIRES: The buffer should store data chunk, but not referenced to
/// an external one.
MDBX_CXX11_CONSTEXPR byte *end_byte_ptr() noexcept {
MDBX_CONSTEXPR_ASSERT(is_freestanding());
return const_cast<byte *>(slice_.end_byte_ptr());
}
/// \brief Returns casted to const pointer to char an address of data.
MDBX_CXX11_CONSTEXPR const char *char_ptr() const noexcept {
return slice_.char_ptr();
}
/// \brief Returns casted to const pointer to char an end of data.
MDBX_CXX11_CONSTEXPR const char *end_char_ptr() const noexcept {
return slice_.end_char_ptr();
}
/// \brief Returns casted to pointer to char an address of data.
/// \pre REQUIRES: The buffer should store data chunk, but not referenced to
/// an external one.
MDBX_CXX11_CONSTEXPR char *char_ptr() noexcept {
MDBX_CONSTEXPR_ASSERT(is_freestanding());
return const_cast<char *>(slice_.char_ptr());
}
/// \brief Returns casted to pointer to char an end of data.
/// \pre REQUIRES: The buffer should store data chunk, but not referenced to
/// an external one.
MDBX_CXX11_CONSTEXPR char *end_char_ptr() noexcept {
MDBX_CONSTEXPR_ASSERT(is_freestanding());
return const_cast<char *>(slice_.end_char_ptr());
}
/// \brief Return a const pointer to the beginning of the referenced data.
MDBX_CXX11_CONSTEXPR const void *data() const noexcept {
return slice_.data();
}
/// \brief Return a const pointer to the end of the referenced data.
MDBX_CXX11_CONSTEXPR const void *end() const noexcept { return slice_.end(); }
/// \brief Return a pointer to the beginning of the referenced data.
/// \pre REQUIRES: The buffer should store data chunk, but not referenced to
/// an external one.
MDBX_CXX11_CONSTEXPR void *data() noexcept {
MDBX_CONSTEXPR_ASSERT(is_freestanding());
return const_cast<void *>(slice_.data());
}
/// \brief Return a pointer to the end of the referenced data.
/// \pre REQUIRES: The buffer should store data chunk, but not referenced to
/// an external one.
MDBX_CXX11_CONSTEXPR void *end() noexcept {
MDBX_CONSTEXPR_ASSERT(is_freestanding());
return const_cast<void *>(slice_.end());
}
/// \brief Returns the number of bytes.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR size_t
length() const noexcept {
return MDBX_CONSTEXPR_ASSERT(is_reference() ||
slice_.length() + headroom() <=
silo_.capacity()),
slice_.length();
}
/// \brief Set length of data.
MDBX_CXX14_CONSTEXPR buffer &set_length(size_t bytes) {
MDBX_CONSTEXPR_ASSERT(is_reference() ||
bytes + headroom() <= silo_.capacity());
slice_.set_length(bytes);
return *this;
}
/// \brief Sets the length by specifying the end of the data.
MDBX_CXX14_CONSTEXPR buffer &set_end(const void *ptr) {
MDBX_CONSTEXPR_ASSERT(static_cast<const char *>(ptr) >= char_ptr());
return set_length(static_cast<const char *>(ptr) - char_ptr());
}
/// \brief Makes buffer owning the data.
/// \details If buffer refers to an external data, then makes it the owner
/// of clone by allocating storage and copying the data.
void make_freestanding() {
if (is_reference())
insulate();
}
MDBX_CXX20_CONSTEXPR buffer() noexcept = default;
MDBX_CXX20_CONSTEXPR buffer(const allocator_type &allocator) noexcept
: silo_(allocator) {}
buffer(const struct slice &src, bool make_reference,
const allocator_type &allocator = allocator_type())
: silo_(allocator), slice_(src) {
if (!make_reference)
insulate();
}
buffer(const buffer &src, bool make_reference,
const allocator_type &allocator = allocator_type())
: buffer(src.slice_, make_reference, allocator) {}
buffer(const void *ptr, size_t bytes, bool make_reference,
const allocator_type &allocator = allocator_type())
: buffer(::mdbx::slice(ptr, bytes), make_reference, allocator) {}
template <class CHAR, class T, class A>
buffer(const ::std::basic_string<CHAR, T, A> &) = delete;
template <class CHAR, class T, class A>
buffer(const ::std::basic_string<CHAR, T, A> &&) = delete;
buffer(const char *c_str, bool make_reference,
const allocator_type &allocator = allocator_type())
: buffer(::mdbx::slice(c_str), make_reference, allocator){}
#if defined(DOXYGEN) || \
(defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L)
template <class CHAR, class T>
buffer(const ::std::basic_string_view<CHAR, T> &view,
bool make_reference,
const allocator_type &allocator = allocator_type())
: buffer(::mdbx::slice(view), make_reference, allocator) {
}
#endif /* __cpp_lib_string_view >= 201606L */
MDBX_CXX20_CONSTEXPR
buffer(const struct slice &src,
const allocator_type &allocator = allocator_type())
: silo_(src.data(), src.length(), allocator),
slice_(silo_.data(), src.length()) {}
MDBX_CXX20_CONSTEXPR
buffer(const buffer &src, const allocator_type &allocator = allocator_type())
: buffer(src.slice_, allocator) {}
MDBX_CXX20_CONSTEXPR
buffer(const void *ptr, size_t bytes,
const allocator_type &allocator = allocator_type())
: buffer(::mdbx::slice(ptr, bytes), allocator) {}
template <class CHAR, class T, class A>
MDBX_CXX20_CONSTEXPR
buffer(const ::std::basic_string<CHAR, T, A> &str,
const allocator_type &allocator = allocator_type())
: buffer(::mdbx::slice(str), allocator) {}
MDBX_CXX20_CONSTEXPR
buffer(const char *c_str, const allocator_type &allocator = allocator_type())
: buffer(::mdbx::slice(c_str), allocator){}
#if defined(DOXYGEN) || \
(defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L)
template <class CHAR, class T>
MDBX_CXX20_CONSTEXPR
buffer(const ::std::basic_string_view<CHAR, T> &view,
const allocator_type &allocator = allocator_type())
: buffer(::mdbx::slice(view), allocator) {
}
#endif /* __cpp_lib_string_view >= 201606L */
buffer(size_t head_room, size_t tail_room,
const allocator_type &allocator = allocator_type())
: silo_(allocator) {
slice_.iov_base = silo_.init(check_length(head_room, tail_room));
assert(slice_.iov_len == 0);
}
buffer(size_t capacity, const allocator_type &allocator = allocator_type())
: silo_(allocator) {
slice_.iov_base = silo_.init(check_length(capacity));
assert(slice_.iov_len == 0);
}
buffer(size_t head_room, const struct slice &src, size_t tail_room,
const allocator_type &allocator = allocator_type())
: silo_(allocator) {
slice_.iov_base =
silo_.init(check_length(head_room, src.length(), tail_room));
slice_.iov_len = src.length();
memcpy(slice_.iov_base, src.data(), src.length());
}
buffer(size_t head_room, const buffer &src, size_t tail_room,
const allocator_type &allocator = allocator_type())
: buffer(head_room, src.slice_, tail_room, allocator) {}
inline buffer(const ::mdbx::txn &txn, const struct slice &src,
const allocator_type &allocator = allocator_type());
buffer(buffer &&src) noexcept(move_assign_alloc::is_nothrow())
: silo_(::std::move(src.silo_)), slice_(::std::move(src.slice_)) {}
MDBX_CXX11_CONSTEXPR const struct slice &slice() const noexcept {
return slice_;
}
MDBX_CXX11_CONSTEXPR operator const struct slice &() const noexcept {
return slice_;
}
#if defined(DOXYGEN) || (defined(__cpp_lib_span) && __cpp_lib_span >= 202002L)
template <typename POD>
MDBX_CXX14_CONSTEXPR buffer(const ::std::span<POD> &span)
: buffer(span.begin(), span.end()) {
static_assert(::std::is_standard_layout<POD>::value &&
!::std::is_pointer<POD>::value,
"Must be a standard layout type!");
}
template <typename POD>
MDBX_CXX14_CONSTEXPR ::std::span<const POD> as_span() const {
return slice_.template as_span<const POD>();
}
template <typename POD> MDBX_CXX14_CONSTEXPR ::std::span<POD> as_span() {
return slice_.template as_span<POD>();
}
MDBX_CXX14_CONSTEXPR ::std::span<const byte> bytes() const {
return as_span<const byte>();
}
MDBX_CXX14_CONSTEXPR ::std::span<byte> bytes() { return as_span<byte>(); }
MDBX_CXX14_CONSTEXPR ::std::span<const char> chars() const {
return as_span<const char>();
}
MDBX_CXX14_CONSTEXPR ::std::span<char> chars() { return as_span<char>(); }
#endif /* __cpp_lib_span >= 202002L */
template <typename POD>
static buffer wrap(const POD &pod, bool make_reference = false,
const allocator_type &allocator = allocator_type()) {
return buffer(::mdbx::slice::wrap(pod), make_reference, allocator);
}
template <typename POD> MDBX_CXX14_CONSTEXPR POD as_pod() const {
return slice_.as_pod<POD>();
}
#ifdef MDBX_U128_TYPE
MDBX_CXX14_CONSTEXPR MDBX_U128_TYPE as_uint128() const {
return slice().as_uint128();
}
#endif /* MDBX_U128_TYPE */
MDBX_CXX14_CONSTEXPR uint64_t as_uint64() const {
return slice().as_uint64();
}
MDBX_CXX14_CONSTEXPR uint32_t as_uint32() const {
return slice().as_uint32();
}
MDBX_CXX14_CONSTEXPR uint16_t as_uint16() const {
return slice().as_uint16();
}
MDBX_CXX14_CONSTEXPR uint8_t as_uint8() const { return slice().as_uint8(); }
#ifdef MDBX_I128_TYPE
MDBX_CXX14_CONSTEXPR MDBX_I128_TYPE as_int128() const {
return slice().as_int128();
}
#endif /* MDBX_I128_TYPE */
MDBX_CXX14_CONSTEXPR int64_t as_int64() const { return slice().as_int64(); }
MDBX_CXX14_CONSTEXPR int32_t as_int32() const { return slice().as_int32(); }
MDBX_CXX14_CONSTEXPR int16_t as_int16() const { return slice().as_int16(); }
MDBX_CXX14_CONSTEXPR int8_t as_int8() const { return slice().as_int8(); }
#ifdef MDBX_U128_TYPE
MDBX_U128_TYPE as_uint128_adapt() const { return slice().as_uint128_adapt(); }
#endif /* MDBX_U128_TYPE */
uint64_t as_uint64_adapt() const { return slice().as_uint64_adapt(); }
uint32_t as_uint32_adapt() const { return slice().as_uint32_adapt(); }
uint16_t as_uint16_adapt() const { return slice().as_uint16_adapt(); }
uint8_t as_uint8_adapt() const { return slice().as_uint8_adapt(); }
#ifdef MDBX_I128_TYPE
MDBX_I128_TYPE as_int128_adapt() const { return slice().as_int128_adapt(); }
#endif /* MDBX_I128_TYPE */
int64_t as_int64_adapt() const { return slice().as_int64_adapt(); }
int32_t as_int32_adapt() const { return slice().as_int32_adapt(); }
int16_t as_int16_adapt() const { return slice().as_int16_adapt(); }
int8_t as_int8_adapt() const { return slice().as_int8_adapt(); }
/// \brief Returns a new buffer with a hexadecimal dump of the slice content.
static buffer hex(const ::mdbx::slice &source, bool uppercase = false,
unsigned wrap_width = 0,
const allocator_type &allocator = allocator_type()) {
return source.template encode_hex<ALLOCATOR, CAPACITY_POLICY>(
uppercase, wrap_width, allocator);
}
/// \brief Returns a new buffer with a
/// [Base58](https://en.wikipedia.org/wiki/Base58) dump of the slice content.
static buffer base58(const ::mdbx::slice &source, unsigned wrap_width = 0,
const allocator_type &allocator = allocator_type()) {
return source.template encode_base58<ALLOCATOR, CAPACITY_POLICY>(wrap_width,
allocator);
}
/// \brief Returns a new buffer with a
/// [Base64](https://en.wikipedia.org/wiki/Base64) dump of the slice content.
static buffer base64(const ::mdbx::slice &source, unsigned wrap_width = 0,
const allocator_type &allocator = allocator_type()) {
return source.template encode_base64<ALLOCATOR, CAPACITY_POLICY>(wrap_width,
allocator);
}
/// \brief Returns a new buffer with a hexadecimal dump of the given pod.
template <typename POD>
static buffer hex(const POD &pod, bool uppercase = false,
unsigned wrap_width = 0,
const allocator_type &allocator = allocator_type()) {
return hex(mdbx::slice::wrap(pod), uppercase, wrap_width, allocator);
}
/// \brief Returns a new buffer with a
/// [Base58](https://en.wikipedia.org/wiki/Base58) dump of the given pod.
template <typename POD>
static buffer base58(const POD &pod, unsigned wrap_width = 0,
const allocator_type &allocator = allocator_type()) {
return base58(mdbx::slice::wrap(pod), wrap_width, allocator);
}
/// \brief Returns a new buffer with a
/// [Base64](https://en.wikipedia.org/wiki/Base64) dump of the given pod.
template <typename POD>
static buffer base64(const POD &pod, unsigned wrap_width = 0,
const allocator_type &allocator = allocator_type()) {
return base64(mdbx::slice::wrap(pod), wrap_width, allocator);
}
/// \brief Returns a new buffer with a hexadecimal dump of the slice content.
buffer encode_hex(bool uppercase = false, unsigned wrap_width = 0,
const allocator_type &allocator = allocator_type()) const {
return slice().template encode_hex<ALLOCATOR, CAPACITY_POLICY>(
uppercase, wrap_width, allocator);
}
/// \brief Returns a new buffer with a
/// [Base58](https://en.wikipedia.org/wiki/Base58) dump of the slice content.
buffer
encode_base58(unsigned wrap_width = 0,
const allocator_type &allocator = allocator_type()) const {
return slice().template encode_base58<ALLOCATOR, CAPACITY_POLICY>(
wrap_width, allocator);
}
/// \brief Returns a new buffer with a
/// [Base64](https://en.wikipedia.org/wiki/Base64) dump of the slice content.
buffer
encode_base64(unsigned wrap_width = 0,
const allocator_type &allocator = allocator_type()) const {
return slice().template encode_base64<ALLOCATOR, CAPACITY_POLICY>(
wrap_width, allocator);
}
/// \brief Decodes hexadecimal dump from the slice content to returned buffer.
static buffer hex_decode(const ::mdbx::slice &source,
bool ignore_spaces = false,
const allocator_type &allocator = allocator_type()) {
return source.template hex_decode<ALLOCATOR, CAPACITY_POLICY>(ignore_spaces,
allocator);
}
/// \brief Decodes [Base58](https://en.wikipedia.org/wiki/Base58) dump
/// from the slice content to returned buffer.
static buffer
base58_decode(const ::mdbx::slice &source, bool ignore_spaces = false,
const allocator_type &allocator = allocator_type()) {
return source.template base58_decode<ALLOCATOR, CAPACITY_POLICY>(
ignore_spaces, allocator);
}
/// \brief Decodes [Base64](https://en.wikipedia.org/wiki/Base64) dump
/// from the slice content to returned buffer.
static buffer
base64_decode(const ::mdbx::slice &source, bool ignore_spaces = false,
const allocator_type &allocator = allocator_type()) {
return source.template base64_decode<ALLOCATOR, CAPACITY_POLICY>(
ignore_spaces, allocator);
}
/// \brief Decodes hexadecimal dump
/// from the buffer content to new returned buffer.
buffer hex_decode(bool ignore_spaces = false,
const allocator_type &allocator = allocator_type()) const {
return hex_decode(slice(), ignore_spaces, allocator);
}
/// \brief Decodes [Base58](https://en.wikipedia.org/wiki/Base58) dump
/// from the buffer content to new returned buffer.
buffer
base58_decode(bool ignore_spaces = false,
const allocator_type &allocator = allocator_type()) const {
return base58_decode(slice(), ignore_spaces, allocator);
}
/// \brief Decodes [Base64](https://en.wikipedia.org/wiki/Base64) dump
/// from the buffer content to new returned buffer.
buffer
base64_decode(bool ignore_spaces = false,
const allocator_type &allocator = allocator_type()) const {
return base64_decode(slice(), ignore_spaces, allocator);
}
/// \brief Reserves storage space.
void reserve(size_t wanna_headroom, size_t wanna_tailroom) {
wanna_headroom = ::std::min(::std::max(headroom(), wanna_headroom),
wanna_headroom + pettiness_threshold);
wanna_tailroom = ::std::min(::std::max(tailroom(), wanna_tailroom),
wanna_tailroom + pettiness_threshold);
const size_t wanna_capacity =
check_length(wanna_headroom, slice_.length(), wanna_tailroom);
silo_.resize(wanna_capacity, wanna_headroom, slice_);
assert(headroom() >= wanna_headroom &&
headroom() <= wanna_headroom + pettiness_threshold);
assert(tailroom() >= wanna_tailroom &&
tailroom() <= wanna_tailroom + pettiness_threshold);
}
/// \brief Reserves space before the payload.
void reserve_headroom(size_t wanna_headroom) { reserve(wanna_headroom, 0); }
/// \brief Reserves space after the payload.
void reserve_tailroom(size_t wanna_tailroom) { reserve(0, wanna_tailroom); }
buffer &assign_reference(const void *ptr, size_t bytes) {
silo_.clear();
slice_.assign(ptr, bytes);
return *this;
}
buffer &assign_freestanding(const void *ptr, size_t bytes) {
silo_.assign(static_cast<const typename silo::value_type *>(ptr),
check_length(bytes));
slice_.assign(silo_.data(), bytes);
return *this;
}
MDBX_CXX20_CONSTEXPR void
swap(buffer &other) noexcept(swap_alloc::is_nothrow()) {
silo_.swap(other.silo_);
slice_.swap(other.slice_);
}
static buffer clone(const buffer &src,
const allocator_type &allocator = allocator_type()) {
return buffer(src.headroom(), src.slice_, src.tailroom(), allocator);
}
buffer &assign(const buffer &src, bool make_reference = false) {
return assign(src.slice_, make_reference);
}
buffer &assign(const void *ptr, size_t bytes, bool make_reference = false) {
return make_reference ? assign_reference(ptr, bytes)
: assign_freestanding(ptr, bytes);
}
buffer &assign(const struct slice &src, bool make_reference = false) {
return assign(src.data(), src.length(), make_reference);
}
buffer &assign(const ::MDBX_val &src, bool make_reference = false) {
return assign(src.iov_base, src.iov_len, make_reference);
}
buffer &assign(struct slice &&src, bool make_reference = false) {
assign(src.data(), src.length(), make_reference);
src.invalidate();
return *this;
}
buffer &assign(::MDBX_val &&src, bool make_reference = false) {
assign(src.iov_base, src.iov_len, make_reference);
src.iov_base = nullptr;
return *this;
}
buffer &assign(const void *begin, const void *end,
bool make_reference = false) {
return assign(begin,
static_cast<const byte *>(end) -
static_cast<const byte *>(begin),
make_reference);
}
template <class CHAR, class T, class A>
buffer &assign(const ::std::basic_string<CHAR, T, A> &str,
bool make_reference = false) {
return assign(str.data(), str.length(), make_reference);
}
buffer &assign(const char *c_str, bool make_reference = false) {
return assign(c_str, ::mdbx::strlen(c_str), make_reference);
}
#if defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L
template <class CHAR, class T>
buffer &assign(const ::std::basic_string_view<CHAR, T> &view,
bool make_reference = false) {
return assign(view.data(), view.length(), make_reference);
}
template <class CHAR, class T>
buffer &assign(::std::basic_string_view<CHAR, T> &&view,
bool make_reference = false) {
assign(view.data(), view.length(), make_reference);
view = {};
return *this;
}
#endif /* __cpp_lib_string_view >= 201606L */
buffer &operator=(const buffer &src) { return assign(src); }
buffer &operator=(buffer &&src) noexcept(move_assign_alloc::is_nothrow()) {
return assign(::std::move(src));
}
buffer &operator=(const struct slice &src) { return assign(src); }
buffer &operator=(struct slice &&src) { return assign(::std::move(src)); }
#if defined(DOXYGEN) || \
(defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L)
template <class CHAR, class T>
buffer &operator=(const ::std::basic_string_view<CHAR, T> &view) noexcept {
return assign(view);
}
/// \brief Return a string_view that references the data of this buffer.
template <class CHAR = char, class T = ::std::char_traits<CHAR>>
::std::basic_string_view<CHAR, T> string_view() const noexcept {
return slice_.string_view<CHAR, T>();
}
/// \brief Return a string_view that references the data of this buffer.
template <class CHAR, class T>
operator ::std::basic_string_view<CHAR, T>() const noexcept {
return string_view<CHAR, T>();
}
#endif /* __cpp_lib_string_view >= 201606L */
/// \brief Checks whether the string is empty.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX20_CONSTEXPR bool empty() const noexcept {
return length() == 0;
}
/// \brief Checks whether the data pointer of the buffer is nullptr.
MDBX_CXX11_CONSTEXPR bool is_null() const noexcept {
return data() == nullptr;
}
/// \brief Returns the number of bytes.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX20_CONSTEXPR size_t size() const noexcept {
return length();
}
/// \brief Returns the hash value of the data.
/// \attention Function implementation and returned hash values may changed
/// version to version, and in future the t1ha3 will be used here. Therefore
/// values obtained from this function shouldn't be persisted anywhere.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR size_t
hash_value() const noexcept {
return slice_.hash_value();
}
template <class CHAR = char, class T = ::std::char_traits<CHAR>,
class A = legacy_allocator>
MDBX_CXX20_CONSTEXPR ::std::basic_string<CHAR, T, A>
as_string(const A &allocator = A()) const {
return slice_.as_string<CHAR, T, A>(allocator);
}
template <class CHAR, class T, class A>
MDBX_CXX20_CONSTEXPR explicit
operator ::std::basic_string<CHAR, T, A>() const {
return as_string<CHAR, T, A>();
}
/// \brief Checks if the data starts with the given prefix.
MDBX_NOTHROW_PURE_FUNCTION bool
starts_with(const struct slice &prefix) const noexcept {
return slice_.starts_with(prefix);
}
/// \brief Checks if the data ends with the given suffix.
MDBX_NOTHROW_PURE_FUNCTION bool
ends_with(const struct slice &suffix) const noexcept {
return slice_.ends_with(suffix);
}
/// \brief Clears the contents and storage.
void clear() noexcept { slice_.assign(silo_.clear(), size_t(0)); }
/// \brief Clears the contents and reserve storage.
void clear_and_reserve(size_t whole_capacity, size_t headroom = 0) noexcept {
slice_.assign(silo_.clear_and_reserve(whole_capacity, headroom), size_t(0));
}
/// \brief Reduces memory usage by freeing unused storage space.
void shrink_to_fit() { reserve(0, 0); }
/// \brief Drops the first "n" bytes from the data chunk.
/// \pre REQUIRES: `n <= size()`
void remove_prefix(size_t n) noexcept { slice_.remove_prefix(n); }
/// \brief Drops the last "n" bytes from the data chunk.
/// \pre REQUIRES: `n <= size()`
void remove_suffix(size_t n) noexcept { slice_.remove_suffix(n); }
/// \brief Drops the first "n" bytes from the data chunk.
/// \throws std::out_of_range if `n > size()`
void safe_remove_prefix(size_t n) { slice_.safe_remove_prefix(n); }
/// \brief Drops the last "n" bytes from the data chunk.
/// \throws std::out_of_range if `n > size()`
void safe_remove_suffix(size_t n) { slice_.safe_remove_suffix(n); }
/// \brief Accesses the specified byte of data chunk.
/// \pre REQUIRES: `n < size()`
MDBX_CXX11_CONSTEXPR byte operator[](size_t n) const noexcept {
MDBX_CONSTEXPR_ASSERT(n < size());
return slice_[n];
}
/// \brief Accesses the specified byte of data chunk.
/// \pre REQUIRES: `n < size()`
MDBX_CXX11_CONSTEXPR byte &operator[](size_t n) noexcept {
MDBX_CONSTEXPR_ASSERT(n < size());
return byte_ptr()[n];
}
/// \brief Accesses the specified byte of data chunk with bounds checking.
/// \throws std::out_of_range if `n >= size()`
MDBX_CXX14_CONSTEXPR byte at(size_t n) const { return slice_.at(n); }
/// \brief Accesses the specified byte of data chunk with bounds checking.
/// \throws std::out_of_range if `n >= size()`
MDBX_CXX14_CONSTEXPR byte &at(size_t n) {
if (MDBX_UNLIKELY(n >= size()))
MDBX_CXX20_UNLIKELY throw_out_range();
return byte_ptr()[n];
}
/// \brief Returns the first "n" bytes of the data chunk.
/// \pre REQUIRES: `n <= size()`
MDBX_CXX14_CONSTEXPR struct slice head(size_t n) const noexcept {
return slice_.head(n);
}
/// \brief Returns the last "n" bytes of the data chunk.
/// \pre REQUIRES: `n <= size()`
MDBX_CXX14_CONSTEXPR struct slice tail(size_t n) const noexcept {
return slice_.tail(n);
}
/// \brief Returns the middle "n" bytes of the data chunk.
/// \pre REQUIRES: `from + n <= size()`
MDBX_CXX14_CONSTEXPR struct slice middle(size_t from,
size_t n) const noexcept {
return slice_.middle(from, n);
}
/// \brief Returns the first "n" bytes of the data chunk.
/// \throws std::out_of_range if `n >= size()`
MDBX_CXX14_CONSTEXPR struct slice safe_head(size_t n) const {
return slice_.safe_head(n);
}
/// \brief Returns the last "n" bytes of the data chunk.
/// \throws std::out_of_range if `n >= size()`
MDBX_CXX14_CONSTEXPR struct slice safe_tail(size_t n) const {
return slice_.safe_tail(n);
}
/// \brief Returns the middle "n" bytes of the data chunk.
/// \throws std::out_of_range if `from + n >= size()`
MDBX_CXX14_CONSTEXPR struct slice safe_middle(size_t from, size_t n) const {
return slice_.safe_middle(from, n);
}
buffer &append(const void *src, size_t bytes) {
if (MDBX_UNLIKELY(tailroom() < check_length(bytes)))
MDBX_CXX20_UNLIKELY reserve_tailroom(bytes);
memcpy(end_byte_ptr(), src, bytes);
slice_.iov_len += bytes;
return *this;
}
buffer &append(const struct slice &chunk) {
return append(chunk.data(), chunk.size());
}
buffer &add_header(const void *src, size_t bytes) {
if (MDBX_UNLIKELY(headroom() < check_length(bytes)))
MDBX_CXX20_UNLIKELY reserve_headroom(bytes);
slice_.iov_base =
memcpy(static_cast<char *>(slice_.iov_base) - bytes, src, bytes);
slice_.iov_len += bytes;
return *this;
}
buffer &add_header(const struct slice &chunk) {
return add_header(chunk.data(), chunk.size());
}
template <MDBX_CXX20_CONCEPT(MutableByteProducer, PRODUCER)>
buffer &append_producer(PRODUCER &producer) {
const size_t wanna_bytes = producer.envisage_result_length();
if (MDBX_UNLIKELY(tailroom() < check_length(wanna_bytes)))
MDBX_CXX20_UNLIKELY reserve_tailroom(wanna_bytes);
return set_end(producer.write_bytes(end_char_ptr(), tailroom()));
}
template <MDBX_CXX20_CONCEPT(ImmutableByteProducer, PRODUCER)>
buffer &append_producer(const PRODUCER &producer) {
const size_t wanna_bytes = producer.envisage_result_length();
if (MDBX_UNLIKELY(tailroom() < check_length(wanna_bytes)))
MDBX_CXX20_UNLIKELY reserve_tailroom(wanna_bytes);
return set_end(producer.write_bytes(end_char_ptr(), tailroom()));
}
buffer &append_hex(const struct slice &data, bool uppercase = false,
unsigned wrap_width = 0) {
return append_producer(to_hex(data, uppercase, wrap_width));
}
buffer &append_base58(const struct slice &data, unsigned wrap_width = 0) {
return append_producer(to_base58(data, wrap_width));
}
buffer &append_base64(const struct slice &data, unsigned wrap_width = 0) {
return append_producer(to_base64(data, wrap_width));
}
buffer &append_decoded_hex(const struct slice &data,
bool ignore_spaces = false) {
return append_producer(from_hex(data, ignore_spaces));
}
buffer &append_decoded_base58(const struct slice &data,
bool ignore_spaces = false) {
return append_producer(from_base58(data, ignore_spaces));
}
buffer &append_decoded_base64(const struct slice &data,
bool ignore_spaces = false) {
return append_producer(from_base64(data, ignore_spaces));
}
buffer &append_u8(uint_fast8_t u8) {
if (MDBX_UNLIKELY(tailroom() < 1))
MDBX_CXX20_UNLIKELY reserve_tailroom(1);
*slice_.end_byte_ptr() = uint8_t(u8);
slice_.iov_len += 1;
return *this;
}
buffer &append_byte(uint_fast8_t byte) { return append_u8(byte); }
buffer &append_u16(uint_fast16_t u16) {
if (MDBX_UNLIKELY(tailroom() < 2))
MDBX_CXX20_UNLIKELY reserve_tailroom(2);
const auto ptr = slice_.end_byte_ptr();
ptr[0] = uint8_t(u16);
ptr[1] = uint8_t(u16 >> 8);
slice_.iov_len += 2;
return *this;
}
buffer &append_u24(uint_fast32_t u24) {
if (MDBX_UNLIKELY(tailroom() < 3))
MDBX_CXX20_UNLIKELY reserve_tailroom(3);
const auto ptr = slice_.end_byte_ptr();
ptr[0] = uint8_t(u24);
ptr[1] = uint8_t(u24 >> 8);
ptr[2] = uint8_t(u24 >> 16);
slice_.iov_len += 3;
return *this;
}
buffer &append_u32(uint_fast32_t u32) {
if (MDBX_UNLIKELY(tailroom() < 4))
MDBX_CXX20_UNLIKELY reserve_tailroom(4);
const auto ptr = slice_.end_byte_ptr();
ptr[0] = uint8_t(u32);
ptr[1] = uint8_t(u32 >> 8);
ptr[2] = uint8_t(u32 >> 16);
ptr[3] = uint8_t(u32 >> 24);
slice_.iov_len += 4;
return *this;
}
buffer &append_u48(uint_fast64_t u48) {
if (MDBX_UNLIKELY(tailroom() < 6))
MDBX_CXX20_UNLIKELY reserve_tailroom(6);
const auto ptr = slice_.end_byte_ptr();
ptr[0] = uint8_t(u48);
ptr[1] = uint8_t(u48 >> 8);
ptr[2] = uint8_t(u48 >> 16);
ptr[3] = uint8_t(u48 >> 24);
ptr[4] = uint8_t(u48 >> 32);
ptr[5] = uint8_t(u48 >> 40);
slice_.iov_len += 6;
return *this;
}
buffer &append_u64(uint_fast64_t u64) {
if (MDBX_UNLIKELY(tailroom() < 8))
MDBX_CXX20_UNLIKELY reserve_tailroom(8);
const auto ptr = slice_.end_byte_ptr();
ptr[0] = uint8_t(u64);
ptr[1] = uint8_t(u64 >> 8);
ptr[2] = uint8_t(u64 >> 16);
ptr[3] = uint8_t(u64 >> 24);
ptr[4] = uint8_t(u64 >> 32);
ptr[5] = uint8_t(u64 >> 40);
ptr[6] = uint8_t(u64 >> 48);
ptr[7] = uint8_t(u64 >> 56);
slice_.iov_len += 8;
return *this;
}
//----------------------------------------------------------------------------
template <size_t SIZE>
static buffer key_from(const char (&text)[SIZE], bool make_reference = true) {
return buffer(::mdbx::slice(text), make_reference);
}
#if defined(DOXYGEN) || \
(defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L)
template <class CHAR, class T>
static buffer key_from(const ::std::basic_string_view<CHAR, T> &src,
bool make_reference = false) {
return buffer(src, make_reference);
}
#endif /* __cpp_lib_string_view >= 201606L */
static buffer key_from(const char *src, bool make_reference = false) {
return buffer(src, make_reference);
}
template <class CHAR, class T, class A>
static buffer key_from(const ::std::basic_string<CHAR, T, A> &src,
bool make_reference = false) {
return buffer(src, make_reference);
}
static buffer key_from(silo &&src) noexcept {
return buffer(::std::move(src));
}
static buffer key_from_double(const double ieee754_64bit) {
return wrap(::mdbx_key_from_double(ieee754_64bit));
}
static buffer key_from(const double ieee754_64bit) {
return key_from_double(ieee754_64bit);
}
static buffer key_from(const double *ieee754_64bit) {
return wrap(::mdbx_key_from_ptrdouble(ieee754_64bit));
}
static buffer key_from_u64(const uint64_t unsigned_int64) {
return wrap(unsigned_int64);
}
static buffer key_from(const uint64_t unsigned_int64) {
return key_from_u64(unsigned_int64);
}
static buffer key_from_i64(const int64_t signed_int64) {
return wrap(::mdbx_key_from_int64(signed_int64));
}
static buffer key_from(const int64_t signed_int64) {
return key_from_i64(signed_int64);
}
static buffer key_from_jsonInteger(const int64_t json_integer) {
return wrap(::mdbx_key_from_jsonInteger(json_integer));
}
static buffer key_from_float(const float ieee754_32bit) {
return wrap(::mdbx_key_from_float(ieee754_32bit));
}
static buffer key_from(const float ieee754_32bit) {
return key_from_float(ieee754_32bit);
}
static buffer key_from(const float *ieee754_32bit) {
return wrap(::mdbx_key_from_ptrfloat(ieee754_32bit));
}
static buffer key_from_u32(const uint32_t unsigned_int32) {
return wrap(unsigned_int32);
}
static buffer key_from(const uint32_t unsigned_int32) {
return key_from_u32(unsigned_int32);
}
static buffer key_from_i32(const int32_t signed_int32) {
return wrap(::mdbx_key_from_int32(signed_int32));
}
static buffer key_from(const int32_t signed_int32) {
return key_from_i32(signed_int32);
}
};
template <class ALLOCATOR, class CAPACITY_POLICY,
MDBX_CXX20_CONCEPT(MutableByteProducer, PRODUCER)>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
make_buffer(PRODUCER &producer, const ALLOCATOR &allocator) {
if (MDBX_LIKELY(!producer.is_empty()))
MDBX_CXX20_LIKELY {
buffer<ALLOCATOR, CAPACITY_POLICY> result(
producer.envisage_result_length(), allocator);
result.set_end(
producer.write_bytes(result.end_char_ptr(), result.tailroom()));
return result;
}
return buffer<ALLOCATOR, CAPACITY_POLICY>(allocator);
}
template <class ALLOCATOR, class CAPACITY_POLICY,
MDBX_CXX20_CONCEPT(ImmutableByteProducer, PRODUCER)>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
make_buffer(const PRODUCER &producer, const ALLOCATOR &allocator) {
if (MDBX_LIKELY(!producer.is_empty()))
MDBX_CXX20_LIKELY {
buffer<ALLOCATOR, CAPACITY_POLICY> result(
producer.envisage_result_length(), allocator);
result.set_end(
producer.write_bytes(result.end_char_ptr(), result.tailroom()));
return result;
}
return buffer<ALLOCATOR, CAPACITY_POLICY>(allocator);
}
template <class ALLOCATOR, MDBX_CXX20_CONCEPT(MutableByteProducer, PRODUCER)>
inline string<ALLOCATOR> make_string(PRODUCER &producer,
const ALLOCATOR &allocator) {
string<ALLOCATOR> result(allocator);
if (MDBX_LIKELY(!producer.is_empty()))
MDBX_CXX20_LIKELY {
result.resize(producer.envisage_result_length());
result.resize(producer.write_bytes(const_cast<char *>(result.data()),
result.capacity()) -
result.data());
}
return result;
}
template <class ALLOCATOR, MDBX_CXX20_CONCEPT(ImmutableByteProducer, PRODUCER)>
inline string<ALLOCATOR> make_string(const PRODUCER &producer,
const ALLOCATOR &allocator) {
string<ALLOCATOR> result(allocator);
if (MDBX_LIKELY(!producer.is_empty()))
MDBX_CXX20_LIKELY {
result.resize(producer.envisage_result_length());
result.resize(producer.write_bytes(const_cast<char *>(result.data()),
result.capacity()) -
result.data());
}
return result;
}
/// \brief Combines data slice with boolean flag to represent result of certain
/// operations.
struct value_result {
slice value;
bool done;
value_result(const slice &value, bool done) noexcept
: value(value), done(done) {}
value_result(const value_result &) noexcept = default;
value_result &operator=(const value_result &) noexcept = default;
MDBX_CXX14_CONSTEXPR operator bool() const noexcept {
assert(!done || bool(value));
return done;
}
};
/// \brief Combines pair of slices for key and value to represent result of
/// certain operations.
struct pair {
using stl_pair = std::pair<slice, slice>;
slice key, value;
MDBX_CXX11_CONSTEXPR pair(const slice &key, const slice &value) noexcept
: key(key), value(value) {}
MDBX_CXX11_CONSTEXPR pair(const stl_pair &couple) noexcept
: key(couple.first), value(couple.second) {}
MDBX_CXX11_CONSTEXPR operator stl_pair() const noexcept {
return stl_pair(key, value);
}
pair(const pair &) noexcept = default;
pair &operator=(const pair &) noexcept = default;
MDBX_CXX14_CONSTEXPR operator bool() const noexcept {
assert(bool(key) == bool(value));
return key;
}
MDBX_CXX14_CONSTEXPR static pair invalid() noexcept {
return pair(slice::invalid(), slice::invalid());
}
/// \brief Three-way fast non-lexicographically length-based comparison.
MDBX_NOTHROW_PURE_FUNCTION static MDBX_CXX14_CONSTEXPR intptr_t
compare_fast(const pair &a, const pair &b) noexcept;
/// \brief Three-way lexicographically comparison.
MDBX_NOTHROW_PURE_FUNCTION static MDBX_CXX14_CONSTEXPR intptr_t
compare_lexicographically(const pair &a, const pair &b) noexcept;
friend MDBX_CXX14_CONSTEXPR bool operator==(const pair &a,
const pair &b) noexcept;
friend MDBX_CXX14_CONSTEXPR bool operator<(const pair &a,
const pair &b) noexcept;
friend MDBX_CXX14_CONSTEXPR bool operator>(const pair &a,
const pair &b) noexcept;
friend MDBX_CXX14_CONSTEXPR bool operator<=(const pair &a,
const pair &b) noexcept;
friend MDBX_CXX14_CONSTEXPR bool operator>=(const pair &a,
const pair &b) noexcept;
friend MDBX_CXX14_CONSTEXPR bool operator!=(const pair &a,
const pair &b) noexcept;
};
/// \brief Combines pair of slices for key and value with boolean flag to
/// represent result of certain operations.
struct pair_result : public pair {
bool done;
MDBX_CXX11_CONSTEXPR pair_result() noexcept
: pair(pair::invalid()), done(false) {}
MDBX_CXX11_CONSTEXPR pair_result(const slice &key, const slice &value,
bool done) noexcept
: pair(key, value), done(done) {}
pair_result(const pair_result &) noexcept = default;
pair_result &operator=(const pair_result &) noexcept = default;
MDBX_CXX14_CONSTEXPR operator bool() const noexcept {
assert(!done || (bool(key) && bool(value)));
return done;
}
};
template <typename ALLOCATOR, typename CAPACITY_POLICY>
struct buffer_pair_spec {
using buffer_type = buffer<ALLOCATOR, CAPACITY_POLICY>;
using allocator_type = typename buffer_type::allocator_type;
using allocator_traits = typename buffer_type::allocator_traits;
using reservation_policy = CAPACITY_POLICY;
using stl_pair = ::std::pair<buffer_type, buffer_type>;
buffer_type key, value;
MDBX_CXX20_CONSTEXPR buffer_pair_spec() noexcept = default;
MDBX_CXX20_CONSTEXPR
buffer_pair_spec(const allocator_type &allocator) noexcept
: key(allocator), value(allocator) {}
buffer_pair_spec(const buffer_type &key, const buffer_type &value,
const allocator_type &allocator = allocator_type())
: key(key, allocator), value(value, allocator) {}
buffer_pair_spec(const buffer_type &key, const buffer_type &value,
bool make_reference,
const allocator_type &allocator = allocator_type())
: key(key, make_reference, allocator),
value(value, make_reference, allocator) {}
buffer_pair_spec(const stl_pair &pair,
const allocator_type &allocator = allocator_type())
: buffer_pair_spec(pair.first, pair.second, allocator) {}
buffer_pair_spec(const stl_pair &pair, bool make_reference,
const allocator_type &allocator = allocator_type())
: buffer_pair_spec(pair.first, pair.second, make_reference, allocator) {}
buffer_pair_spec(const slice &key, const slice &value,
const allocator_type &allocator = allocator_type())
: key(key, allocator), value(value, allocator) {}
buffer_pair_spec(const slice &key, const slice &value, bool make_reference,
const allocator_type &allocator = allocator_type())
: key(key, make_reference, allocator),
value(value, make_reference, allocator) {}
buffer_pair_spec(const pair &pair,
const allocator_type &allocator = allocator_type())
: buffer_pair_spec(pair.key, pair.value, allocator) {}
buffer_pair_spec(const pair &pair, bool make_reference,
const allocator_type &allocator = allocator_type())
: buffer_pair_spec(pair.key, pair.value, make_reference, allocator) {}
buffer_pair_spec(const txn &txn, const slice &key, const slice &value,
const allocator_type &allocator = allocator_type())
: key(txn, key, allocator), value(txn, value, allocator) {}
buffer_pair_spec(const txn &txn, const pair &pair,
const allocator_type &allocator = allocator_type())
: buffer_pair_spec(txn, pair.key, pair.value, allocator) {}
buffer_pair_spec(buffer_type &&key, buffer_type &&value) noexcept(
buffer_type::move_assign_alloc::is_nothrow())
: key(::std::move(key)), value(::std::move(value)) {}
buffer_pair_spec(buffer_pair_spec &&pair) noexcept(
buffer_type::move_assign_alloc::is_nothrow())
: buffer_pair_spec(::std::move(pair.key), ::std::move(pair.value)) {}
/// \brief Checks whether data chunk stored inside the buffers both, otherwise
/// at least one of buffers just refers to data located outside.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX20_CONSTEXPR bool
is_freestanding() const noexcept {
return key.is_freestanding() && value.is_freestanding();
}
/// \brief Checks whether one of the buffers just refers to data located
/// outside the buffer, rather than stores it.
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX20_CONSTEXPR bool
is_reference() const noexcept {
return key.is_reference() || value.is_reference();
}
/// \brief Makes buffers owning the data.
/// \details If buffer refers to an external data, then makes it the owner
/// of clone by allocating storage and copying the data.
void make_freestanding() {
key.make_freestanding();
value.make_freestanding();
}
operator pair() const noexcept { return pair(key, value); }
};
template <typename BUFFER>
using buffer_pair = buffer_pair_spec<typename BUFFER::allocator_type,
typename BUFFER::reservation_policy>;
/// end of cxx_data @}
//------------------------------------------------------------------------------
/// \brief Loop control constants for readers enumeration functor and other
/// cases. \see env::enumerate_readers()
enum loop_control { continue_loop = 0, exit_loop = INT32_MIN };
/// \brief Kinds of the keys and corresponding modes of comparing it.
enum class key_mode {
usual = MDBX_DB_DEFAULTS, ///< Usual variable length keys with byte-by-byte
///< lexicographic comparison like `std::memcmp()`.
reverse = MDBX_REVERSEKEY, ///< Variable length keys with byte-by-byte
///< lexicographic comparison in reverse order,
///< from the end of the keys to the beginning.
ordinal = MDBX_INTEGERKEY, ///< Keys are binary integers in native byte order,
///< either `uint32_t` or `uint64_t`, and will be
///< sorted as such. The keys must all be of the
///< same size and must be aligned while passing
///< as arguments.
msgpack = -1 ///< Keys are in [MessagePack](https://msgpack.org/)
///< format with appropriate comparison.
///< \note Not yet implemented and PRs are welcome.
};
MDBX_CXX01_CONSTEXPR_ENUM bool is_usual(key_mode mode) noexcept {
return (MDBX_db_flags_t(mode) & (MDBX_REVERSEKEY | MDBX_INTEGERKEY)) == 0;
}
MDBX_CXX01_CONSTEXPR_ENUM bool is_ordinal(key_mode mode) noexcept {
return (MDBX_db_flags_t(mode) & MDBX_INTEGERKEY) != 0;
}
MDBX_CXX01_CONSTEXPR_ENUM bool is_samelength(key_mode mode) noexcept {
return (MDBX_db_flags_t(mode) & MDBX_INTEGERKEY) != 0;
}
MDBX_CXX01_CONSTEXPR_ENUM bool is_reverse(key_mode mode) noexcept {
return (MDBX_db_flags_t(mode) & MDBX_REVERSEKEY) != 0;
}
MDBX_CXX01_CONSTEXPR_ENUM bool is_msgpack(key_mode mode) noexcept {
return mode == key_mode::msgpack;
}
/// \brief Kind of the values and sorted multi-values with corresponding
/// comparison.
enum class value_mode {
single = MDBX_DB_DEFAULTS, ///< Usual single value for each key. In terms of
///< keys, they are unique.
multi =
MDBX_DUPSORT, ///< A more than one data value could be associated with
///< each key. Internally each key is stored once, and the
///< corresponding data values are sorted by byte-by-byte
///< lexicographic comparison like `std::memcmp()`.
///< In terms of keys, they are not unique, i.e. has
///< duplicates which are sorted by associated data values.
#if CONSTEXPR_ENUM_FLAGS_OPERATIONS || defined(DOXYGEN)
multi_reverse =
MDBX_DUPSORT |
MDBX_REVERSEDUP, ///< A more than one data value could be associated with
///< each key. Internally each key is stored once, and
///< the corresponding data values are sorted by
///< byte-by-byte lexicographic comparison in reverse
///< order, from the end of the keys to the beginning.
///< In terms of keys, they are not unique, i.e. has
///< duplicates which are sorted by associated data
///< values.
multi_samelength =
MDBX_DUPSORT |
MDBX_DUPFIXED, ///< A more than one data value could be associated with
///< each key, and all data values must be same length.
///< Internally each key is stored once, and the
///< corresponding data values are sorted by byte-by-byte
///< lexicographic comparison like `std::memcmp()`. In
///< terms of keys, they are not unique, i.e. has
///< duplicates which are sorted by associated data values.
multi_ordinal =
MDBX_DUPSORT | MDBX_DUPFIXED |
MDBX_INTEGERDUP, ///< A more than one data value could be associated with
///< each key, and all data values are binary integers in
///< native byte order, either `uint32_t` or `uint64_t`,
///< and will be sorted as such. Internally each key is
///< stored once, and the corresponding data values are
///< sorted. In terms of keys, they are not unique, i.e.
///< has duplicates which are sorted by associated data
///< values.
multi_reverse_samelength =
MDBX_DUPSORT | MDBX_REVERSEDUP |
MDBX_DUPFIXED, ///< A more than one data value could be associated with
///< each key, and all data values must be same length.
///< Internally each key is stored once, and the
///< corresponding data values are sorted by byte-by-byte
///< lexicographic comparison in reverse order, from the
///< end of the keys to the beginning. In terms of keys,
///< they are not unique, i.e. has duplicates which are
///< sorted by associated data values.
#else
multi_reverse = uint32_t(MDBX_DUPSORT) | uint32_t(MDBX_REVERSEDUP),
multi_samelength = uint32_t(MDBX_DUPSORT) | uint32_t(MDBX_DUPFIXED),
multi_ordinal = uint32_t(MDBX_DUPSORT) | uint32_t(MDBX_DUPFIXED) |
uint32_t(MDBX_INTEGERDUP),
multi_reverse_samelength = uint32_t(MDBX_DUPSORT) |
uint32_t(MDBX_REVERSEDUP) |
uint32_t(MDBX_DUPFIXED),
#endif
msgpack = -1 ///< A more than one data value could be associated with each
///< key. Values are in [MessagePack](https://msgpack.org/)
///< format with appropriate comparison. Internally each key is
///< stored once, and the corresponding data values are sorted.
///< In terms of keys, they are not unique, i.e. has duplicates
///< which are sorted by associated data values.
///< \note Not yet implemented and PRs are welcome.
};
MDBX_CXX01_CONSTEXPR_ENUM bool is_usual(value_mode mode) noexcept {
return (MDBX_db_flags_t(mode) & (MDBX_DUPSORT | MDBX_INTEGERDUP |
MDBX_DUPFIXED | MDBX_REVERSEDUP)) == 0;
}
MDBX_CXX01_CONSTEXPR_ENUM bool is_multi(value_mode mode) noexcept {
return (MDBX_db_flags_t(mode) & MDBX_DUPSORT) != 0;
}
MDBX_CXX01_CONSTEXPR_ENUM bool is_ordinal(value_mode mode) noexcept {
return (MDBX_db_flags_t(mode) & MDBX_INTEGERDUP) != 0;
}
MDBX_CXX01_CONSTEXPR_ENUM bool is_samelength(value_mode mode) noexcept {
return (MDBX_db_flags_t(mode) & MDBX_DUPFIXED) != 0;
}
MDBX_CXX01_CONSTEXPR_ENUM bool is_reverse(value_mode mode) noexcept {
return (MDBX_db_flags_t(mode) & MDBX_REVERSEDUP) != 0;
}
MDBX_CXX01_CONSTEXPR_ENUM bool is_msgpack(value_mode mode) noexcept {
return mode == value_mode::msgpack;
}
/// \brief A handle for an individual table (aka key-value space, maps or
/// sub-database) in the environment.
/// \see txn::open_map() \see txn::create_map()
/// \see txn::clear_map() \see txn::drop_map()
/// \see txn::get_handle_info() \see txn::get_map_stat()
/// \see env::close_map()
/// \see cursor::map()
struct LIBMDBX_API_TYPE map_handle {
MDBX_dbi dbi{0};
MDBX_CXX11_CONSTEXPR map_handle() noexcept {}
MDBX_CXX11_CONSTEXPR map_handle(MDBX_dbi dbi) noexcept : dbi(dbi) {}
map_handle(const map_handle &) noexcept = default;
map_handle &operator=(const map_handle &) noexcept = default;
operator bool() const noexcept { return dbi != 0; }
operator MDBX_dbi() const { return dbi; }
using flags = ::MDBX_db_flags_t;
using state = ::MDBX_dbi_state_t;
struct LIBMDBX_API_TYPE info {
map_handle::flags flags;
map_handle::state state;
MDBX_CXX11_CONSTEXPR info(map_handle::flags flags,
map_handle::state state) noexcept;
info(const info &) noexcept = default;
info &operator=(const info &) noexcept = default;
MDBX_CXX11_CONSTEXPR_ENUM mdbx::key_mode key_mode() const noexcept;
MDBX_CXX11_CONSTEXPR_ENUM mdbx::value_mode value_mode() const noexcept;
};
};
using comparator = ::MDBX_cmp_func *;
inline comparator default_comparator(key_mode mode) noexcept {
return ::mdbx_get_keycmp(static_cast<MDBX_db_flags_t>(mode));
}
inline comparator default_comparator(value_mode mode) noexcept {
return ::mdbx_get_keycmp(static_cast<MDBX_db_flags_t>(mode));
}
/// \brief Key-value pairs put mode.
enum put_mode {
insert_unique = MDBX_NOOVERWRITE, ///< Insert only unique keys.
upsert = MDBX_UPSERT, ///< Insert or update.
update = MDBX_CURRENT, ///< Update existing, don't insert new.
};
/// \brief Unmanaged database environment.
///
/// Like other unmanaged classes, `env` allows copying and assignment for
/// instances, but does not destroys the represented underlying object from the
/// own class destructor.
///
/// An environment supports multiple key-value tables (aka key-value maps,
/// spaces or sub-databases), all residing in the same shared-memory mapped
/// file.
class LIBMDBX_API_TYPE env {
friend class txn;
protected:
MDBX_env *handle_{nullptr};
MDBX_CXX11_CONSTEXPR env(MDBX_env *ptr) noexcept;
public:
MDBX_CXX11_CONSTEXPR env() noexcept = default;
env(const env &) noexcept = default;
inline env &operator=(env &&other) noexcept;
inline env(env &&other) noexcept;
inline ~env() noexcept;
MDBX_CXX14_CONSTEXPR operator bool() const noexcept;
MDBX_CXX14_CONSTEXPR operator const MDBX_env *() const;
MDBX_CXX14_CONSTEXPR operator MDBX_env *();
friend MDBX_CXX11_CONSTEXPR bool operator==(const env &a,
const env &b) noexcept;
friend MDBX_CXX11_CONSTEXPR bool operator!=(const env &a,
const env &b) noexcept;
//----------------------------------------------------------------------------
/// \brief Database geometry for size management.
/// \see env_managed::create_parameters
/// \see env_managed::env_managed(const ::std::string &pathname, const
/// create_parameters &, const operate_parameters &, bool accede)
struct LIBMDBX_API_TYPE geometry {
enum : intptr_t {
default_value = -1, ///< Means "keep current or use default"
minimal_value = 0, ///< Means "minimal acceptable"
maximal_value = INTPTR_MAX, ///< Means "maximal acceptable"
kB = 1000, ///< \f$10^{3}\f$ bytes (0x03E8)
MB = kB * 1000, ///< \f$10^{6}\f$ bytes (0x000F_4240)
GB = MB * 1000, ///< \f$10^{9}\f$ bytes (0x3B9A_CA00)
#if INTPTR_MAX > 0x7fffFFFFl
TB = GB * 1000, ///< \f$10^{12}\f$ bytes (0x0000_00E8_D4A5_1000)
PB = TB * 1000, ///< \f$10^{15}\f$ bytes (0x0003_8D7E_A4C6_8000)
EB = PB * 1000, ///< \f$10^{18}\f$ bytes (0x0DE0_B6B3_A764_0000)
#endif /* 64-bit intptr_t */
KiB = 1024, ///< \f$2^{10}\f$ bytes (0x0400)
MiB = KiB << 10, ///< \f$2^{20}\f$ bytes (0x0010_0000)
GiB = MiB << 10, ///< \f$2^{30}\f$ bytes (0x4000_0000)
#if INTPTR_MAX > 0x7fffFFFFl
TiB = GiB << 10, ///< \f$2^{40}\f$ bytes (0x0000_0100_0000_0000)
PiB = TiB << 10, ///< \f$2^{50}\f$ bytes (0x0004_0000_0000_0000)
EiB = PiB << 10, ///< \f$2^{60}\f$ bytes (0x1000_0000_0000_0000)
#endif /* 64-bit intptr_t */
};
/// \brief Tagged type for output to std::ostream
struct size {
intptr_t bytes;
MDBX_CXX11_CONSTEXPR size(intptr_t bytes) noexcept : bytes(bytes) {}
MDBX_CXX11_CONSTEXPR operator intptr_t() const noexcept { return bytes; }
};
/// \brief The lower bound of database size in bytes.
intptr_t size_lower{minimal_value};
/// \brief The size in bytes to setup the database size for now.
/// \details It is recommended always pass \ref default_value in this
/// argument except some special cases.
intptr_t size_now{default_value};
/// \brief The upper bound of database size in bytes.
/// \details It is recommended to avoid change upper bound while database is
/// used by other processes or threaded (i.e. just pass \ref default_value
/// in this argument except absolutely necessary). Otherwise you must be
/// ready for \ref MDBX_UNABLE_EXTEND_MAPSIZE error(s), unexpected pauses
/// during remapping and/or system errors like "address busy", and so on. In
/// other words, there is no way to handle a growth of the upper bound
/// robustly because there may be a lack of appropriate system resources
/// (which are extremely volatile in a multi-process multi-threaded
/// environment).
intptr_t size_upper{maximal_value};
/// \brief The growth step in bytes, must be greater than zero to allow the
/// database to grow.
intptr_t growth_step{default_value};
/// \brief The shrink threshold in bytes, must be greater than zero to allow
/// the database to shrink.
intptr_t shrink_threshold{default_value};
/// \brief The database page size for new database creation
/// or \ref default_value otherwise.
/// \details Must be power of 2 in the range between \ref MDBX_MIN_PAGESIZE
/// and \ref MDBX_MAX_PAGESIZE.
intptr_t pagesize{default_value};
inline geometry &make_fixed(intptr_t size) noexcept;
inline geometry &make_dynamic(intptr_t lower = minimal_value,
intptr_t upper = maximal_value) noexcept;
MDBX_CXX11_CONSTEXPR geometry() noexcept {}
MDBX_CXX11_CONSTEXPR
geometry(const geometry &) noexcept = default;
MDBX_CXX11_CONSTEXPR geometry(intptr_t size_lower,
intptr_t size_now = default_value,
intptr_t size_upper = maximal_value,
intptr_t growth_step = default_value,
intptr_t shrink_threshold = default_value,
intptr_t pagesize = default_value) noexcept
: size_lower(size_lower), size_now(size_now), size_upper(size_upper),
growth_step(growth_step), shrink_threshold(shrink_threshold),
pagesize(pagesize) {}
};
/// \brief Operation mode.
enum mode {
readonly, ///< \copydoc MDBX_RDONLY
write_file_io, // don't available on OpenBSD
write_mapped_io, ///< \copydoc MDBX_WRITEMAP
nested_transactions = write_file_io
};
/// \brief Durability level.
enum durability {
robust_synchronous, ///< \copydoc MDBX_SYNC_DURABLE
half_synchronous_weak_last, ///< \copydoc MDBX_NOMETASYNC
lazy_weak_tail, ///< \copydoc MDBX_SAFE_NOSYNC
whole_fragile ///< \copydoc MDBX_UTTERLY_NOSYNC
};
/// \brief Garbage reclaiming options.
struct LIBMDBX_API_TYPE reclaiming_options {
/// \copydoc MDBX_LIFORECLAIM
bool lifo{false};
/// \copydoc MDBX_COALESCE
bool coalesce{false};
MDBX_CXX11_CONSTEXPR reclaiming_options() noexcept {}
MDBX_CXX11_CONSTEXPR
reclaiming_options(const reclaiming_options &) noexcept = default;
MDBX_CXX14_CONSTEXPR reclaiming_options &
operator=(const reclaiming_options &) noexcept = default;
reclaiming_options(MDBX_env_flags_t) noexcept;
};
/// \brief Operate options.
struct LIBMDBX_API_TYPE operate_options {
/// \copydoc MDBX_NOSTICKYTHREADS
bool no_sticky_threads{false};
/// \brief Разрешает вложенные транзакции ценой отключения
/// \ref MDBX_WRITEMAP и увеличением накладных расходов.
bool nested_write_transactions{false};
/// \copydoc MDBX_EXCLUSIVE
bool exclusive{false};
/// \copydoc MDBX_NORDAHEAD
bool disable_readahead{false};
/// \copydoc MDBX_NOMEMINIT
bool disable_clear_memory{false};
/// \copydoc MDBX_VALIDATION
bool enable_validation{false};
MDBX_CXX11_CONSTEXPR operate_options() noexcept {}
MDBX_CXX11_CONSTEXPR
operate_options(const operate_options &) noexcept = default;
MDBX_CXX14_CONSTEXPR operate_options &
operator=(const operate_options &) noexcept = default;
operate_options(MDBX_env_flags_t) noexcept;
};
/// \brief Operate parameters.
struct LIBMDBX_API_TYPE operate_parameters {
/// \brief The maximum number of named tables/maps for the environment.
/// Zero means default value.
unsigned max_maps{0};
/// \brief The maximum number of threads/reader slots for the environment.
/// Zero means default value.
unsigned max_readers{0};
env::mode mode{write_mapped_io};
env::durability durability{robust_synchronous};
env::reclaiming_options reclaiming;
env::operate_options options;
MDBX_CXX11_CONSTEXPR operate_parameters() noexcept {}
MDBX_CXX11_CONSTEXPR
operate_parameters(
const unsigned max_maps, const unsigned max_readers = 0,
const env::mode mode = env::mode::write_mapped_io,
env::durability durability = env::durability::robust_synchronous,
const env::reclaiming_options &reclaiming = env::reclaiming_options(),
const env::operate_options &options = env::operate_options()) noexcept
: max_maps(max_maps), max_readers(max_readers), mode(mode),
durability(durability), reclaiming(reclaiming), options(options) {}
MDBX_CXX11_CONSTEXPR
operate_parameters(const operate_parameters &) noexcept = default;
MDBX_CXX14_CONSTEXPR operate_parameters &
operator=(const operate_parameters &) noexcept = default;
MDBX_env_flags_t make_flags(
bool accede = true, ///< Allows accepting incompatible operating options
///< in case the database is already being used by
///< another process(es) \see MDBX_ACCEDE
bool use_subdirectory =
false ///< use subdirectory to place the DB files
) const;
static env::mode mode_from_flags(MDBX_env_flags_t) noexcept;
static env::durability durability_from_flags(MDBX_env_flags_t) noexcept;
inline static env::reclaiming_options
reclaiming_from_flags(MDBX_env_flags_t flags) noexcept;
inline static env::operate_options
options_from_flags(MDBX_env_flags_t flags) noexcept;
};
/// \brief Returns current operation parameters.
inline env::operate_parameters get_operation_parameters() const;
/// \brief Returns current operation mode.
inline env::mode get_mode() const;
/// \brief Returns current durability mode.
inline env::durability get_durability() const;
/// \brief Returns current reclaiming options.
inline env::reclaiming_options get_reclaiming() const;
/// \brief Returns current operate options.
inline env::operate_options get_options() const;
/// \brief Returns `true` for a freshly created database,
/// but `false` if at least one transaction was committed.
bool is_pristine() const;
/// \brief Checks whether the database is empty.
bool is_empty() const;
/// \brief Returns default page size for current system/platform.
static size_t default_pagesize() noexcept {
return ::mdbx_default_pagesize();
}
struct limits {
limits() = delete;
/// \brief Returns the minimal database page size in bytes.
static inline size_t pagesize_min() noexcept;
/// \brief Returns the maximal database page size in bytes.
static inline size_t pagesize_max() noexcept;
/// \brief Returns the minimal database size in bytes for specified page
/// size.
static inline size_t dbsize_min(intptr_t pagesize);
/// \brief Returns the maximal database size in bytes for specified page
/// size.
static inline size_t dbsize_max(intptr_t pagesize);
/// \brief Returns the minimal key size in bytes for specified table
/// flags.
static inline size_t key_min(MDBX_db_flags_t flags) noexcept;
/// \brief Returns the minimal key size in bytes for specified keys mode.
static inline size_t key_min(key_mode mode) noexcept;
/// \brief Returns the maximal key size in bytes for specified page size and
/// table flags.
static inline size_t key_max(intptr_t pagesize, MDBX_db_flags_t flags);
/// \brief Returns the maximal key size in bytes for specified page size and
/// keys mode.
static inline size_t key_max(intptr_t pagesize, key_mode mode);
/// \brief Returns the maximal key size in bytes for given environment and
/// table flags.
static inline size_t key_max(const env &, MDBX_db_flags_t flags);
/// \brief Returns the maximal key size in bytes for given environment and
/// keys mode.
static inline size_t key_max(const env &, key_mode mode);
/// \brief Returns the minimal values size in bytes for specified table
/// flags.
static inline size_t value_min(MDBX_db_flags_t flags) noexcept;
/// \brief Returns the minimal values size in bytes for specified values
/// mode.
static inline size_t value_min(value_mode) noexcept;
/// \brief Returns the maximal value size in bytes for specified page size
/// and table flags.
static inline size_t value_max(intptr_t pagesize, MDBX_db_flags_t flags);
/// \brief Returns the maximal value size in bytes for specified page size
/// and values mode.
static inline size_t value_max(intptr_t pagesize, value_mode);
/// \brief Returns the maximal value size in bytes for given environment and
/// table flags.
static inline size_t value_max(const env &, MDBX_db_flags_t flags);
/// \brief Returns the maximal value size in bytes for specified page size
/// and values mode.
static inline size_t value_max(const env &, value_mode);
/// \brief Returns maximal size of key-value pair to fit in a single page
/// for specified size and table flags.
static inline size_t pairsize4page_max(intptr_t pagesize,
MDBX_db_flags_t flags);
/// \brief Returns maximal size of key-value pair to fit in a single page
/// for specified page size and values mode.
static inline size_t pairsize4page_max(intptr_t pagesize, value_mode);
/// \brief Returns maximal size of key-value pair to fit in a single page
/// for given environment and table flags.
static inline size_t pairsize4page_max(const env &, MDBX_db_flags_t flags);
/// \brief Returns maximal size of key-value pair to fit in a single page
/// for specified page size and values mode.
static inline size_t pairsize4page_max(const env &, value_mode);
/// \brief Returns maximal data size in bytes to fit in a leaf-page or
/// single large/overflow-page for specified size and table flags.
static inline size_t valsize4page_max(intptr_t pagesize,
MDBX_db_flags_t flags);
/// \brief Returns maximal data size in bytes to fit in a leaf-page or
/// single large/overflow-page for specified page size and values mode.
static inline size_t valsize4page_max(intptr_t pagesize, value_mode);
/// \brief Returns maximal data size in bytes to fit in a leaf-page or
/// single large/overflow-page for given environment and table flags.
static inline size_t valsize4page_max(const env &, MDBX_db_flags_t flags);
/// \brief Returns maximal data size in bytes to fit in a leaf-page or
/// single large/overflow-page for specified page size and values mode.
static inline size_t valsize4page_max(const env &, value_mode);
/// \brief Returns the maximal write transaction size (i.e. limit for
/// summary volume of dirty pages) in bytes for specified page size.
static inline size_t transaction_size_max(intptr_t pagesize);
/// \brief Returns the maximum opened map handles, aka DBI-handles.
static inline size_t max_map_handles(void);
};
/// \brief Returns the minimal database size in bytes for the environment.
size_t dbsize_min() const { return limits::dbsize_min(this->get_pagesize()); }
/// \brief Returns the maximal database size in bytes for the environment.
size_t dbsize_max() const { return limits::dbsize_max(this->get_pagesize()); }
/// \brief Returns the minimal key size in bytes for specified keys mode.
size_t key_min(key_mode mode) const noexcept { return limits::key_min(mode); }
/// \brief Returns the maximal key size in bytes for specified keys mode.
size_t key_max(key_mode mode) const { return limits::key_max(*this, mode); }
/// \brief Returns the minimal value size in bytes for specified values mode.
size_t value_min(value_mode mode) const noexcept {
return limits::value_min(mode);
}
/// \brief Returns the maximal value size in bytes for specified values mode.
size_t value_max(value_mode mode) const {
return limits::value_max(*this, mode);
}
/// \brief Returns the maximal write transaction size (i.e. limit for summary
/// volume of dirty pages) in bytes.
size_t transaction_size_max() const {
return limits::transaction_size_max(this->get_pagesize());
}
/// \brief Make a copy (backup) of an existing environment to the specified
/// path.
#ifdef MDBX_STD_FILESYSTEM_PATH
env &copy(const MDBX_STD_FILESYSTEM_PATH &destination, bool compactify,
bool force_dynamic_size = false);
#endif /* MDBX_STD_FILESYSTEM_PATH */
#if defined(_WIN32) || defined(_WIN64) || defined(DOXYGEN)
env &copy(const ::std::wstring &destination, bool compactify,
bool force_dynamic_size = false);
env &copy(const wchar_t *destination, bool compactify,
bool force_dynamic_size = false);
#endif /* Windows */
env &copy(const ::std::string &destination, bool compactify,
bool force_dynamic_size = false);
env &copy(const char *destination, bool compactify,
bool force_dynamic_size = false);
/// \brief Copy an environment to the specified file descriptor.
env &copy(filehandle fd, bool compactify, bool force_dynamic_size = false);
/// \brief Deletion modes for \ref remove().
enum remove_mode {
/// \brief Just delete the environment's files and directory if any.
/// \note On POSIX systems, processes already working with the database will
/// continue to work without interference until it close the environment.
/// \note On Windows, the behavior of `just_remove` is different
/// because the system does not support deleting files that are currently
/// memory mapped.
just_remove = MDBX_ENV_JUST_DELETE,
/// \brief Make sure that the environment is not being used by other
/// processes, or return an error otherwise.
ensure_unused = MDBX_ENV_ENSURE_UNUSED,
/// \brief Wait until other processes closes the environment before
/// deletion.
wait_for_unused = MDBX_ENV_WAIT_FOR_UNUSED
};
/// \brief Removes the environment's files in a proper and multiprocess-safe
/// way.
#ifdef MDBX_STD_FILESYSTEM_PATH
static bool remove(const MDBX_STD_FILESYSTEM_PATH &pathname,
const remove_mode mode = just_remove);
#endif /* MDBX_STD_FILESYSTEM_PATH */
#if defined(_WIN32) || defined(_WIN64) || defined(DOXYGEN)
static bool remove(const ::std::wstring &pathname,
const remove_mode mode = just_remove);
static bool remove(const wchar_t *pathname,
const remove_mode mode = just_remove);
#endif /* Windows */
static bool remove(const ::std::string &pathname,
const remove_mode mode = just_remove);
static bool remove(const char *pathname,
const remove_mode mode = just_remove);
/// \brief Statistics for a database in the MDBX environment.
using stat = ::MDBX_stat;
/// \brief Information about the environment.
using info = ::MDBX_envinfo;
/// \brief Returns snapshot statistics about the MDBX environment.
inline stat get_stat() const;
/// \brief Returns pagesize of this MDBX environment.
size_t get_pagesize() const { return get_stat().ms_psize; }
/// \brief Return snapshot information about the MDBX environment.
inline info get_info() const;
/// \brief Return statistics about the MDBX environment accordingly to the
/// specified transaction.
inline stat get_stat(const txn &) const;
/// \brief Return information about the MDBX environment accordingly to the
/// specified transaction.
inline info get_info(const txn &) const;
/// \brief Returns the file descriptor for the DXB file of MDBX environment.
inline filehandle get_filehandle() const;
/// \brief Return the path that was used for opening the environment.
path get_path() const;
/// Returns environment flags.
inline MDBX_env_flags_t get_flags() const;
/// \brief Returns the maximum number of threads/reader slots for the
/// environment.
/// \see extra_runtime_option::max_readers
inline unsigned max_readers() const;
/// \brief Returns the maximum number of named tables for the environment.
/// \see extra_runtime_option::max_maps
inline unsigned max_maps() const;
/// \brief Returns the application context associated with the environment.
inline void *get_context() const noexcept;
/// \brief Sets the application context associated with the environment.
inline env &set_context(void *your_context);
/// \brief Sets threshold to force flush the data buffers to disk, for
/// non-sync durability modes.
///
/// \details The threshold value affects all processes which operates with
/// given environment until the last process close environment or a new value
/// will be settled. Data is always written to disk when \ref
/// txn_managed::commit() is called, but the operating system may keep it
/// buffered. MDBX always flushes the OS buffers upon commit as well, unless
/// the environment was opened with \ref whole_fragile, \ref lazy_weak_tail or
/// in part \ref half_synchronous_weak_last.
///
/// The default is 0, than mean no any threshold checked, and no additional
/// flush will be made.
/// \see extra_runtime_option::sync_bytes
inline env &set_sync_threshold(size_t bytes);
/// \brief Gets threshold used to force flush the data buffers to disk, for
/// non-sync durability modes.
///
/// \copydetails set_sync_threshold()
/// \see extra_runtime_option::sync_bytes
inline size_t sync_threshold() const;
#if __cplusplus >= 201103L || defined(DOXYGEN)
/// \brief Sets relative period since the last unsteady commit to force flush
/// the data buffers to disk, for non-sync durability modes.
///
/// \details The relative period value affects all processes which operates
/// with given environment until the last process close environment or a new
/// value will be settled. Data is always written to disk when \ref
/// txn_managed::commit() is called, but the operating system may keep it
/// buffered. MDBX always flushes the OS buffers upon commit as well, unless
/// the environment was opened with \ref whole_fragile, \ref lazy_weak_tail or
/// in part \ref half_synchronous_weak_last. Settled period don't checked
/// asynchronously, but only by the \ref txn_managed::commit() and \ref
/// env::sync_to_disk() functions. Therefore, in cases where transactions are
/// committed infrequently and/or irregularly, polling by \ref
/// env::poll_sync_to_disk() may be a reasonable solution to timeout
/// enforcement.
///
/// The default is 0, than mean no any timeout checked, and no additional
/// flush will be made.
/// \see extra_runtime_option::sync_period
inline env &set_sync_period(const duration &period);
/// \brief Gets relative period since the last unsteady commit that used to
/// force flush the data buffers to disk, for non-sync durability modes.
/// \copydetails set_sync_period(const duration&)
/// \see set_sync_period(const duration&)
/// \see extra_runtime_option::sync_period
inline duration sync_period() const;
#endif
/// \copydoc set_sync_period(const duration&)
/// \param [in] seconds_16dot16 The period in 1/65536 of second when a
/// synchronous flush would be made since the last unsteady commit.
inline env &set_sync_period__seconds_16dot16(unsigned seconds_16dot16);
/// \copydoc sync_period()
/// \see sync_period__seconds_16dot16(unsigned)
inline unsigned sync_period__seconds_16dot16() const;
/// \copydoc set_sync_period(const duration&)
/// \param [in] seconds The period in second when a synchronous flush would
/// be made since the last unsteady commit.
inline env &set_sync_period__seconds_double(double seconds);
/// \copydoc sync_period()
/// \see set_sync_period__seconds_double(double)
inline double sync_period__seconds_double() const;
/// \copydoc MDBX_option_t
enum class extra_runtime_option {
/// \copydoc MDBX_opt_max_db
/// \see max_maps() \see env::operate_parameters::max_maps
max_maps = MDBX_opt_max_db,
/// \copydoc MDBX_opt_max_readers
/// \see max_readers() \see env::operate_parameters::max_readers
max_readers = MDBX_opt_max_readers,
/// \copydoc MDBX_opt_sync_bytes
/// \see sync_threshold() \see set_sync_threshold()
sync_bytes = MDBX_opt_sync_bytes,
/// \copydoc MDBX_opt_sync_period
/// \see sync_period() \see set_sync_period()
sync_period = MDBX_opt_sync_period,
/// \copydoc MDBX_opt_rp_augment_limit
rp_augment_limit = MDBX_opt_rp_augment_limit,
/// \copydoc MDBX_opt_loose_limit
loose_limit = MDBX_opt_loose_limit,
/// \copydoc MDBX_opt_dp_reserve_limit
dp_reserve_limit = MDBX_opt_dp_reserve_limit,
/// \copydoc MDBX_opt_txn_dp_limit
dp_limit = MDBX_opt_txn_dp_limit,
/// \copydoc MDBX_opt_txn_dp_initial
dp_initial = MDBX_opt_txn_dp_initial,
/// \copydoc MDBX_opt_spill_max_denominator
spill_max_denominator = MDBX_opt_spill_max_denominator,
/// \copydoc MDBX_opt_spill_min_denominator
spill_min_denominator = MDBX_opt_spill_min_denominator,
/// \copydoc MDBX_opt_spill_parent4child_denominator
spill_parent4child_denominator = MDBX_opt_spill_parent4child_denominator,
/// \copydoc MDBX_opt_merge_threshold_16dot16_percent
merge_threshold_16dot16_percent = MDBX_opt_merge_threshold_16dot16_percent,
/// \copydoc MDBX_opt_writethrough_threshold
writethrough_threshold = MDBX_opt_writethrough_threshold,
/// \copydoc MDBX_opt_prefault_write_enable
prefault_write_enable = MDBX_opt_prefault_write_enable,
};
/// \copybrief mdbx_env_set_option()
inline env &set_extra_option(extra_runtime_option option, uint64_t value);
/// \copybrief mdbx_env_get_option()
inline uint64_t extra_option(extra_runtime_option option) const;
/// \brief Alter environment flags.
inline env &alter_flags(MDBX_env_flags_t flags, bool on_off);
/// \brief Set all size-related parameters of environment.
inline env &set_geometry(const geometry &size);
/// \brief Flush the environment data buffers.
/// \return `True` if sync done or no data to sync, or `false` if the
/// environment is busy by other thread or none of the thresholds are reached.
inline bool sync_to_disk(bool force = true, bool nonblock = false);
/// \brief Performs non-blocking polling of sync-to-disk thresholds.
/// \return `True` if sync done or no data to sync, or `false` if the
/// environment is busy by other thread or none of the thresholds are reached.
bool poll_sync_to_disk() { return sync_to_disk(false, true); }
/// \brief Close a key-value map (aka table) handle. Normally
/// unnecessary.
///
/// Closing a table handle is not necessary, but lets \ref txn::open_map()
/// reuse the handle value. Usually it's better to set a bigger
/// \ref env::operate_parameters::max_maps, unless that value would be
/// large.
///
/// \note Use with care.
/// This call is synchronized via mutex with other calls \ref close_map(), but
/// NOT with other transactions running by other threads. The "next" version
/// of libmdbx (\ref MithrilDB) will solve this issue.
///
/// Handles should only be closed if no other threads are going to reference
/// the table handle or one of its cursors any further. Do not close a
/// handle if an existing transaction has modified its table. Doing so can
/// cause misbehavior from database corruption to errors like
/// \ref MDBX_BAD_DBI (since the DB name is gone).
inline void close_map(const map_handle &);
/// \brief Reader information
struct reader_info {
int slot; ///< The reader lock table slot number.
mdbx_pid_t pid; ///< The reader process ID.
mdbx_tid_t thread; ///< The reader thread ID.
uint64_t transaction_id; ///< The ID of the transaction being read,
///< i.e. the MVCC-snapshot number.
uint64_t transaction_lag; ///< The lag from a recent MVCC-snapshot,
///< i.e. the number of committed write
/// transactions since the current read
/// transaction started.
size_t bytes_used; ///< The number of last used page in the MVCC-snapshot
///< which being read, i.e. database file can't be shrunk
///< beyond this.
size_t bytes_retained; ///< The total size of the database pages that
///< were retired by committed write transactions
///< after the reader's MVCC-snapshot, i.e. the space
///< which would be freed after the Reader releases
///< the MVCC-snapshot for reuse by completion read
///< transaction.
MDBX_CXX11_CONSTEXPR reader_info(int slot, mdbx_pid_t pid,
mdbx_tid_t thread, uint64_t txnid,
uint64_t lag, size_t used,
size_t retained) noexcept;
};
/// \brief Enumerate readers.
///
/// The VISITOR class must have `int operator(const reader_info&, int serial)`
/// which should return \ref continue_loop (zero) to continue enumeration,
/// or any non-zero value to exit.
///
/// \returns The last value returned from visitor' functor.
template <typename VISITOR> inline int enumerate_readers(VISITOR &visitor);
/// \brief Checks for stale readers in the lock table and
/// return number of cleared slots.
inline unsigned check_readers();
/// \brief Sets a Handle-Slow-Readers callback to resolve database
/// full/overflow issue due to a reader(s) which prevents the old data from
/// being recycled.
///
/// Such callback will be triggered in a case where there is not enough free
/// space in the database due to long read transaction(s) which impedes
/// reusing the pages of an old MVCC snapshot(s).
///
/// Using this callback you can choose how to resolve the situation:
/// - abort the write transaction with an error;
/// - wait for the read transaction(s) to complete;
/// - notify a thread performing a long-lived read transaction
/// and wait for an effect;
/// - kill the thread or whole process that performs the long-lived read
/// transaction;
///
/// \see long-lived-read
inline env &set_HandleSlowReaders(MDBX_hsr_func *);
/// \brief Returns the current Handle-Slow-Readers callback used to resolve
/// database full/overflow issue due to a reader(s) which prevents the old
/// data from being recycled.
/// \see set_HandleSlowReaders()
inline MDBX_hsr_func *get_HandleSlowReaders() const noexcept;
/// \brief Starts read (read-only) transaction.
inline txn_managed start_read() const;
/// \brief Creates but not start read transaction.
inline txn_managed prepare_read() const;
/// \brief Starts write (read-write) transaction.
inline txn_managed start_write(txn &parent);
/// \brief Starts write (read-write) transaction.
inline txn_managed start_write(bool dont_wait = false);
/// \brief Tries to start write (read-write) transaction without blocking.
inline txn_managed try_start_write();
};
/// \brief Managed database environment.
///
/// As other managed classes, `env_managed` destroys the represented underlying
/// object from the own class destructor, but disallows copying and assignment
/// for instances.
///
/// An environment supports multiple key-value tables (aka key-value spaces
/// or maps), all residing in the same shared-memory mapped file.
class LIBMDBX_API_TYPE env_managed : public env {
using inherited = env;
/// delegated constructor for RAII
MDBX_CXX11_CONSTEXPR env_managed(MDBX_env *ptr) noexcept : inherited(ptr) {}
void setup(unsigned max_maps, unsigned max_readers = 0);
public:
MDBX_CXX11_CONSTEXPR env_managed() noexcept = default;
/// \brief Open existing database.
#ifdef MDBX_STD_FILESYSTEM_PATH
env_managed(const MDBX_STD_FILESYSTEM_PATH &pathname,
const operate_parameters &, bool accede = true);
#endif /* MDBX_STD_FILESYSTEM_PATH */
#if defined(_WIN32) || defined(_WIN64) || defined(DOXYGEN)
env_managed(const ::std::wstring &pathname, const operate_parameters &,
bool accede = true);
explicit env_managed(const wchar_t *pathname, const operate_parameters &,
bool accede = true);
#endif /* Windows */
env_managed(const ::std::string &pathname, const operate_parameters &,
bool accede = true);
explicit env_managed(const char *pathname, const operate_parameters &,
bool accede = true);
/// \brief Additional parameters for creating a new database.
/// \see env_managed(const ::std::string &pathname, const create_parameters &,
/// const operate_parameters &, bool accede)
struct create_parameters {
env::geometry geometry;
mdbx_mode_t file_mode_bits{0640};
bool use_subdirectory{false};
MDBX_CXX11_CONSTEXPR create_parameters() noexcept = default;
create_parameters(const create_parameters &) noexcept = default;
};
/// \brief Create new or open existing database.
#ifdef MDBX_STD_FILESYSTEM_PATH
env_managed(const MDBX_STD_FILESYSTEM_PATH &pathname,
const create_parameters &, const operate_parameters &,
bool accede = true);
#endif /* MDBX_STD_FILESYSTEM_PATH */
#if defined(_WIN32) || defined(_WIN64) || defined(DOXYGEN)
env_managed(const ::std::wstring &pathname, const create_parameters &,
const operate_parameters &, bool accede = true);
explicit env_managed(const wchar_t *pathname, const create_parameters &,
const operate_parameters &, bool accede = true);
#endif /* Windows */
env_managed(const ::std::string &pathname, const create_parameters &,
const operate_parameters &, bool accede = true);
explicit env_managed(const char *pathname, const create_parameters &,
const operate_parameters &, bool accede = true);
/// \brief Explicitly closes the environment and release the memory map.
///
/// Only a single thread may call this function. All transactions, tables,
/// and cursors must already be closed before calling this function. Attempts
/// to use any such handles after calling this function will cause a
/// `SIGSEGV`. The environment handle will be freed and must not be used again
/// after this call.
///
/// \param [in] dont_sync A dont'sync flag, if non-zero the last checkpoint
/// will be kept "as is" and may be still "weak" in the \ref lazy_weak_tail
/// or \ref whole_fragile modes. Such "weak" checkpoint will be ignored
/// on opening next time, and transactions since the last non-weak checkpoint
/// (meta-page update) will rolledback for consistency guarantee.
void close(bool dont_sync = false);
env_managed(env_managed &&) = default;
env_managed &operator=(env_managed &&other) noexcept {
if (MDBX_UNLIKELY(handle_))
MDBX_CXX20_UNLIKELY {
assert(handle_ != other.handle_);
close();
}
inherited::operator=(std::move(other));
return *this;
}
env_managed(const env_managed &) = delete;
env_managed &operator=(const env_managed &) = delete;
virtual ~env_managed() noexcept;
};
/// \brief Unmanaged database transaction.
///
/// Like other unmanaged classes, `txn` allows copying and assignment for
/// instances, but does not destroys the represented underlying object from the
/// own class destructor.
///
/// All database operations require a transaction handle. Transactions may be
/// read-only or read-write.
class LIBMDBX_API_TYPE txn {
protected:
friend class cursor;
MDBX_txn *handle_{nullptr};
MDBX_CXX11_CONSTEXPR txn(MDBX_txn *ptr) noexcept;
public:
MDBX_CXX11_CONSTEXPR txn() noexcept = default;
txn(const txn &) noexcept = default;
inline txn &operator=(txn &&other) noexcept;
inline txn(txn &&other) noexcept;
inline ~txn() noexcept;
MDBX_CXX14_CONSTEXPR operator bool() const noexcept;
MDBX_CXX14_CONSTEXPR operator const MDBX_txn *() const;
MDBX_CXX14_CONSTEXPR operator MDBX_txn *();
friend MDBX_CXX11_CONSTEXPR bool operator==(const txn &a,
const txn &b) noexcept;
friend MDBX_CXX11_CONSTEXPR bool operator!=(const txn &a,
const txn &b) noexcept;
/// \brief Returns the transaction's environment.
inline ::mdbx::env env() const noexcept;
/// \brief Returns transaction's flags.
inline MDBX_txn_flags_t flags() const;
/// \brief Return the transaction's ID.
inline uint64_t id() const;
/// \brief Returns the application context associated with the transaction.
inline void *get_context() const noexcept;
/// \brief Sets the application context associated with the transaction.
inline txn &set_context(void *your_context);
/// \brief Checks whether the given data is on a dirty page.
inline bool is_dirty(const void *ptr) const;
/// \brief Checks whether the transaction is read-only.
bool is_readonly() const { return (flags() & MDBX_TXN_RDONLY) != 0; }
/// \brief Checks whether the transaction is read-write.
bool is_readwrite() const { return (flags() & MDBX_TXN_RDONLY) == 0; }
using info = ::MDBX_txn_info;
/// \brief Returns information about the MDBX transaction.
inline info get_info(bool scan_reader_lock_table = false) const;
/// \brief Returns maximal write transaction size (i.e. limit for summary
/// volume of dirty pages) in bytes.
size_t size_max() const { return env().transaction_size_max(); }
/// \brief Returns current write transaction size (i.e.summary volume of dirty
/// pages) in bytes.
size_t size_current() const {
assert(is_readwrite());
return size_t(get_info().txn_space_dirty);
}
//----------------------------------------------------------------------------
/// \brief Reset read-only transaction.
inline void reset_reading();
/// \brief Renew read-only transaction.
inline void renew_reading();
/// \brief Park read-only transaction.
inline void park_reading(bool autounpark = true);
/// \brief Resume parked read-only transaction.
/// \returns True if transaction was restarted while `restart_if_ousted=true`.
inline bool unpark_reading(bool restart_if_ousted = true);
/// \brief Start nested write transaction.
txn_managed start_nested();
/// \brief Opens cursor for specified key-value map handle.
inline cursor_managed open_cursor(map_handle map) const;
/// \brief Unbind or close all cursors.
inline size_t release_all_cursors(bool unbind) const;
/// \brief Close all cursors.
inline size_t close_all_cursors() const { return release_all_cursors(false); }
/// \brief Unbind all cursors.
inline size_t unbind_all_cursors() const { return release_all_cursors(true); }
/// \brief Open existing key-value map.
inline map_handle open_map(
const char *name,
const ::mdbx::key_mode key_mode = ::mdbx::key_mode::usual,
const ::mdbx::value_mode value_mode = ::mdbx::value_mode::single) const;
/// \brief Open existing key-value map.
inline map_handle open_map(
const ::std::string &name,
const ::mdbx::key_mode key_mode = ::mdbx::key_mode::usual,
const ::mdbx::value_mode value_mode = ::mdbx::value_mode::single) const;
/// \brief Open existing key-value map.
inline map_handle open_map(
const ::mdbx::slice &name,
const ::mdbx::key_mode key_mode = ::mdbx::key_mode::usual,
const ::mdbx::value_mode value_mode = ::mdbx::value_mode::single) const;
/// \brief Open existing key-value map.
inline map_handle open_map_accede(const char *name) const;
/// \brief Open existing key-value map.
inline map_handle open_map_accede(const ::std::string &name) const;
/// \brief Open existing key-value map.
inline map_handle open_map_accede(const ::mdbx::slice &name) const;
/// \brief Create new or open existing key-value map.
inline map_handle
create_map(const char *name,
const ::mdbx::key_mode key_mode = ::mdbx::key_mode::usual,
const ::mdbx::value_mode value_mode = ::mdbx::value_mode::single);
/// \brief Create new or open existing key-value map.
inline map_handle
create_map(const ::std::string &name,
const ::mdbx::key_mode key_mode = ::mdbx::key_mode::usual,
const ::mdbx::value_mode value_mode = ::mdbx::value_mode::single);
/// \brief Create new or open existing key-value map.
inline map_handle
create_map(const ::mdbx::slice &name,
const ::mdbx::key_mode key_mode = ::mdbx::key_mode::usual,
const ::mdbx::value_mode value_mode = ::mdbx::value_mode::single);
/// \brief Drops key-value map using handle.
inline void drop_map(map_handle map);
/// \brief Drops key-value map using name.
/// \return `True` if the key-value map existed and was deleted, either
/// `false` if the key-value map did not exist and there is nothing to delete.
bool drop_map(const char *name, bool throw_if_absent = false);
/// \brief Drop key-value map.
/// \return `True` if the key-value map existed and was deleted, either
/// `false` if the key-value map did not exist and there is nothing to delete.
inline bool drop_map(const ::std::string &name, bool throw_if_absent = false);
/// \brief Drop key-value map.
/// \return `True` if the key-value map existed and was deleted, either
/// `false` if the key-value map did not exist and there is nothing to delete.
bool drop_map(const ::mdbx::slice &name, bool throw_if_absent = false);
/// \brief Clear key-value map.
inline void clear_map(map_handle map);
/// \return `True` if the key-value map existed and was cleared, either
/// `false` if the key-value map did not exist and there is nothing to clear.
bool clear_map(const char *name, bool throw_if_absent = false);
/// \return `True` if the key-value map existed and was cleared, either
/// `false` if the key-value map did not exist and there is nothing to clear.
inline bool clear_map(const ::std::string &name,
bool throw_if_absent = false);
/// \return `True` if the key-value map existed and was cleared, either
/// `false` if the key-value map did not exist and there is nothing to clear.
bool clear_map(const ::mdbx::slice &name, bool throw_if_absent = false);
/// \brief Переименовывает таблицу ключ-значение.
inline void rename_map(map_handle map, const char *new_name);
/// \brief Переименовывает таблицу ключ-значение.
inline void rename_map(map_handle map, const ::std::string &new_name);
/// \brief Переименовывает таблицу ключ-значение.
inline void rename_map(map_handle map, const ::mdbx::slice &new_name);
/// \brief Переименовывает таблицу ключ-значение.
/// \return `True` если таблица существует и была переименована, либо
/// `false` в случае отсутствия исходной таблицы.
bool rename_map(const char *old_name, const char *new_name,
bool throw_if_absent = false);
/// \brief Переименовывает таблицу ключ-значение.
/// \return `True` если таблица существует и была переименована, либо
/// `false` в случае отсутствия исходной таблицы.
bool rename_map(const ::std::string &old_name, const ::std::string &new_name,
bool throw_if_absent = false);
/// \brief Переименовывает таблицу ключ-значение.
/// \return `True` если таблица существует и была переименована, либо
/// `false` в случае отсутствия исходной таблицы.
bool rename_map(const ::mdbx::slice &old_name, const ::mdbx::slice &new_name,
bool throw_if_absent = false);
#if defined(DOXYGEN) || \
(defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L)
/// \brief Open existing key-value map.
inline map_handle open_map(
const ::std::string_view &name,
const ::mdbx::key_mode key_mode = ::mdbx::key_mode::usual,
const ::mdbx::value_mode value_mode = ::mdbx::value_mode::single) const {
return open_map(::mdbx::slice(name), key_mode, value_mode);
}
/// \brief Open existing key-value map.
inline map_handle open_map_accede(const ::std::string_view &name) const;
/// \brief Create new or open existing key-value map.
inline map_handle
create_map(const ::std::string_view &name,
const ::mdbx::key_mode key_mode = ::mdbx::key_mode::usual,
const ::mdbx::value_mode value_mode = ::mdbx::value_mode::single) {
return create_map(::mdbx::slice(name), key_mode, value_mode);
}
/// \brief Drop key-value map.
/// \return `True` if the key-value map existed and was deleted, either
/// `false` if the key-value map did not exist and there is nothing to delete.
bool drop_map(const ::std::string_view &name, bool throw_if_absent = false) {
return drop_map(::mdbx::slice(name), throw_if_absent);
}
/// \return `True` if the key-value map existed and was cleared, either
/// `false` if the key-value map did not exist and there is nothing to clear.
bool clear_map(const ::std::string_view &name, bool throw_if_absent = false) {
return clear_map(::mdbx::slice(name), throw_if_absent);
}
/// \brief Переименовывает таблицу ключ-значение.
inline void rename_map(map_handle map, const ::std::string_view &new_name);
/// \brief Переименовывает таблицу ключ-значение.
/// \return `True` если таблица существует и была переименована, либо
/// `false` в случае отсутствия исходной таблицы.
bool rename_map(const ::std::string_view &old_name,
const ::std::string_view &new_name,
bool throw_if_absent = false) {
return rename_map(::mdbx::slice(old_name), ::mdbx::slice(new_name),
throw_if_absent);
}
#endif /* __cpp_lib_string_view >= 201606L */
using map_stat = ::MDBX_stat;
/// \brief Returns statistics for a table.
inline map_stat get_map_stat(map_handle map) const;
/// \brief Returns depth (bitmask) information of nested dupsort (multi-value)
/// B+trees for given table.
inline uint32_t get_tree_deepmask(map_handle map) const;
/// \brief Returns information about key-value map (aka table) handle.
inline map_handle::info get_handle_info(map_handle map) const;
using canary = ::MDBX_canary;
/// \brief Set integers markers (aka "canary") associated with the
/// environment.
inline txn &put_canary(const canary &);
/// \brief Returns fours integers markers (aka "canary") associated with the
/// environment.
inline canary get_canary() const;
/// Reads sequence generator associated with a key-value map (aka
/// table).
inline uint64_t sequence(map_handle map) const;
/// \brief Reads and increment sequence generator associated with a key-value
/// map (aka table).
inline uint64_t sequence(map_handle map, uint64_t increment);
/// \brief Compare two keys according to a particular key-value map (aka
/// table).
inline int compare_keys(map_handle map, const slice &a,
const slice &b) const noexcept;
/// \brief Compare two values according to a particular key-value map (aka
/// table).
inline int compare_values(map_handle map, const slice &a,
const slice &b) const noexcept;
/// \brief Compare keys of two pairs according to a particular key-value map
/// (aka table).
inline int compare_keys(map_handle map, const pair &a,
const pair &b) const noexcept;
/// \brief Compare values of two pairs according to a particular key-value map
/// (aka table).
inline int compare_values(map_handle map, const pair &a,
const pair &b) const noexcept;
/// \brief Get value by key from a key-value map (aka table).
inline slice get(map_handle map, const slice &key) const;
/// \brief Get first of multi-value and values count by key from a key-value
/// multimap (aka table).
inline slice get(map_handle map, slice key, size_t &values_count) const;
/// \brief Get value by key from a key-value map (aka table).
inline slice get(map_handle map, const slice &key,
const slice &value_at_absence) const;
/// \brief Get first of multi-value and values count by key from a key-value
/// multimap (aka table).
inline slice get(map_handle map, slice key, size_t &values_count,
const slice &value_at_absence) const;
/// \brief Get value for equal or great key from a table.
/// \return Bundle of key-value pair and boolean flag,
/// which will be `true` if the exact key was found and `false` otherwise.
inline pair_result get_equal_or_great(map_handle map, const slice &key) const;
/// \brief Get value for equal or great key from a table.
/// \return Bundle of key-value pair and boolean flag,
/// which will be `true` if the exact key was found and `false` otherwise.
inline pair_result get_equal_or_great(map_handle map, const slice &key,
const slice &value_at_absence) const;
inline MDBX_error_t put(map_handle map, const slice &key, slice *value,
MDBX_put_flags_t flags) noexcept;
inline void put(map_handle map, const slice &key, slice value, put_mode mode);
inline void insert(map_handle map, const slice &key, slice value);
inline value_result try_insert(map_handle map, const slice &key, slice value);
inline slice insert_reserve(map_handle map, const slice &key,
size_t value_length);
inline value_result try_insert_reserve(map_handle map, const slice &key,
size_t value_length);
inline void upsert(map_handle map, const slice &key, const slice &value);
inline slice upsert_reserve(map_handle map, const slice &key,
size_t value_length);
inline void update(map_handle map, const slice &key, const slice &value);
inline bool try_update(map_handle map, const slice &key, const slice &value);
inline slice update_reserve(map_handle map, const slice &key,
size_t value_length);
inline value_result try_update_reserve(map_handle map, const slice &key,
size_t value_length);
void put(map_handle map, const pair &kv, put_mode mode) {
return put(map, kv.key, kv.value, mode);
}
void insert(map_handle map, const pair &kv) {
return insert(map, kv.key, kv.value);
}
value_result try_insert(map_handle map, const pair &kv) {
return try_insert(map, kv.key, kv.value);
}
void upsert(map_handle map, const pair &kv) {
return upsert(map, kv.key, kv.value);
}
/// \brief Removes all values for given key.
inline bool erase(map_handle map, const slice &key);
/// \brief Removes the particular multi-value entry of the key.
inline bool erase(map_handle map, const slice &key, const slice &value);
/// \brief Replaces the particular multi-value of the key with a new value.
inline void replace(map_handle map, const slice &key, slice old_value,
const slice &new_value);
/// \brief Removes and return a value of the key.
template <class ALLOCATOR, typename CAPACITY_POLICY>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
extract(map_handle map, const slice &key,
const typename buffer<ALLOCATOR, CAPACITY_POLICY>::allocator_type &
allocator = buffer<ALLOCATOR, CAPACITY_POLICY>::allocator_type());
/// \brief Replaces and returns a value of the key with new one.
template <class ALLOCATOR, typename CAPACITY_POLICY>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
replace(map_handle map, const slice &key, const slice &new_value,
const typename buffer<ALLOCATOR, CAPACITY_POLICY>::allocator_type &
allocator = buffer<ALLOCATOR, CAPACITY_POLICY>::allocator_type());
template <class ALLOCATOR, typename CAPACITY_POLICY>
inline buffer<ALLOCATOR, CAPACITY_POLICY> replace_reserve(
map_handle map, const slice &key, slice &new_value,
const typename buffer<ALLOCATOR, CAPACITY_POLICY>::allocator_type
&allocator = buffer<ALLOCATOR, CAPACITY_POLICY>::allocator_type());
/// \brief Adding a key-value pair, provided that ascending order of the keys
/// and (optionally) values are preserved.
///
/// Instead of splitting the full b+tree pages, the data will be placed on new
/// ones. Thus appending is about two times faster than insertion, and the
/// pages will be filled in completely mostly but not half as after splitting
/// ones. On the other hand, any subsequent insertion or update with an
/// increase in the length of the value will be twice as slow, since it will
/// require splitting already filled pages.
///
/// \param [in] map A map handle to append
/// \param [in] key A key to be append
/// \param [in] value A value to store with the key
/// \param [in] multivalue_order_preserved
/// If `multivalue_order_preserved == true` then the same rules applied for
/// to pages of nested b+tree of multimap's values.
inline void append(map_handle map, const slice &key, const slice &value,
bool multivalue_order_preserved = true);
inline void append(map_handle map, const pair &kv,
bool multivalue_order_preserved = true) {
return append(map, kv.key, kv.value, multivalue_order_preserved);
}
size_t put_multiple_samelength(map_handle map, const slice &key,
const size_t value_length,
const void *values_array, size_t values_count,
put_mode mode, bool allow_partial = false);
template <typename VALUE>
size_t put_multiple_samelength(map_handle map, const slice &key,
const VALUE *values_array, size_t values_count,
put_mode mode, bool allow_partial = false) {
static_assert(::std::is_standard_layout<VALUE>::value &&
!::std::is_pointer<VALUE>::value &&
!::std::is_array<VALUE>::value,
"Must be a standard layout type!");
return put_multiple_samelength(map, key, sizeof(VALUE), values_array,
values_count, mode, allow_partial);
}
template <typename VALUE>
void put_multiple_samelength(map_handle map, const slice &key,
const ::std::vector<VALUE> &vector,
put_mode mode) {
put_multiple_samelength(map, key, vector.data(), vector.size(), mode);
}
inline ptrdiff_t estimate(map_handle map, const pair &from,
const pair &to) const;
inline ptrdiff_t estimate(map_handle map, const slice &from,
const slice &to) const;
inline ptrdiff_t estimate_from_first(map_handle map, const slice &to) const;
inline ptrdiff_t estimate_to_last(map_handle map, const slice &from) const;
};
/// \brief Managed database transaction.
///
/// As other managed classes, `txn_managed` destroys the represented underlying
/// object from the own class destructor, but disallows copying and assignment
/// for instances.
///
/// All database operations require a transaction handle. Transactions may be
/// read-only or read-write.
class LIBMDBX_API_TYPE txn_managed : public txn {
using inherited = txn;
friend class env;
friend class txn;
/// delegated constructor for RAII
MDBX_CXX11_CONSTEXPR txn_managed(MDBX_txn *ptr) noexcept : inherited(ptr) {}
public:
MDBX_CXX11_CONSTEXPR txn_managed() noexcept = default;
txn_managed(txn_managed &&) = default;
txn_managed &operator=(txn_managed &&other) noexcept {
if (MDBX_UNLIKELY(handle_))
MDBX_CXX20_UNLIKELY {
assert(handle_ != other.handle_);
abort();
}
inherited::operator=(std::move(other));
return *this;
}
txn_managed(const txn_managed &) = delete;
txn_managed &operator=(const txn_managed &) = delete;
~txn_managed() noexcept;
//----------------------------------------------------------------------------
/// \brief Abandon all the operations of the transaction
/// instead of saving ones.
void abort();
/// \brief Commit all the operations of a transaction into the database.
void commit();
/// \brief Commit all the operations of a transaction into the database
/// and then start read transaction.
void commit_embark_read();
using commit_latency = MDBX_commit_latency;
/// \brief Commit all the operations of a transaction into the database
/// and collect latency information.
void commit(commit_latency *);
/// \brief Commit all the operations of a transaction into the database
/// and collect latency information.
void commit(commit_latency &latency) { return commit(&latency); }
/// \brief Commit all the operations of a transaction into the database
/// and return latency information.
/// \returns latency information of commit stages.
commit_latency commit_get_latency() {
commit_latency result;
commit(&result);
return result;
}
};
/// \brief Unmanaged cursor.
///
/// Like other unmanaged classes, `cursor` allows copying and assignment for
/// instances, but does not destroys the represented underlying object from the
/// own class destructor.
///
/// \copydetails MDBX_cursor
class LIBMDBX_API_TYPE cursor {
protected:
MDBX_cursor *handle_{nullptr};
MDBX_CXX11_CONSTEXPR cursor(MDBX_cursor *ptr) noexcept;
public:
MDBX_CXX11_CONSTEXPR cursor() noexcept = default;
cursor(const cursor &) noexcept = default;
inline cursor &operator=(cursor &&other) noexcept;
inline cursor(cursor &&other) noexcept;
inline ~cursor() noexcept;
inline cursor_managed clone(void *your_context = nullptr) const;
MDBX_CXX14_CONSTEXPR operator bool() const noexcept;
MDBX_CXX14_CONSTEXPR operator const MDBX_cursor *() const;
MDBX_CXX14_CONSTEXPR operator MDBX_cursor *();
friend MDBX_CXX11_CONSTEXPR bool operator==(const cursor &a,
const cursor &b) noexcept;
friend MDBX_CXX11_CONSTEXPR bool operator!=(const cursor &a,
const cursor &b) noexcept;
friend inline int compare_position_nothrow(const cursor &left,
const cursor &right,
bool ignore_nested) noexcept;
friend inline int compare_position(const cursor &left, const cursor &right,
bool ignore_nested);
bool is_before_than(const cursor &other, bool ignore_nested = false) const {
return compare_position(*this, other, ignore_nested) < 0;
}
bool is_same_or_before_than(const cursor &other,
bool ignore_nested = false) const {
return compare_position(*this, other, ignore_nested) <= 0;
}
bool is_same_position(const cursor &other, bool ignore_nested = false) const {
return compare_position(*this, other, ignore_nested) == 0;
}
bool is_after_than(const cursor &other, bool ignore_nested = false) const {
return compare_position(*this, other, ignore_nested) > 0;
}
bool is_same_or_after_than(const cursor &other,
bool ignore_nested = false) const {
return compare_position(*this, other, ignore_nested) >= 0;
}
/// \brief Returns the application context associated with the cursor.
inline void *get_context() const noexcept;
/// \brief Sets the application context associated with the cursor.
inline cursor &set_context(void *your_context);
enum move_operation {
first = MDBX_FIRST,
last = MDBX_LAST,
next = MDBX_NEXT,
previous = MDBX_PREV,
get_current = MDBX_GET_CURRENT,
multi_prevkey_lastvalue = MDBX_PREV_NODUP,
multi_currentkey_firstvalue = MDBX_FIRST_DUP,
multi_currentkey_prevvalue = MDBX_PREV_DUP,
multi_currentkey_nextvalue = MDBX_NEXT_DUP,
multi_currentkey_lastvalue = MDBX_LAST_DUP,
multi_nextkey_firstvalue = MDBX_NEXT_NODUP,
multi_find_pair = MDBX_GET_BOTH,
multi_exactkey_lowerboundvalue = MDBX_GET_BOTH_RANGE,
seek_key = MDBX_SET,
key_exact = MDBX_SET_KEY,
key_lowerbound = MDBX_SET_RANGE,
/* Doubtless cursor positioning at a specified key. */
key_lesser_than = MDBX_TO_KEY_LESSER_THAN,
key_lesser_or_equal = MDBX_TO_KEY_LESSER_OR_EQUAL,
key_equal = MDBX_TO_KEY_EQUAL,
key_greater_or_equal = MDBX_TO_KEY_GREATER_OR_EQUAL,
key_greater_than = MDBX_TO_KEY_GREATER_THAN,
/* Doubtless cursor positioning at a specified key-value pair
* for dupsort/multi-value hives. */
multi_exactkey_value_lesser_than = MDBX_TO_EXACT_KEY_VALUE_LESSER_THAN,
multi_exactkey_value_lesser_or_equal =
MDBX_TO_EXACT_KEY_VALUE_LESSER_OR_EQUAL,
multi_exactkey_value_equal = MDBX_TO_EXACT_KEY_VALUE_EQUAL,
multi_exactkey_value_greater_or_equal =
MDBX_TO_EXACT_KEY_VALUE_GREATER_OR_EQUAL,
multi_exactkey_value_greater = MDBX_TO_EXACT_KEY_VALUE_GREATER_THAN,
pair_lesser_than = MDBX_TO_PAIR_LESSER_THAN,
pair_lesser_or_equal = MDBX_TO_PAIR_LESSER_OR_EQUAL,
pair_equal = MDBX_TO_PAIR_EQUAL,
pair_exact = pair_equal,
pair_greater_or_equal = MDBX_TO_PAIR_GREATER_OR_EQUAL,
pair_greater_than = MDBX_TO_PAIR_GREATER_THAN,
batch_samelength = MDBX_GET_MULTIPLE,
batch_samelength_next = MDBX_NEXT_MULTIPLE,
batch_samelength_previous = MDBX_PREV_MULTIPLE
};
struct move_result : public pair_result {
inline move_result(const cursor &cursor, bool throw_notfound);
move_result(cursor &cursor, move_operation operation, bool throw_notfound)
: move_result(cursor, operation, slice::invalid(), slice::invalid(),
throw_notfound) {}
move_result(cursor &cursor, move_operation operation, const slice &key,
bool throw_notfound)
: move_result(cursor, operation, key, slice::invalid(),
throw_notfound) {}
inline move_result(cursor &cursor, move_operation operation,
const slice &key, const slice &value,
bool throw_notfound);
move_result(const move_result &) noexcept = default;
move_result &operator=(const move_result &) noexcept = default;
};
struct estimate_result : public pair {
ptrdiff_t approximate_quantity;
estimate_result(const cursor &cursor, move_operation operation)
: estimate_result(cursor, operation, slice::invalid(),
slice::invalid()) {}
estimate_result(const cursor &cursor, move_operation operation,
const slice &key)
: estimate_result(cursor, operation, key, slice::invalid()) {}
inline estimate_result(const cursor &cursor, move_operation operation,
const slice &key, const slice &value);
estimate_result(const estimate_result &) noexcept = default;
estimate_result &operator=(const estimate_result &) noexcept = default;
};
protected:
/* fake const, i.e. for some move/get operations */
inline bool move(move_operation operation, MDBX_val *key, MDBX_val *value,
bool throw_notfound) const;
inline ptrdiff_t estimate(move_operation operation, MDBX_val *key,
MDBX_val *value) const;
public:
template <typename CALLABLE_PREDICATE>
bool scan(CALLABLE_PREDICATE predicate, move_operation start = first,
move_operation turn = next) {
struct wrapper : public exception_thunk {
static int probe(void *context, MDBX_val *key, MDBX_val *value,
void *arg) noexcept {
auto thunk = static_cast<wrapper *>(context);
assert(thunk->is_clean());
auto &predicate = *static_cast<CALLABLE_PREDICATE *>(arg);
try {
return predicate(pair(*key, *value)) ? MDBX_RESULT_TRUE
: MDBX_RESULT_FALSE;
} catch (... /* capture any exception to rethrow it over C code */) {
thunk->capture();
return MDBX_RESULT_TRUE;
}
}
} thunk;
return error::boolean_or_throw(
::mdbx_cursor_scan(handle_, wrapper::probe, &thunk,
MDBX_cursor_op(start), MDBX_cursor_op(turn),
&predicate),
thunk);
}
template <typename CALLABLE_PREDICATE>
bool fullscan(CALLABLE_PREDICATE predicate, bool backward = false) {
return scan(std::move(predicate), backward ? last : first,
backward ? previous : next);
}
template <typename CALLABLE_PREDICATE>
bool scan_from(CALLABLE_PREDICATE predicate, slice &from,
move_operation start = key_greater_or_equal,
move_operation turn = next) {
struct wrapper : public exception_thunk {
static int probe(void *context, MDBX_val *key, MDBX_val *value,
void *arg) noexcept {
auto thunk = static_cast<wrapper *>(context);
assert(thunk->is_clean());
auto &predicate = *static_cast<CALLABLE_PREDICATE *>(arg);
try {
return predicate(pair(*key, *value)) ? MDBX_RESULT_TRUE
: MDBX_RESULT_FALSE;
} catch (... /* capture any exception to rethrow it over C code */) {
thunk->capture();
return MDBX_RESULT_TRUE;
}
}
} thunk;
return error::boolean_or_throw(
::mdbx_cursor_scan_from(handle_, wrapper::probe, &thunk,
MDBX_cursor_op(start), &from, nullptr,
MDBX_cursor_op(turn), &predicate),
thunk);
}
template <typename CALLABLE_PREDICATE>
bool scan_from(CALLABLE_PREDICATE predicate, pair &from,
move_operation start = pair_greater_or_equal,
move_operation turn = next) {
struct wrapper : public exception_thunk {
static int probe(void *context, MDBX_val *key, MDBX_val *value,
void *arg) noexcept {
auto thunk = static_cast<wrapper *>(context);
assert(thunk->is_clean());
auto &predicate = *static_cast<CALLABLE_PREDICATE *>(arg);
try {
return predicate(pair(*key, *value)) ? MDBX_RESULT_TRUE
: MDBX_RESULT_FALSE;
} catch (... /* capture any exception to rethrow it over C code */) {
thunk->capture();
return MDBX_RESULT_TRUE;
}
}
} thunk;
return error::boolean_or_throw(
::mdbx_cursor_scan_from(handle_, wrapper::probe, &thunk,
MDBX_cursor_op(start), &from.key, &from.value,
MDBX_cursor_op(turn), &predicate),
thunk);
}
move_result move(move_operation operation, bool throw_notfound) {
return move_result(*this, operation, throw_notfound);
}
move_result move(move_operation operation, const slice &key,
bool throw_notfound) {
return move_result(*this, operation, key, slice::invalid(), throw_notfound);
}
move_result move(move_operation operation, const slice &key,
const slice &value, bool throw_notfound) {
return move_result(*this, operation, key, value, throw_notfound);
}
bool move(move_operation operation, slice &key, slice &value,
bool throw_notfound) {
return move(operation, &key, &value, throw_notfound);
}
move_result to_first(bool throw_notfound = true) {
return move(first, throw_notfound);
}
move_result to_previous(bool throw_notfound = true) {
return move(previous, throw_notfound);
}
move_result to_previous_last_multi(bool throw_notfound = true) {
return move(multi_prevkey_lastvalue, throw_notfound);
}
move_result to_current_first_multi(bool throw_notfound = true) {
return move(multi_currentkey_firstvalue, throw_notfound);
}
move_result to_current_prev_multi(bool throw_notfound = true) {
return move(multi_currentkey_prevvalue, throw_notfound);
}
move_result current(bool throw_notfound = true) const {
return move_result(*this, throw_notfound);
}
move_result to_current_next_multi(bool throw_notfound = true) {
return move(multi_currentkey_nextvalue, throw_notfound);
}
move_result to_current_last_multi(bool throw_notfound = true) {
return move(multi_currentkey_lastvalue, throw_notfound);
}
move_result to_next_first_multi(bool throw_notfound = true) {
return move(multi_nextkey_firstvalue, throw_notfound);
}
move_result to_next(bool throw_notfound = true) {
return move(next, throw_notfound);
}
move_result to_last(bool throw_notfound = true) {
return move(last, throw_notfound);
}
move_result to_key_lesser_than(const slice &key, bool throw_notfound = true) {
return move(key_lesser_than, key, throw_notfound);
}
move_result to_key_lesser_or_equal(const slice &key,
bool throw_notfound = true) {
return move(key_lesser_or_equal, key, throw_notfound);
}
move_result to_key_equal(const slice &key, bool throw_notfound = true) {
return move(key_equal, key, throw_notfound);
}
move_result to_key_exact(const slice &key, bool throw_notfound = true) {
return move(key_exact, key, throw_notfound);
}
move_result to_key_greater_or_equal(const slice &key,
bool throw_notfound = true) {
return move(key_greater_or_equal, key, throw_notfound);
}
move_result to_key_greater_than(const slice &key,
bool throw_notfound = true) {
return move(key_greater_than, key, throw_notfound);
}
move_result to_exact_key_value_lesser_than(const slice &key,
const slice &value,
bool throw_notfound = true) {
return move(multi_exactkey_value_lesser_than, key, value, throw_notfound);
}
move_result to_exact_key_value_lesser_or_equal(const slice &key,
const slice &value,
bool throw_notfound = true) {
return move(multi_exactkey_value_lesser_or_equal, key, value,
throw_notfound);
}
move_result to_exact_key_value_equal(const slice &key, const slice &value,
bool throw_notfound = true) {
return move(multi_exactkey_value_equal, key, value, throw_notfound);
}
move_result to_exact_key_value_greater_or_equal(const slice &key,
const slice &value,
bool throw_notfound = true) {
return move(multi_exactkey_value_greater_or_equal, key, value,
throw_notfound);
}
move_result to_exact_key_value_greater_than(const slice &key,
const slice &value,
bool throw_notfound = true) {
return move(multi_exactkey_value_greater, key, value, throw_notfound);
}
move_result to_pair_lesser_than(const slice &key, const slice &value,
bool throw_notfound = true) {
return move(pair_lesser_than, key, value, throw_notfound);
}
move_result to_pair_lesser_or_equal(const slice &key, const slice &value,
bool throw_notfound = true) {
return move(pair_lesser_or_equal, key, value, throw_notfound);
}
move_result to_pair_equal(const slice &key, const slice &value,
bool throw_notfound = true) {
return move(pair_equal, key, value, throw_notfound);
}
move_result to_pair_exact(const slice &key, const slice &value,
bool throw_notfound = true) {
return move(pair_exact, key, value, throw_notfound);
}
move_result to_pair_greater_or_equal(const slice &key, const slice &value,
bool throw_notfound = true) {
return move(pair_greater_or_equal, key, value, throw_notfound);
}
move_result to_pair_greater_than(const slice &key, const slice &value,
bool throw_notfound = true) {
return move(pair_greater_than, key, value, throw_notfound);
}
inline bool seek(const slice &key);
inline move_result find(const slice &key, bool throw_notfound = true);
inline move_result lower_bound(const slice &key, bool throw_notfound = false);
inline move_result upper_bound(const slice &key, bool throw_notfound = false);
/// \brief Return count of duplicates for current key.
inline size_t count_multivalue() const;
inline move_result find_multivalue(const slice &key, const slice &value,
bool throw_notfound = true);
inline move_result lower_bound_multivalue(const slice &key,
const slice &value,
bool throw_notfound = false);
inline move_result upper_bound_multivalue(const slice &key,
const slice &value,
bool throw_notfound = false);
inline move_result get_multiple_samelength(const slice &key,
bool throw_notfound = true) {
return move(batch_samelength, key, throw_notfound);
}
inline move_result get_multiple_samelength(bool throw_notfound = false) {
return move(batch_samelength, throw_notfound);
}
inline move_result next_multiple_samelength(bool throw_notfound = false) {
return move(batch_samelength_next, throw_notfound);
}
inline move_result previous_multiple_samelength(bool throw_notfound = false) {
return move(batch_samelength_previous, throw_notfound);
}
inline bool eof() const;
inline bool on_first() const;
inline bool on_last() const;
inline bool on_first_multival() const;
inline bool on_last_multival() const;
inline estimate_result estimate(const slice &key, const slice &value) const;
inline estimate_result estimate(const slice &key) const;
inline estimate_result estimate(move_operation operation) const;
inline estimate_result estimate(move_operation operation, slice &key) const;
//----------------------------------------------------------------------------
/// \brief Renew/bind a cursor with a new transaction and previously used
/// key-value map handle.
inline void renew(const ::mdbx::txn &txn);
/// \brief Bind/renew a cursor with a new transaction and specified key-value
/// map handle.
inline void bind(const ::mdbx::txn &txn, ::mdbx::map_handle map_handle);
/// \brief Unbind cursor from a transaction.
inline void unbind();
/// \brief Returns the cursor's transaction.
inline ::mdbx::txn txn() const;
inline map_handle map() const;
inline operator ::mdbx::txn() const { return txn(); }
inline operator ::mdbx::map_handle() const { return map(); }
inline MDBX_error_t put(const slice &key, slice *value,
MDBX_put_flags_t flags) noexcept;
inline void put(const slice &key, slice value, put_mode mode);
inline void insert(const slice &key, slice value);
inline value_result try_insert(const slice &key, slice value);
inline slice insert_reserve(const slice &key, size_t value_length);
inline value_result try_insert_reserve(const slice &key, size_t value_length);
inline void upsert(const slice &key, const slice &value);
inline slice upsert_reserve(const slice &key, size_t value_length);
inline void update(const slice &key, const slice &value);
inline bool try_update(const slice &key, const slice &value);
inline slice update_reserve(const slice &key, size_t value_length);
inline value_result try_update_reserve(const slice &key, size_t value_length);
void put(const pair &kv, put_mode mode) {
return put(kv.key, kv.value, mode);
}
void insert(const pair &kv) { return insert(kv.key, kv.value); }
value_result try_insert(const pair &kv) {
return try_insert(kv.key, kv.value);
}
void upsert(const pair &kv) { return upsert(kv.key, kv.value); }
/// \brief Removes single key-value pair or all multi-values at the current
/// cursor position.
inline bool erase(bool whole_multivalue = false);
/// \brief Seeks and removes first value or whole multi-value of the given
/// key.
/// \return `True` if the key is found and a value(s) is removed.
inline bool erase(const slice &key, bool whole_multivalue = true);
/// \brief Seeks and removes the particular multi-value entry of the key.
/// \return `True` if the given key-value pair is found and removed.
inline bool erase(const slice &key, const slice &value);
};
/// \brief Managed cursor.
///
/// As other managed classes, `cursor_managed` destroys the represented
/// underlying object from the own class destructor, but disallows copying and
/// assignment for instances.
///
/// \copydetails MDBX_cursor
class LIBMDBX_API_TYPE cursor_managed : public cursor {
using inherited = cursor;
friend class txn;
/// delegated constructor for RAII
MDBX_CXX11_CONSTEXPR cursor_managed(MDBX_cursor *ptr) noexcept
: inherited(ptr) {}
public:
/// \brief Creates a new managed cursor with underlying object.
cursor_managed(void *your_context = nullptr)
: cursor_managed(::mdbx_cursor_create(your_context)) {
if (MDBX_UNLIKELY(!handle_))
MDBX_CXX20_UNLIKELY error::throw_exception(MDBX_ENOMEM);
}
/// \brief Explicitly closes the cursor.
void close();
cursor_managed(cursor_managed &&) = default;
cursor_managed &operator=(cursor_managed &&other) noexcept {
if (MDBX_UNLIKELY(handle_))
MDBX_CXX20_UNLIKELY {
assert(handle_ != other.handle_);
close();
}
inherited::operator=(std::move(other));
return *this;
}
cursor_managed(const cursor_managed &) = delete;
cursor_managed &operator=(const cursor_managed &) = delete;
~cursor_managed() noexcept { ::mdbx_cursor_close(handle_); }
};
//------------------------------------------------------------------------------
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &, const slice &);
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &, const pair &);
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &, const pair_result &);
template <class ALLOCATOR, typename CAPACITY_POLICY>
inline ::std::ostream &
operator<<(::std::ostream &out, const buffer<ALLOCATOR, CAPACITY_POLICY> &it) {
return (it.is_freestanding()
? out << "buf-" << it.headroom() << "." << it.tailroom()
: out << "ref-")
<< it.slice();
}
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &,
const env::geometry::size &);
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &, const env::geometry &);
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &,
const env::operate_parameters &);
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &, const env::mode &);
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &,
const env::durability &);
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &,
const env::reclaiming_options &);
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &,
const env::operate_options &);
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &,
const env_managed::create_parameters &);
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &,
const MDBX_log_level_t &);
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &,
const MDBX_debug_flags_t &);
LIBMDBX_API ::std::ostream &operator<<(::std::ostream &, const error &);
inline ::std::ostream &operator<<(::std::ostream &out,
const MDBX_error_t &errcode) {
return out << error(errcode);
}
//==============================================================================
//
// Inline body of the libmdbx C++ API
//
MDBX_CXX11_CONSTEXPR const version_info &get_version() noexcept {
return ::mdbx_version;
}
MDBX_CXX11_CONSTEXPR const build_info &get_build() noexcept {
return ::mdbx_build;
}
static MDBX_CXX17_CONSTEXPR size_t strlen(const char *c_str) noexcept {
#if defined(__cpp_lib_is_constant_evaluated) && \
__cpp_lib_is_constant_evaluated >= 201811L
if (::std::is_constant_evaluated()) {
for (size_t i = 0; c_str; ++i)
if (!c_str[i])
return i;
return 0;
}
#endif /* __cpp_lib_is_constant_evaluated >= 201811 */
#if defined(__cpp_lib_string_view) && __cpp_lib_string_view >= 201606L
return c_str ? ::std::string_view(c_str).length() : 0;
#else
return c_str ? ::std::strlen(c_str) : 0;
#endif
}
MDBX_MAYBE_UNUSED static MDBX_CXX20_CONSTEXPR void *
memcpy(void *dest, const void *src, size_t bytes) noexcept {
#if defined(__cpp_lib_is_constant_evaluated) && \
__cpp_lib_is_constant_evaluated >= 201811L
if (::std::is_constant_evaluated()) {
for (size_t i = 0; i < bytes; ++i)
static_cast<byte *>(dest)[i] = static_cast<const byte *>(src)[i];
return dest;
} else
#endif /* __cpp_lib_is_constant_evaluated >= 201811 */
return ::std::memcpy(dest, src, bytes);
}
static MDBX_CXX20_CONSTEXPR int memcmp(const void *a, const void *b,
size_t bytes) noexcept {
#if defined(__cpp_lib_is_constant_evaluated) && \
__cpp_lib_is_constant_evaluated >= 201811L
if (::std::is_constant_evaluated()) {
for (size_t i = 0; i < bytes; ++i) {
const int diff = int(static_cast<const byte *>(a)[i]) -
int(static_cast<const byte *>(b)[i]);
if (diff)
return diff;
}
return 0;
} else
#endif /* __cpp_lib_is_constant_evaluated >= 201811 */
return ::std::memcmp(a, b, bytes);
}
static MDBX_CXX14_CONSTEXPR size_t check_length(size_t bytes) {
if (MDBX_UNLIKELY(bytes > size_t(MDBX_MAXDATASIZE)))
MDBX_CXX20_UNLIKELY throw_max_length_exceeded();
return bytes;
}
static MDBX_CXX14_CONSTEXPR size_t check_length(size_t headroom,
size_t payload) {
return check_length(check_length(headroom) + check_length(payload));
}
MDBX_MAYBE_UNUSED static MDBX_CXX14_CONSTEXPR size_t
check_length(size_t headroom, size_t payload, size_t tailroom) {
return check_length(check_length(headroom, payload) + check_length(tailroom));
}
inline bool exception_thunk::is_clean() const noexcept { return !captured_; }
inline void exception_thunk::capture() noexcept {
assert(is_clean());
captured_ = ::std::current_exception();
}
inline void exception_thunk::rethrow_captured() const {
if (captured_)
MDBX_CXX20_UNLIKELY ::std::rethrow_exception(captured_);
}
//------------------------------------------------------------------------------
MDBX_CXX11_CONSTEXPR error::error(MDBX_error_t error_code) noexcept
: code_(error_code) {}
inline error &error::operator=(MDBX_error_t error_code) noexcept {
code_ = error_code;
return *this;
}
MDBX_CXX11_CONSTEXPR bool operator==(const error &a, const error &b) noexcept {
return a.code_ == b.code_;
}
MDBX_CXX11_CONSTEXPR bool operator!=(const error &a, const error &b) noexcept {
return !(a == b);
}
MDBX_CXX11_CONSTEXPR bool error::is_success() const noexcept {
return code_ == MDBX_SUCCESS;
}
MDBX_CXX11_CONSTEXPR bool error::is_result_true() const noexcept {
return code_ == MDBX_RESULT_FALSE;
}
MDBX_CXX11_CONSTEXPR bool error::is_result_false() const noexcept {
return code_ == MDBX_RESULT_TRUE;
}
MDBX_CXX11_CONSTEXPR bool error::is_failure() const noexcept {
return code_ != MDBX_SUCCESS && code_ != MDBX_RESULT_TRUE;
}
MDBX_CXX11_CONSTEXPR MDBX_error_t error::code() const noexcept { return code_; }
MDBX_CXX11_CONSTEXPR bool error::is_mdbx_error() const noexcept {
return (code() >= MDBX_FIRST_LMDB_ERRCODE &&
code() <= MDBX_LAST_LMDB_ERRCODE) ||
(code() >= MDBX_FIRST_ADDED_ERRCODE &&
code() <= MDBX_LAST_ADDED_ERRCODE);
}
inline void error::throw_exception(int error_code) {
const error trouble(static_cast<MDBX_error_t>(error_code));
trouble.throw_exception();
}
inline void error::throw_on_failure() const {
if (MDBX_UNLIKELY(is_failure()))
MDBX_CXX20_UNLIKELY throw_exception();
}
inline void error::success_or_throw() const {
if (MDBX_UNLIKELY(!is_success()))
MDBX_CXX20_UNLIKELY throw_exception();
}
inline void error::success_or_throw(const exception_thunk &thunk) const {
assert(thunk.is_clean() || code() != MDBX_SUCCESS);
if (MDBX_UNLIKELY(!is_success())) {
MDBX_CXX20_UNLIKELY if (MDBX_UNLIKELY(!thunk.is_clean()))
thunk.rethrow_captured();
else throw_exception();
}
}
inline void error::panic_on_failure(const char *context_where,
const char *func_who) const noexcept {
if (MDBX_UNLIKELY(is_failure()))
MDBX_CXX20_UNLIKELY panic(context_where, func_who);
}
inline void error::success_or_panic(const char *context_where,
const char *func_who) const noexcept {
if (MDBX_UNLIKELY(!is_success()))
MDBX_CXX20_UNLIKELY panic(context_where, func_who);
}
inline void error::throw_on_nullptr(const void *ptr, MDBX_error_t error_code) {
if (MDBX_UNLIKELY(ptr == nullptr))
MDBX_CXX20_UNLIKELY error(error_code).throw_exception();
}
inline void error::throw_on_failure(int error_code) {
error rc(static_cast<MDBX_error_t>(error_code));
rc.throw_on_failure();
}
inline void error::success_or_throw(MDBX_error_t error_code) {
error rc(error_code);
rc.success_or_throw();
}
inline bool error::boolean_or_throw(int error_code) {
switch (error_code) {
case MDBX_RESULT_FALSE:
return false;
case MDBX_RESULT_TRUE:
return true;
default:
MDBX_CXX20_UNLIKELY throw_exception(error_code);
}
}
inline void error::success_or_throw(int error_code,
const exception_thunk &thunk) {
error rc(static_cast<MDBX_error_t>(error_code));
rc.success_or_throw(thunk);
}
inline void error::panic_on_failure(int error_code, const char *context_where,
const char *func_who) noexcept {
error rc(static_cast<MDBX_error_t>(error_code));
rc.panic_on_failure(context_where, func_who);
}
inline void error::success_or_panic(int error_code, const char *context_where,
const char *func_who) noexcept {
error rc(static_cast<MDBX_error_t>(error_code));
rc.success_or_panic(context_where, func_who);
}
inline bool error::boolean_or_throw(int error_code,
const exception_thunk &thunk) {
if (MDBX_UNLIKELY(!thunk.is_clean()))
MDBX_CXX20_UNLIKELY thunk.rethrow_captured();
return boolean_or_throw(error_code);
}
//------------------------------------------------------------------------------
MDBX_CXX11_CONSTEXPR slice::slice() noexcept : ::MDBX_val({nullptr, 0}) {}
MDBX_CXX14_CONSTEXPR slice::slice(const void *ptr, size_t bytes)
: ::MDBX_val({const_cast<void *>(ptr), check_length(bytes)}) {}
MDBX_CXX14_CONSTEXPR slice::slice(const void *begin, const void *end)
: slice(begin, static_cast<const byte *>(end) -
static_cast<const byte *>(begin)) {}
MDBX_CXX17_CONSTEXPR slice::slice(const char *c_str)
: slice(c_str, ::mdbx::strlen(c_str)) {}
MDBX_CXX14_CONSTEXPR slice::slice(const MDBX_val &src)
: slice(src.iov_base, src.iov_len) {}
MDBX_CXX14_CONSTEXPR slice::slice(MDBX_val &&src) : slice(src) {
src.iov_base = nullptr;
}
MDBX_CXX14_CONSTEXPR slice::slice(slice &&src) noexcept : slice(src) {
src.invalidate();
}
inline slice &slice::assign(const void *ptr, size_t bytes) {
iov_base = const_cast<void *>(ptr);
iov_len = check_length(bytes);
return *this;
}
inline slice &slice::assign(const slice &src) noexcept {
iov_base = src.iov_base;
iov_len = src.iov_len;
return *this;
}
inline slice &slice::assign(const ::MDBX_val &src) {
return assign(src.iov_base, src.iov_len);
}
slice &slice::assign(slice &&src) noexcept {
assign(src);
src.invalidate();
return *this;
}
inline slice &slice::assign(::MDBX_val &&src) {
assign(src.iov_base, src.iov_len);
src.iov_base = nullptr;
return *this;
}
inline slice &slice::assign(const void *begin, const void *end) {
return assign(begin, static_cast<const byte *>(end) -
static_cast<const byte *>(begin));
}
inline slice &slice::assign(const char *c_str) {
return assign(c_str, ::mdbx::strlen(c_str));
}
inline slice &slice::operator=(slice &&src) noexcept {
return assign(::std::move(src));
}
inline slice &slice::operator=(::MDBX_val &&src) {
return assign(::std::move(src));
}
inline void slice::swap(slice &other) noexcept {
const auto temp = *this;
*this = other;
other = temp;
}
MDBX_CXX11_CONSTEXPR const ::mdbx::byte *slice::byte_ptr() const noexcept {
return static_cast<const byte *>(iov_base);
}
MDBX_CXX11_CONSTEXPR const ::mdbx::byte *slice::end_byte_ptr() const noexcept {
return byte_ptr() + length();
}
MDBX_CXX11_CONSTEXPR ::mdbx::byte *slice::byte_ptr() noexcept {
return static_cast<byte *>(iov_base);
}
MDBX_CXX11_CONSTEXPR ::mdbx::byte *slice::end_byte_ptr() noexcept {
return byte_ptr() + length();
}
MDBX_CXX11_CONSTEXPR const char *slice::char_ptr() const noexcept {
return static_cast<const char *>(iov_base);
}
MDBX_CXX11_CONSTEXPR const char *slice::end_char_ptr() const noexcept {
return char_ptr() + length();
}
MDBX_CXX11_CONSTEXPR char *slice::char_ptr() noexcept {
return static_cast<char *>(iov_base);
}
MDBX_CXX11_CONSTEXPR char *slice::end_char_ptr() noexcept {
return char_ptr() + length();
}
MDBX_CXX11_CONSTEXPR const void *slice::data() const noexcept {
return iov_base;
}
MDBX_CXX11_CONSTEXPR const void *slice::end() const noexcept {
return static_cast<const void *>(end_byte_ptr());
}
MDBX_CXX11_CONSTEXPR void *slice::data() noexcept { return iov_base; }
MDBX_CXX11_CONSTEXPR void *slice::end() noexcept {
return static_cast<void *>(end_byte_ptr());
}
MDBX_CXX11_CONSTEXPR size_t slice::length() const noexcept { return iov_len; }
MDBX_CXX14_CONSTEXPR slice &slice::set_length(size_t bytes) {
iov_len = check_length(bytes);
return *this;
}
MDBX_CXX14_CONSTEXPR slice &slice::set_end(const void *ptr) {
MDBX_CONSTEXPR_ASSERT(static_cast<const char *>(ptr) >= char_ptr());
return set_length(static_cast<const char *>(ptr) - char_ptr());
}
MDBX_CXX11_CONSTEXPR bool slice::empty() const noexcept {
return length() == 0;
}
MDBX_CXX11_CONSTEXPR bool slice::is_null() const noexcept {
return data() == nullptr;
}
MDBX_CXX11_CONSTEXPR size_t slice::size() const noexcept { return length(); }
MDBX_CXX11_CONSTEXPR slice::operator bool() const noexcept {
return !is_null();
}
MDBX_CXX14_CONSTEXPR void slice::invalidate() noexcept { iov_base = nullptr; }
MDBX_CXX14_CONSTEXPR void slice::clear() noexcept {
iov_base = nullptr;
iov_len = 0;
}
inline void slice::remove_prefix(size_t n) noexcept {
assert(n <= size());
iov_base = static_cast<byte *>(iov_base) + n;
iov_len -= n;
}
inline void slice::safe_remove_prefix(size_t n) {
if (MDBX_UNLIKELY(n > size()))
MDBX_CXX20_UNLIKELY throw_out_range();
remove_prefix(n);
}
inline void slice::remove_suffix(size_t n) noexcept {
assert(n <= size());
iov_len -= n;
}
inline void slice::safe_remove_suffix(size_t n) {
if (MDBX_UNLIKELY(n > size()))
MDBX_CXX20_UNLIKELY throw_out_range();
remove_suffix(n);
}
MDBX_CXX14_CONSTEXPR bool
slice::starts_with(const slice &prefix) const noexcept {
return length() >= prefix.length() &&
memcmp(data(), prefix.data(), prefix.length()) == 0;
}
MDBX_CXX14_CONSTEXPR bool slice::ends_with(const slice &suffix) const noexcept {
return length() >= suffix.length() &&
memcmp(byte_ptr() + length() - suffix.length(), suffix.data(),
suffix.length()) == 0;
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR size_t
slice::hash_value() const noexcept {
size_t h = length() * 3977471;
for (size_t i = 0; i < length(); ++i)
h = (h ^ static_cast<const uint8_t *>(data())[i]) * 1664525 + 1013904223;
return h ^ 3863194411 * (h >> 11);
}
MDBX_CXX11_CONSTEXPR byte slice::operator[](size_t n) const noexcept {
MDBX_CONSTEXPR_ASSERT(n < size());
return byte_ptr()[n];
}
MDBX_CXX11_CONSTEXPR byte slice::at(size_t n) const {
if (MDBX_UNLIKELY(n >= size()))
MDBX_CXX20_UNLIKELY throw_out_range();
return byte_ptr()[n];
}
MDBX_CXX14_CONSTEXPR slice slice::head(size_t n) const noexcept {
MDBX_CONSTEXPR_ASSERT(n <= size());
return slice(data(), n);
}
MDBX_CXX14_CONSTEXPR slice slice::tail(size_t n) const noexcept {
MDBX_CONSTEXPR_ASSERT(n <= size());
return slice(char_ptr() + size() - n, n);
}
MDBX_CXX14_CONSTEXPR slice slice::middle(size_t from, size_t n) const noexcept {
MDBX_CONSTEXPR_ASSERT(from + n <= size());
return slice(char_ptr() + from, n);
}
MDBX_CXX14_CONSTEXPR slice slice::safe_head(size_t n) const {
if (MDBX_UNLIKELY(n > size()))
MDBX_CXX20_UNLIKELY throw_out_range();
return head(n);
}
MDBX_CXX14_CONSTEXPR slice slice::safe_tail(size_t n) const {
if (MDBX_UNLIKELY(n > size()))
MDBX_CXX20_UNLIKELY throw_out_range();
return tail(n);
}
MDBX_CXX14_CONSTEXPR slice slice::safe_middle(size_t from, size_t n) const {
if (MDBX_UNLIKELY(n > max_length))
MDBX_CXX20_UNLIKELY throw_max_length_exceeded();
if (MDBX_UNLIKELY(from + n > size()))
MDBX_CXX20_UNLIKELY throw_out_range();
return middle(from, n);
}
MDBX_CXX14_CONSTEXPR intptr_t slice::compare_fast(const slice &a,
const slice &b) noexcept {
const intptr_t diff = intptr_t(a.length()) - intptr_t(b.length());
return diff ? diff
: MDBX_UNLIKELY(a.length() == 0 || a.data() == b.data())
? 0
: memcmp(a.data(), b.data(), a.length());
}
MDBX_CXX14_CONSTEXPR intptr_t
slice::compare_lexicographically(const slice &a, const slice &b) noexcept {
const size_t shortest = ::std::min(a.length(), b.length());
if (MDBX_LIKELY(shortest > 0))
MDBX_CXX20_LIKELY {
const intptr_t diff = memcmp(a.data(), b.data(), shortest);
if (MDBX_LIKELY(diff != 0))
MDBX_CXX20_LIKELY return diff;
}
return intptr_t(a.length()) - intptr_t(b.length());
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
operator==(const slice &a, const slice &b) noexcept {
return slice::compare_fast(a, b) == 0;
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
operator<(const slice &a, const slice &b) noexcept {
return slice::compare_lexicographically(a, b) < 0;
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
operator>(const slice &a, const slice &b) noexcept {
return slice::compare_lexicographically(a, b) > 0;
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
operator<=(const slice &a, const slice &b) noexcept {
return slice::compare_lexicographically(a, b) <= 0;
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
operator>=(const slice &a, const slice &b) noexcept {
return slice::compare_lexicographically(a, b) >= 0;
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
operator!=(const slice &a, const slice &b) noexcept {
return slice::compare_fast(a, b) != 0;
}
template <class ALLOCATOR>
inline string<ALLOCATOR>
slice::as_hex_string(bool uppercase, unsigned wrap_width,
const ALLOCATOR &allocator) const {
return to_hex(*this, uppercase, wrap_width).as_string<ALLOCATOR>(allocator);
}
template <class ALLOCATOR>
inline string<ALLOCATOR>
slice::as_base58_string(unsigned wrap_width, const ALLOCATOR &allocator) const {
return to_base58(*this, wrap_width).as_string<ALLOCATOR>(allocator);
}
template <class ALLOCATOR>
inline string<ALLOCATOR>
slice::as_base64_string(unsigned wrap_width, const ALLOCATOR &allocator) const {
return to_base64(*this, wrap_width).as_string<ALLOCATOR>(allocator);
}
template <class ALLOCATOR, class CAPACITY_POLICY>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
slice::encode_hex(bool uppercase, unsigned wrap_width,
const ALLOCATOR &allocator) const {
return to_hex(*this, uppercase, wrap_width)
.as_buffer<ALLOCATOR, CAPACITY_POLICY>(allocator);
}
template <class ALLOCATOR, class CAPACITY_POLICY>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
slice::encode_base58(unsigned wrap_width, const ALLOCATOR &allocator) const {
return to_base58(*this, wrap_width)
.as_buffer<ALLOCATOR, CAPACITY_POLICY>(allocator);
}
template <class ALLOCATOR, class CAPACITY_POLICY>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
slice::encode_base64(unsigned wrap_width, const ALLOCATOR &allocator) const {
return to_base64(*this, wrap_width)
.as_buffer<ALLOCATOR, CAPACITY_POLICY>(allocator);
}
template <class ALLOCATOR, class CAPACITY_POLICY>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
slice::hex_decode(bool ignore_spaces, const ALLOCATOR &allocator) const {
return from_hex(*this, ignore_spaces)
.as_buffer<ALLOCATOR, CAPACITY_POLICY>(allocator);
}
template <class ALLOCATOR, class CAPACITY_POLICY>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
slice::base58_decode(bool ignore_spaces, const ALLOCATOR &allocator) const {
return from_base58(*this, ignore_spaces)
.as_buffer<ALLOCATOR, CAPACITY_POLICY>(allocator);
}
template <class ALLOCATOR, class CAPACITY_POLICY>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
slice::base64_decode(bool ignore_spaces, const ALLOCATOR &allocator) const {
return from_base64(*this, ignore_spaces)
.as_buffer<ALLOCATOR, CAPACITY_POLICY>(allocator);
}
MDBX_NOTHROW_PURE_FUNCTION inline bool
slice::is_hex(bool ignore_spaces) const noexcept {
return !from_hex(*this, ignore_spaces).is_erroneous();
}
MDBX_NOTHROW_PURE_FUNCTION inline bool
slice::is_base58(bool ignore_spaces) const noexcept {
return !from_base58(*this, ignore_spaces).is_erroneous();
}
MDBX_NOTHROW_PURE_FUNCTION inline bool
slice::is_base64(bool ignore_spaces) const noexcept {
return !from_base64(*this, ignore_spaces).is_erroneous();
}
//------------------------------------------------------------------------------
MDBX_CXX14_CONSTEXPR intptr_t pair::compare_fast(const pair &a,
const pair &b) noexcept {
const auto diff = slice::compare_fast(a.key, b.key);
return diff ? diff : slice::compare_fast(a.value, b.value);
}
MDBX_CXX14_CONSTEXPR intptr_t
pair::compare_lexicographically(const pair &a, const pair &b) noexcept {
const auto diff = slice::compare_lexicographically(a.key, b.key);
return diff ? diff : slice::compare_lexicographically(a.value, b.value);
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
operator==(const pair &a, const pair &b) noexcept {
return a.key.length() == b.key.length() &&
a.value.length() == b.value.length() &&
memcmp(a.key.data(), b.key.data(), a.key.length()) == 0 &&
memcmp(a.value.data(), b.value.data(), a.value.length()) == 0;
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
operator<(const pair &a, const pair &b) noexcept {
return pair::compare_lexicographically(a, b) < 0;
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
operator>(const pair &a, const pair &b) noexcept {
return pair::compare_lexicographically(a, b) > 0;
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
operator<=(const pair &a, const pair &b) noexcept {
return pair::compare_lexicographically(a, b) <= 0;
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
operator>=(const pair &a, const pair &b) noexcept {
return pair::compare_lexicographically(a, b) >= 0;
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_CXX14_CONSTEXPR bool
operator!=(const pair &a, const pair &b) noexcept {
return a.key.length() != b.key.length() ||
a.value.length() != b.value.length() ||
memcmp(a.key.data(), b.key.data(), a.key.length()) != 0 ||
memcmp(a.value.data(), b.value.data(), a.value.length()) != 0;
}
//------------------------------------------------------------------------------
template <class ALLOCATOR, typename CAPACITY_POLICY>
inline buffer<ALLOCATOR, CAPACITY_POLICY>::buffer(
const txn &txn, const struct slice &src, const allocator_type &allocator)
: buffer(src, !txn.is_dirty(src.data()), allocator) {}
//------------------------------------------------------------------------------
MDBX_CXX11_CONSTEXPR map_handle::info::info(map_handle::flags flags,
map_handle::state state) noexcept
: flags(flags), state(state) {}
MDBX_CXX11_CONSTEXPR_ENUM mdbx::key_mode
map_handle::info::key_mode() const noexcept {
return ::mdbx::key_mode(flags & (MDBX_REVERSEKEY | MDBX_INTEGERKEY));
}
MDBX_CXX11_CONSTEXPR_ENUM mdbx::value_mode
map_handle::info::value_mode() const noexcept {
return ::mdbx::value_mode(flags & (MDBX_DUPSORT | MDBX_REVERSEDUP |
MDBX_DUPFIXED | MDBX_INTEGERDUP));
}
//------------------------------------------------------------------------------
MDBX_CXX11_CONSTEXPR env::env(MDBX_env *ptr) noexcept : handle_(ptr) {}
inline env &env::operator=(env &&other) noexcept {
handle_ = other.handle_;
other.handle_ = nullptr;
return *this;
}
inline env::env(env &&other) noexcept : handle_(other.handle_) {
other.handle_ = nullptr;
}
inline env::~env() noexcept {
#ifndef NDEBUG
handle_ = reinterpret_cast<MDBX_env *>(uintptr_t(0xDeadBeef));
#endif
}
MDBX_CXX14_CONSTEXPR env::operator bool() const noexcept {
return handle_ != nullptr;
}
MDBX_CXX14_CONSTEXPR env::operator const MDBX_env *() const { return handle_; }
MDBX_CXX14_CONSTEXPR env::operator MDBX_env *() { return handle_; }
MDBX_CXX11_CONSTEXPR bool operator==(const env &a, const env &b) noexcept {
return a.handle_ == b.handle_;
}
MDBX_CXX11_CONSTEXPR bool operator!=(const env &a, const env &b) noexcept {
return a.handle_ != b.handle_;
}
inline env::geometry &env::geometry::make_fixed(intptr_t size) noexcept {
size_lower = size_now = size_upper = size;
growth_step = shrink_threshold = 0;
return *this;
}
inline env::geometry &env::geometry::make_dynamic(intptr_t lower,
intptr_t upper) noexcept {
size_now = size_lower = lower;
size_upper = upper;
growth_step = shrink_threshold = default_value;
return *this;
}
inline env::reclaiming_options env::operate_parameters::reclaiming_from_flags(
MDBX_env_flags_t flags) noexcept {
return reclaiming_options(flags);
}
inline env::operate_options
env::operate_parameters::options_from_flags(MDBX_env_flags_t flags) noexcept {
return operate_options(flags);
}
inline size_t env::limits::pagesize_min() noexcept { return MDBX_MIN_PAGESIZE; }
inline size_t env::limits::pagesize_max() noexcept { return MDBX_MAX_PAGESIZE; }
inline size_t env::limits::dbsize_min(intptr_t pagesize) {
const intptr_t result = mdbx_limits_dbsize_min(pagesize);
if (result < 0)
MDBX_CXX20_UNLIKELY error::throw_exception(MDBX_EINVAL);
return static_cast<size_t>(result);
}
inline size_t env::limits::dbsize_max(intptr_t pagesize) {
const intptr_t result = mdbx_limits_dbsize_max(pagesize);
if (result < 0)
MDBX_CXX20_UNLIKELY error::throw_exception(MDBX_EINVAL);
return static_cast<size_t>(result);
}
inline size_t env::limits::key_min(MDBX_db_flags_t flags) noexcept {
return (flags & MDBX_INTEGERKEY) ? 4 : 0;
}
inline size_t env::limits::key_min(key_mode mode) noexcept {
return key_min(MDBX_db_flags_t(mode));
}
inline size_t env::limits::key_max(intptr_t pagesize, MDBX_db_flags_t flags) {
const intptr_t result = mdbx_limits_keysize_max(pagesize, flags);
if (result < 0)
MDBX_CXX20_UNLIKELY error::throw_exception(MDBX_EINVAL);
return static_cast<size_t>(result);
}
inline size_t env::limits::key_max(intptr_t pagesize, key_mode mode) {
return key_max(pagesize, MDBX_db_flags_t(mode));
}
inline size_t env::limits::key_max(const env &env, MDBX_db_flags_t flags) {
const intptr_t result = mdbx_env_get_maxkeysize_ex(env, flags);
if (result < 0)
MDBX_CXX20_UNLIKELY error::throw_exception(MDBX_EINVAL);
return static_cast<size_t>(result);
}
inline size_t env::limits::key_max(const env &env, key_mode mode) {
return key_max(env, MDBX_db_flags_t(mode));
}
inline size_t env::limits::value_min(MDBX_db_flags_t flags) noexcept {
return (flags & MDBX_INTEGERDUP) ? 4 : 0;
}
inline size_t env::limits::value_min(value_mode mode) noexcept {
return value_min(MDBX_db_flags_t(mode));
}
inline size_t env::limits::value_max(intptr_t pagesize, MDBX_db_flags_t flags) {
const intptr_t result = mdbx_limits_valsize_max(pagesize, flags);
if (result < 0)
MDBX_CXX20_UNLIKELY error::throw_exception(MDBX_EINVAL);
return static_cast<size_t>(result);
}
inline size_t env::limits::value_max(intptr_t pagesize, value_mode mode) {
return value_max(pagesize, MDBX_db_flags_t(mode));
}
inline size_t env::limits::value_max(const env &env, MDBX_db_flags_t flags) {
const intptr_t result = mdbx_env_get_maxvalsize_ex(env, flags);
if (result < 0)
MDBX_CXX20_UNLIKELY error::throw_exception(MDBX_EINVAL);
return static_cast<size_t>(result);
}
inline size_t env::limits::value_max(const env &env, value_mode mode) {
return value_max(env, MDBX_db_flags_t(mode));
}
inline size_t env::limits::pairsize4page_max(intptr_t pagesize,
MDBX_db_flags_t flags) {
const intptr_t result = mdbx_limits_pairsize4page_max(pagesize, flags);
if (result < 0)
MDBX_CXX20_UNLIKELY error::throw_exception(MDBX_EINVAL);
return static_cast<size_t>(result);
}
inline size_t env::limits::pairsize4page_max(intptr_t pagesize,
value_mode mode) {
return pairsize4page_max(pagesize, MDBX_db_flags_t(mode));
}
inline size_t env::limits::pairsize4page_max(const env &env,
MDBX_db_flags_t flags) {
const intptr_t result = mdbx_env_get_pairsize4page_max(env, flags);
if (result < 0)
MDBX_CXX20_UNLIKELY error::throw_exception(MDBX_EINVAL);
return static_cast<size_t>(result);
}
inline size_t env::limits::pairsize4page_max(const env &env, value_mode mode) {
return pairsize4page_max(env, MDBX_db_flags_t(mode));
}
inline size_t env::limits::valsize4page_max(intptr_t pagesize,
MDBX_db_flags_t flags) {
const intptr_t result = mdbx_limits_valsize4page_max(pagesize, flags);
if (result < 0)
MDBX_CXX20_UNLIKELY error::throw_exception(MDBX_EINVAL);
return static_cast<size_t>(result);
}
inline size_t env::limits::valsize4page_max(intptr_t pagesize,
value_mode mode) {
return valsize4page_max(pagesize, MDBX_db_flags_t(mode));
}
inline size_t env::limits::valsize4page_max(const env &env,
MDBX_db_flags_t flags) {
const intptr_t result = mdbx_env_get_valsize4page_max(env, flags);
if (result < 0)
MDBX_CXX20_UNLIKELY error::throw_exception(MDBX_EINVAL);
return static_cast<size_t>(result);
}
inline size_t env::limits::valsize4page_max(const env &env, value_mode mode) {
return valsize4page_max(env, MDBX_db_flags_t(mode));
}
inline size_t env::limits::transaction_size_max(intptr_t pagesize) {
const intptr_t result = mdbx_limits_txnsize_max(pagesize);
if (result < 0)
MDBX_CXX20_UNLIKELY error::throw_exception(MDBX_EINVAL);
return static_cast<size_t>(result);
}
inline size_t env::limits::max_map_handles(void) { return MDBX_MAX_DBI; }
inline env::operate_parameters env::get_operation_parameters() const {
const auto flags = get_flags();
return operate_parameters(max_maps(), max_readers(),
operate_parameters::mode_from_flags(flags),
operate_parameters::durability_from_flags(flags),
operate_parameters::reclaiming_from_flags(flags),
operate_parameters::options_from_flags(flags));
}
inline env::mode env::get_mode() const {
return operate_parameters::mode_from_flags(get_flags());
}
inline env::durability env::get_durability() const {
return env::operate_parameters::durability_from_flags(get_flags());
}
inline env::reclaiming_options env::get_reclaiming() const {
return env::operate_parameters::reclaiming_from_flags(get_flags());
}
inline env::operate_options env::get_options() const {
return env::operate_parameters::options_from_flags(get_flags());
}
inline env::stat env::get_stat() const {
env::stat r;
error::success_or_throw(::mdbx_env_stat_ex(handle_, nullptr, &r, sizeof(r)));
return r;
}
inline env::stat env::get_stat(const txn &txn) const {
env::stat r;
error::success_or_throw(::mdbx_env_stat_ex(handle_, txn, &r, sizeof(r)));
return r;
}
inline env::info env::get_info() const {
env::info r;
error::success_or_throw(::mdbx_env_info_ex(handle_, nullptr, &r, sizeof(r)));
return r;
}
inline env::info env::get_info(const txn &txn) const {
env::info r;
error::success_or_throw(::mdbx_env_info_ex(handle_, txn, &r, sizeof(r)));
return r;
}
inline filehandle env::get_filehandle() const {
filehandle fd;
error::success_or_throw(::mdbx_env_get_fd(handle_, &fd));
return fd;
}
inline MDBX_env_flags_t env::get_flags() const {
unsigned bits = 0;
error::success_or_throw(::mdbx_env_get_flags(handle_, &bits));
return MDBX_env_flags_t(bits);
}
inline unsigned env::max_readers() const {
unsigned r;
error::success_or_throw(::mdbx_env_get_maxreaders(handle_, &r));
return r;
}
inline unsigned env::max_maps() const {
unsigned r;
error::success_or_throw(::mdbx_env_get_maxdbs(handle_, &r));
return r;
}
inline void *env::get_context() const noexcept {
return mdbx_env_get_userctx(handle_);
}
inline env &env::set_context(void *ptr) {
error::success_or_throw(::mdbx_env_set_userctx(handle_, ptr));
return *this;
}
inline env &env::set_sync_threshold(size_t bytes) {
error::success_or_throw(::mdbx_env_set_syncbytes(handle_, bytes));
return *this;
}
inline size_t env::sync_threshold() const {
size_t bytes;
error::success_or_throw(::mdbx_env_get_syncbytes(handle_, &bytes));
return bytes;
}
inline env &env::set_sync_period__seconds_16dot16(unsigned seconds_16dot16) {
error::success_or_throw(::mdbx_env_set_syncperiod(handle_, seconds_16dot16));
return *this;
}
inline unsigned env::sync_period__seconds_16dot16() const {
unsigned seconds_16dot16;
error::success_or_throw(::mdbx_env_get_syncperiod(handle_, &seconds_16dot16));
return seconds_16dot16;
}
inline env &env::set_sync_period__seconds_double(double seconds) {
return set_sync_period__seconds_16dot16(unsigned(seconds * 65536));
}
inline double env::sync_period__seconds_double() const {
return sync_period__seconds_16dot16() / 65536.0;
}
#if __cplusplus >= 201103L
inline env &env::set_sync_period(const duration &period) {
return set_sync_period__seconds_16dot16(period.count());
}
inline duration env::sync_period() const {
return duration(sync_period__seconds_16dot16());
}
#endif
inline env &env::set_extra_option(enum env::extra_runtime_option option,
uint64_t value) {
error::success_or_throw(
::mdbx_env_set_option(handle_, ::MDBX_option_t(option), value));
return *this;
}
inline uint64_t env::extra_option(enum env::extra_runtime_option option) const {
uint64_t value;
error::success_or_throw(
::mdbx_env_get_option(handle_, ::MDBX_option_t(option), &value));
return value;
}
inline env &env::alter_flags(MDBX_env_flags_t flags, bool on_off) {
error::success_or_throw(::mdbx_env_set_flags(handle_, flags, on_off));
return *this;
}
inline env &env::set_geometry(const geometry &geo) {
error::success_or_throw(::mdbx_env_set_geometry(
handle_, geo.size_lower, geo.size_now, geo.size_upper, geo.growth_step,
geo.shrink_threshold, geo.pagesize));
return *this;
}
inline bool env::sync_to_disk(bool force, bool nonblock) {
const int err = ::mdbx_env_sync_ex(handle_, force, nonblock);
switch (err) {
case MDBX_SUCCESS /* flush done */:
case MDBX_RESULT_TRUE /* no data pending for flush to disk */:
return true;
case MDBX_BUSY /* the environment is used by other thread */:
return false;
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline void env::close_map(const map_handle &handle) {
error::success_or_throw(::mdbx_dbi_close(*this, handle.dbi));
}
MDBX_CXX11_CONSTEXPR
env::reader_info::reader_info(int slot, mdbx_pid_t pid, mdbx_tid_t thread,
uint64_t txnid, uint64_t lag, size_t used,
size_t retained) noexcept
: slot(slot), pid(pid), thread(thread), transaction_id(txnid),
transaction_lag(lag), bytes_used(used), bytes_retained(retained) {}
template <typename VISITOR>
inline int env::enumerate_readers(VISITOR &visitor) {
struct reader_visitor_thunk : public exception_thunk {
VISITOR &visitor_;
static int cb(void *ctx, int number, int slot, mdbx_pid_t pid,
mdbx_tid_t thread, uint64_t txnid, uint64_t lag, size_t used,
size_t retained) noexcept {
reader_visitor_thunk *thunk = static_cast<reader_visitor_thunk *>(ctx);
assert(thunk->is_clean());
try {
const reader_info info(slot, pid, thread, txnid, lag, used, retained);
return loop_control(thunk->visitor_(info, number));
} catch (... /* capture any exception to rethrow it over C code */) {
thunk->capture();
return loop_control::exit_loop;
}
}
MDBX_CXX11_CONSTEXPR reader_visitor_thunk(VISITOR &visitor) noexcept
: visitor_(visitor) {}
};
reader_visitor_thunk thunk(visitor);
const auto rc = ::mdbx_reader_list(*this, thunk.cb, &thunk);
thunk.rethrow_captured();
return rc;
}
inline unsigned env::check_readers() {
int dead_count;
error::throw_on_failure(::mdbx_reader_check(*this, &dead_count));
assert(dead_count >= 0);
return static_cast<unsigned>(dead_count);
}
inline env &env::set_HandleSlowReaders(MDBX_hsr_func *cb) {
error::success_or_throw(::mdbx_env_set_hsr(handle_, cb));
return *this;
}
inline MDBX_hsr_func *env::get_HandleSlowReaders() const noexcept {
return ::mdbx_env_get_hsr(handle_);
}
inline txn_managed env::start_read() const {
::MDBX_txn *ptr;
error::success_or_throw(
::mdbx_txn_begin(handle_, nullptr, MDBX_TXN_RDONLY, &ptr));
assert(ptr != nullptr);
return txn_managed(ptr);
}
inline txn_managed env::prepare_read() const {
::MDBX_txn *ptr;
error::success_or_throw(
::mdbx_txn_begin(handle_, nullptr, MDBX_TXN_RDONLY_PREPARE, &ptr));
assert(ptr != nullptr);
return txn_managed(ptr);
}
inline txn_managed env::start_write(bool dont_wait) {
::MDBX_txn *ptr;
error::success_or_throw(::mdbx_txn_begin(
handle_, nullptr, dont_wait ? MDBX_TXN_TRY : MDBX_TXN_READWRITE, &ptr));
assert(ptr != nullptr);
return txn_managed(ptr);
}
inline txn_managed env::start_write(txn &parent) {
::MDBX_txn *ptr;
error::success_or_throw(
::mdbx_txn_begin(handle_, parent, MDBX_TXN_READWRITE, &ptr));
assert(ptr != nullptr);
return txn_managed(ptr);
}
inline txn_managed env::try_start_write() { return start_write(true); }
//------------------------------------------------------------------------------
MDBX_CXX11_CONSTEXPR txn::txn(MDBX_txn *ptr) noexcept : handle_(ptr) {}
inline txn &txn::operator=(txn &&other) noexcept {
handle_ = other.handle_;
other.handle_ = nullptr;
return *this;
}
inline txn::txn(txn &&other) noexcept : handle_(other.handle_) {
other.handle_ = nullptr;
}
inline txn::~txn() noexcept {
#ifndef NDEBUG
handle_ = reinterpret_cast<MDBX_txn *>(uintptr_t(0xDeadBeef));
#endif
}
MDBX_CXX14_CONSTEXPR txn::operator bool() const noexcept {
return handle_ != nullptr;
}
MDBX_CXX14_CONSTEXPR txn::operator const MDBX_txn *() const { return handle_; }
MDBX_CXX14_CONSTEXPR txn::operator MDBX_txn *() { return handle_; }
MDBX_CXX11_CONSTEXPR bool operator==(const txn &a, const txn &b) noexcept {
return a.handle_ == b.handle_;
}
MDBX_CXX11_CONSTEXPR bool operator!=(const txn &a, const txn &b) noexcept {
return a.handle_ != b.handle_;
}
inline void *txn::get_context() const noexcept {
return mdbx_txn_get_userctx(handle_);
}
inline txn &txn::set_context(void *ptr) {
error::success_or_throw(::mdbx_txn_set_userctx(handle_, ptr));
return *this;
}
inline bool txn::is_dirty(const void *ptr) const {
int err = ::mdbx_is_dirty(handle_, ptr);
switch (err) {
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
case MDBX_RESULT_TRUE:
return true;
case MDBX_RESULT_FALSE:
return false;
}
}
inline ::mdbx::env txn::env() const noexcept { return ::mdbx_txn_env(handle_); }
inline MDBX_txn_flags_t txn::flags() const {
const int bits = mdbx_txn_flags(handle_);
error::throw_on_failure((bits != -1) ? MDBX_SUCCESS : MDBX_BAD_TXN);
return static_cast<MDBX_txn_flags_t>(bits);
}
inline uint64_t txn::id() const {
const uint64_t txnid = mdbx_txn_id(handle_);
error::throw_on_failure(txnid ? MDBX_SUCCESS : MDBX_BAD_TXN);
return txnid;
}
inline void txn::reset_reading() {
error::success_or_throw(::mdbx_txn_reset(handle_));
}
inline void txn::renew_reading() {
error::success_or_throw(::mdbx_txn_renew(handle_));
}
inline void txn::park_reading(bool autounpark) {
error::success_or_throw(::mdbx_txn_park(handle_, autounpark));
}
inline bool txn::unpark_reading(bool restart_if_ousted) {
return error::boolean_or_throw(::mdbx_txn_unpark(handle_, restart_if_ousted));
}
inline txn::info txn::get_info(bool scan_reader_lock_table) const {
txn::info r;
error::success_or_throw(::mdbx_txn_info(handle_, &r, scan_reader_lock_table));
return r;
}
inline cursor_managed txn::open_cursor(map_handle map) const {
MDBX_cursor *ptr;
error::success_or_throw(::mdbx_cursor_open(handle_, map.dbi, &ptr));
return cursor_managed(ptr);
}
inline size_t txn::release_all_cursors(bool unbind) const {
int err = ::mdbx_txn_release_all_cursors(handle_, unbind);
if (MDBX_UNLIKELY(err < 0))
MDBX_CXX20_UNLIKELY error::throw_exception(err);
return size_t(err);
}
inline ::mdbx::map_handle
txn::open_map(const ::mdbx::slice &name, const ::mdbx::key_mode key_mode,
const ::mdbx::value_mode value_mode) const {
::mdbx::map_handle map;
error::success_or_throw(::mdbx_dbi_open2(
handle_, name, MDBX_db_flags_t(key_mode) | MDBX_db_flags_t(value_mode),
&map.dbi));
assert(map.dbi != 0);
return map;
}
inline ::mdbx::map_handle
txn::open_map(const char *name, const ::mdbx::key_mode key_mode,
const ::mdbx::value_mode value_mode) const {
::mdbx::map_handle map;
error::success_or_throw(::mdbx_dbi_open(
handle_, name, MDBX_db_flags_t(key_mode) | MDBX_db_flags_t(value_mode),
&map.dbi));
assert(map.dbi != 0);
return map;
}
inline ::mdbx::map_handle
txn::open_map_accede(const ::mdbx::slice &name) const {
::mdbx::map_handle map;
error::success_or_throw(
::mdbx_dbi_open2(handle_, name, MDBX_DB_ACCEDE, &map.dbi));
assert(map.dbi != 0);
return map;
}
inline ::mdbx::map_handle txn::open_map_accede(const char *name) const {
::mdbx::map_handle map;
error::success_or_throw(
::mdbx_dbi_open(handle_, name, MDBX_DB_ACCEDE, &map.dbi));
assert(map.dbi != 0);
return map;
}
inline ::mdbx::map_handle txn::create_map(const ::mdbx::slice &name,
const ::mdbx::key_mode key_mode,
const ::mdbx::value_mode value_mode) {
::mdbx::map_handle map;
error::success_or_throw(::mdbx_dbi_open2(
handle_, name,
MDBX_CREATE | MDBX_db_flags_t(key_mode) | MDBX_db_flags_t(value_mode),
&map.dbi));
assert(map.dbi != 0);
return map;
}
inline ::mdbx::map_handle txn::create_map(const char *name,
const ::mdbx::key_mode key_mode,
const ::mdbx::value_mode value_mode) {
::mdbx::map_handle map;
error::success_or_throw(::mdbx_dbi_open(
handle_, name,
MDBX_CREATE | MDBX_db_flags_t(key_mode) | MDBX_db_flags_t(value_mode),
&map.dbi));
assert(map.dbi != 0);
return map;
}
inline void txn::drop_map(map_handle map) {
error::success_or_throw(::mdbx_drop(handle_, map.dbi, true));
}
inline void txn::clear_map(map_handle map) {
error::success_or_throw(::mdbx_drop(handle_, map.dbi, false));
}
inline void txn::rename_map(map_handle map, const char *new_name) {
error::success_or_throw(::mdbx_dbi_rename(handle_, map, new_name));
}
inline void txn::rename_map(map_handle map, const ::mdbx::slice &new_name) {
error::success_or_throw(::mdbx_dbi_rename2(handle_, map, new_name));
}
inline ::mdbx::map_handle
txn::open_map(const ::std::string &name, const ::mdbx::key_mode key_mode,
const ::mdbx::value_mode value_mode) const {
return open_map(::mdbx::slice(name), key_mode, value_mode);
}
inline ::mdbx::map_handle
txn::open_map_accede(const ::std::string &name) const {
return open_map_accede(::mdbx::slice(name));
}
inline ::mdbx::map_handle txn::create_map(const ::std::string &name,
const ::mdbx::key_mode key_mode,
const ::mdbx::value_mode value_mode) {
return create_map(::mdbx::slice(name), key_mode, value_mode);
}
inline bool txn::drop_map(const ::std::string &name, bool throw_if_absent) {
return drop_map(::mdbx::slice(name), throw_if_absent);
}
inline bool txn::clear_map(const ::std::string &name, bool throw_if_absent) {
return clear_map(::mdbx::slice(name), throw_if_absent);
}
inline void txn::rename_map(map_handle map, const ::std::string &new_name) {
return rename_map(map, ::mdbx::slice(new_name));
}
inline txn::map_stat txn::get_map_stat(map_handle map) const {
txn::map_stat r;
error::success_or_throw(::mdbx_dbi_stat(handle_, map.dbi, &r, sizeof(r)));
return r;
}
inline uint32_t txn::get_tree_deepmask(map_handle map) const {
uint32_t r;
error::success_or_throw(::mdbx_dbi_dupsort_depthmask(handle_, map.dbi, &r));
return r;
}
inline map_handle::info txn::get_handle_info(map_handle map) const {
unsigned flags, state;
error::success_or_throw(
::mdbx_dbi_flags_ex(handle_, map.dbi, &flags, &state));
return map_handle::info(MDBX_db_flags_t(flags), MDBX_dbi_state_t(state));
}
inline txn &txn::put_canary(const txn::canary &canary) {
error::success_or_throw(::mdbx_canary_put(handle_, &canary));
return *this;
}
inline txn::canary txn::get_canary() const {
txn::canary r;
error::success_or_throw(::mdbx_canary_get(handle_, &r));
return r;
}
inline uint64_t txn::sequence(map_handle map) const {
uint64_t result;
error::success_or_throw(::mdbx_dbi_sequence(handle_, map.dbi, &result, 0));
return result;
}
inline uint64_t txn::sequence(map_handle map, uint64_t increment) {
uint64_t result;
error::success_or_throw(
::mdbx_dbi_sequence(handle_, map.dbi, &result, increment));
return result;
}
inline int txn::compare_keys(map_handle map, const slice &a,
const slice &b) const noexcept {
return ::mdbx_cmp(handle_, map.dbi, &a, &b);
}
inline int txn::compare_values(map_handle map, const slice &a,
const slice &b) const noexcept {
return ::mdbx_dcmp(handle_, map.dbi, &a, &b);
}
inline int txn::compare_keys(map_handle map, const pair &a,
const pair &b) const noexcept {
return compare_keys(map, a.key, b.key);
}
inline int txn::compare_values(map_handle map, const pair &a,
const pair &b) const noexcept {
return compare_values(map, a.value, b.value);
}
inline slice txn::get(map_handle map, const slice &key) const {
slice result;
error::success_or_throw(::mdbx_get(handle_, map.dbi, &key, &result));
return result;
}
inline slice txn::get(map_handle map, slice key, size_t &values_count) const {
slice result;
error::success_or_throw(
::mdbx_get_ex(handle_, map.dbi, &key, &result, &values_count));
return result;
}
inline slice txn::get(map_handle map, const slice &key,
const slice &value_at_absence) const {
slice result;
const int err = ::mdbx_get(handle_, map.dbi, &key, &result);
switch (err) {
case MDBX_SUCCESS:
return result;
case MDBX_NOTFOUND:
return value_at_absence;
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline slice txn::get(map_handle map, slice key, size_t &values_count,
const slice &value_at_absence) const {
slice result;
const int err = ::mdbx_get_ex(handle_, map.dbi, &key, &result, &values_count);
switch (err) {
case MDBX_SUCCESS:
return result;
case MDBX_NOTFOUND:
return value_at_absence;
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline pair_result txn::get_equal_or_great(map_handle map,
const slice &key) const {
pair result(key, slice());
bool exact = !error::boolean_or_throw(
::mdbx_get_equal_or_great(handle_, map.dbi, &result.key, &result.value));
return pair_result(result.key, result.value, exact);
}
inline pair_result
txn::get_equal_or_great(map_handle map, const slice &key,
const slice &value_at_absence) const {
pair result{key, slice()};
const int err =
::mdbx_get_equal_or_great(handle_, map.dbi, &result.key, &result.value);
switch (err) {
case MDBX_SUCCESS:
return pair_result{result.key, result.value, true};
case MDBX_RESULT_TRUE:
return pair_result{result.key, result.value, false};
case MDBX_NOTFOUND:
return pair_result{key, value_at_absence, false};
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline MDBX_error_t txn::put(map_handle map, const slice &key, slice *value,
MDBX_put_flags_t flags) noexcept {
return MDBX_error_t(::mdbx_put(handle_, map.dbi, &key, value, flags));
}
inline void txn::put(map_handle map, const slice &key, slice value,
put_mode mode) {
error::success_or_throw(put(map, key, &value, MDBX_put_flags_t(mode)));
}
inline void txn::insert(map_handle map, const slice &key, slice value) {
error::success_or_throw(
put(map, key, &value /* takes the present value in case MDBX_KEYEXIST */,
MDBX_put_flags_t(put_mode::insert_unique)));
}
inline value_result txn::try_insert(map_handle map, const slice &key,
slice value) {
const int err =
put(map, key, &value /* takes the present value in case MDBX_KEYEXIST */,
MDBX_put_flags_t(put_mode::insert_unique));
switch (err) {
case MDBX_SUCCESS:
return value_result{slice(), true};
case MDBX_KEYEXIST:
return value_result{value, false};
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline slice txn::insert_reserve(map_handle map, const slice &key,
size_t value_length) {
slice result(nullptr, value_length);
error::success_or_throw(
put(map, key, &result /* takes the present value in case MDBX_KEYEXIST */,
MDBX_put_flags_t(put_mode::insert_unique) | MDBX_RESERVE));
return result;
}
inline value_result txn::try_insert_reserve(map_handle map, const slice &key,
size_t value_length) {
slice result(nullptr, value_length);
const int err =
put(map, key, &result /* takes the present value in case MDBX_KEYEXIST */,
MDBX_put_flags_t(put_mode::insert_unique) | MDBX_RESERVE);
switch (err) {
case MDBX_SUCCESS:
return value_result{result, true};
case MDBX_KEYEXIST:
return value_result{result, false};
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline void txn::upsert(map_handle map, const slice &key, const slice &value) {
error::success_or_throw(put(map, key, const_cast<slice *>(&value),
MDBX_put_flags_t(put_mode::upsert)));
}
inline slice txn::upsert_reserve(map_handle map, const slice &key,
size_t value_length) {
slice result(nullptr, value_length);
error::success_or_throw(put(
map, key, &result, MDBX_put_flags_t(put_mode::upsert) | MDBX_RESERVE));
return result;
}
inline void txn::update(map_handle map, const slice &key, const slice &value) {
error::success_or_throw(put(map, key, const_cast<slice *>(&value),
MDBX_put_flags_t(put_mode::update)));
}
inline bool txn::try_update(map_handle map, const slice &key,
const slice &value) {
const int err = put(map, key, const_cast<slice *>(&value),
MDBX_put_flags_t(put_mode::update));
switch (err) {
case MDBX_SUCCESS:
return true;
case MDBX_NOTFOUND:
return false;
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline slice txn::update_reserve(map_handle map, const slice &key,
size_t value_length) {
slice result(nullptr, value_length);
error::success_or_throw(put(
map, key, &result, MDBX_put_flags_t(put_mode::update) | MDBX_RESERVE));
return result;
}
inline value_result txn::try_update_reserve(map_handle map, const slice &key,
size_t value_length) {
slice result(nullptr, value_length);
const int err =
put(map, key, &result, MDBX_put_flags_t(put_mode::update) | MDBX_RESERVE);
switch (err) {
case MDBX_SUCCESS:
return value_result{result, true};
case MDBX_NOTFOUND:
return value_result{slice(), false};
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline bool txn::erase(map_handle map, const slice &key) {
const int err = ::mdbx_del(handle_, map.dbi, &key, nullptr);
switch (err) {
case MDBX_SUCCESS:
return true;
case MDBX_NOTFOUND:
return false;
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline bool txn::erase(map_handle map, const slice &key, const slice &value) {
const int err = ::mdbx_del(handle_, map.dbi, &key, &value);
switch (err) {
case MDBX_SUCCESS:
return true;
case MDBX_NOTFOUND:
return false;
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline void txn::replace(map_handle map, const slice &key, slice old_value,
const slice &new_value) {
error::success_or_throw(::mdbx_replace_ex(
handle_, map.dbi, &key, const_cast<slice *>(&new_value), &old_value,
MDBX_CURRENT | MDBX_NOOVERWRITE, nullptr, nullptr));
}
template <class ALLOCATOR, typename CAPACITY_POLICY>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
txn::extract(map_handle map, const slice &key,
const typename buffer<ALLOCATOR, CAPACITY_POLICY>::allocator_type
&allocator) {
typename buffer<ALLOCATOR, CAPACITY_POLICY>::data_preserver result(allocator);
error::success_or_throw(::mdbx_replace_ex(handle_, map.dbi, &key, nullptr,
&result.slice_, MDBX_CURRENT,
result, &result),
result);
return result;
}
template <class ALLOCATOR, typename CAPACITY_POLICY>
inline buffer<ALLOCATOR, CAPACITY_POLICY>
txn::replace(map_handle map, const slice &key, const slice &new_value,
const typename buffer<ALLOCATOR, CAPACITY_POLICY>::allocator_type
&allocator) {
typename buffer<ALLOCATOR, CAPACITY_POLICY>::data_preserver result(allocator);
error::success_or_throw(
::mdbx_replace_ex(handle_, map.dbi, &key, const_cast<slice *>(&new_value),
&result.slice_, MDBX_CURRENT, result, &result),
result);
return result;
}
template <class ALLOCATOR, typename CAPACITY_POLICY>
inline buffer<ALLOCATOR, CAPACITY_POLICY> txn::replace_reserve(
map_handle map, const slice &key, slice &new_value,
const typename buffer<ALLOCATOR, CAPACITY_POLICY>::allocator_type
&allocator) {
typename buffer<ALLOCATOR, CAPACITY_POLICY>::data_preserver result(allocator);
error::success_or_throw(
::mdbx_replace_ex(handle_, map.dbi, &key, &new_value, &result.slice_,
MDBX_CURRENT | MDBX_RESERVE, result, &result),
result);
return result;
}
inline void txn::append(map_handle map, const slice &key, const slice &value,
bool multivalue_order_preserved) {
error::success_or_throw(::mdbx_put(
handle_, map.dbi, const_cast<slice *>(&key), const_cast<slice *>(&value),
multivalue_order_preserved ? (MDBX_APPEND | MDBX_APPENDDUP)
: MDBX_APPEND));
}
inline size_t txn::put_multiple_samelength(map_handle map, const slice &key,
const size_t value_length,
const void *values_array,
size_t values_count, put_mode mode,
bool allow_partial) {
MDBX_val args[2] = {{const_cast<void *>(values_array), value_length},
{nullptr, values_count}};
const int err = ::mdbx_put(handle_, map.dbi, const_cast<slice *>(&key), args,
MDBX_put_flags_t(mode) | MDBX_MULTIPLE);
switch (err) {
case MDBX_SUCCESS:
MDBX_CXX20_LIKELY break;
case MDBX_KEYEXIST:
if (allow_partial)
break;
mdbx_txn_break(handle_);
MDBX_CXX17_FALLTHROUGH /* fallthrough */;
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
return args[1].iov_len /* done item count */;
}
inline ptrdiff_t txn::estimate(map_handle map, const pair &from,
const pair &to) const {
ptrdiff_t result;
error::success_or_throw(mdbx_estimate_range(
handle_, map.dbi, &from.key, &from.value, &to.key, &to.value, &result));
return result;
}
inline ptrdiff_t txn::estimate(map_handle map, const slice &from,
const slice &to) const {
ptrdiff_t result;
error::success_or_throw(mdbx_estimate_range(handle_, map.dbi, &from, nullptr,
&to, nullptr, &result));
return result;
}
inline ptrdiff_t txn::estimate_from_first(map_handle map,
const slice &to) const {
ptrdiff_t result;
error::success_or_throw(mdbx_estimate_range(handle_, map.dbi, nullptr,
nullptr, &to, nullptr, &result));
return result;
}
inline ptrdiff_t txn::estimate_to_last(map_handle map,
const slice &from) const {
ptrdiff_t result;
error::success_or_throw(mdbx_estimate_range(handle_, map.dbi, &from, nullptr,
nullptr, nullptr, &result));
return result;
}
//------------------------------------------------------------------------------
MDBX_CXX11_CONSTEXPR cursor::cursor(MDBX_cursor *ptr) noexcept : handle_(ptr) {}
inline cursor_managed cursor::clone(void *your_context) const {
cursor_managed clone(your_context);
error::success_or_throw(::mdbx_cursor_copy(handle_, clone.handle_));
return clone;
}
inline void *cursor::get_context() const noexcept {
return mdbx_cursor_get_userctx(handle_);
}
inline cursor &cursor::set_context(void *ptr) {
error::success_or_throw(::mdbx_cursor_set_userctx(handle_, ptr));
return *this;
}
inline cursor &cursor::operator=(cursor &&other) noexcept {
handle_ = other.handle_;
other.handle_ = nullptr;
return *this;
}
inline cursor::cursor(cursor &&other) noexcept : handle_(other.handle_) {
other.handle_ = nullptr;
}
inline cursor::~cursor() noexcept {
#ifndef NDEBUG
handle_ = reinterpret_cast<MDBX_cursor *>(uintptr_t(0xDeadBeef));
#endif
}
MDBX_CXX14_CONSTEXPR cursor::operator bool() const noexcept {
return handle_ != nullptr;
}
MDBX_CXX14_CONSTEXPR cursor::operator const MDBX_cursor *() const {
return handle_;
}
MDBX_CXX14_CONSTEXPR cursor::operator MDBX_cursor *() { return handle_; }
MDBX_CXX11_CONSTEXPR bool operator==(const cursor &a,
const cursor &b) noexcept {
return a.handle_ == b.handle_;
}
MDBX_CXX11_CONSTEXPR bool operator!=(const cursor &a,
const cursor &b) noexcept {
return a.handle_ != b.handle_;
}
inline int compare_position_nothrow(const cursor &left, const cursor &right,
bool ignore_nested = false) noexcept {
return mdbx_cursor_compare(left.handle_, right.handle_, ignore_nested);
}
inline int compare_position(const cursor &left, const cursor &right,
bool ignore_nested = false) {
const auto diff = compare_position_nothrow(left, right, ignore_nested);
assert(compare_position_nothrow(right, left, ignore_nested) == -diff);
if (MDBX_LIKELY(int16_t(diff) == diff))
MDBX_CXX20_LIKELY return int(diff);
else
throw_incomparable_cursors();
}
inline cursor::move_result::move_result(const cursor &cursor,
bool throw_notfound)
: pair_result() {
done = cursor.move(get_current, &this->key, &this->value, throw_notfound);
}
inline cursor::move_result::move_result(cursor &cursor,
move_operation operation,
const slice &key, const slice &value,
bool throw_notfound)
: pair_result(key, value, false) {
this->done = cursor.move(operation, &this->key, &this->value, throw_notfound);
}
inline bool cursor::move(move_operation operation, MDBX_val *key,
MDBX_val *value, bool throw_notfound) const {
const int err =
::mdbx_cursor_get(handle_, key, value, MDBX_cursor_op(operation));
switch (err) {
case MDBX_SUCCESS:
MDBX_CXX20_LIKELY return true;
case MDBX_RESULT_TRUE:
return false;
case MDBX_NOTFOUND:
if (!throw_notfound)
return false;
MDBX_CXX17_FALLTHROUGH /* fallthrough */;
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline cursor::estimate_result::estimate_result(const cursor &cursor,
move_operation operation,
const slice &key,
const slice &value)
: pair(key, value), approximate_quantity(PTRDIFF_MIN) {
approximate_quantity = cursor.estimate(operation, &this->key, &this->value);
}
inline ptrdiff_t cursor::estimate(move_operation operation, MDBX_val *key,
MDBX_val *value) const {
ptrdiff_t result;
error::success_or_throw(::mdbx_estimate_move(
*this, key, value, MDBX_cursor_op(operation), &result));
return result;
}
inline ptrdiff_t estimate(const cursor &from, const cursor &to) {
ptrdiff_t result;
error::success_or_throw(mdbx_estimate_distance(from, to, &result));
return result;
}
inline cursor::move_result cursor::find(const slice &key, bool throw_notfound) {
return move(key_exact, key, throw_notfound);
}
inline cursor::move_result cursor::lower_bound(const slice &key,
bool throw_notfound) {
return move(key_lowerbound, key, throw_notfound);
}
inline cursor::move_result cursor::upper_bound(const slice &key,
bool throw_notfound) {
return move(key_greater_than, key, throw_notfound);
}
inline cursor::move_result cursor::find_multivalue(const slice &key,
const slice &value,
bool throw_notfound) {
return move(multi_find_pair, key, value, throw_notfound);
}
inline cursor::move_result cursor::lower_bound_multivalue(const slice &key,
const slice &value,
bool throw_notfound) {
return move(multi_exactkey_lowerboundvalue, key, value, throw_notfound);
}
inline cursor::move_result cursor::upper_bound_multivalue(const slice &key,
const slice &value,
bool throw_notfound) {
return move(multi_exactkey_value_greater, key, value, throw_notfound);
}
inline bool cursor::seek(const slice &key) {
return move(seek_key, const_cast<slice *>(&key), nullptr, false);
}
inline size_t cursor::count_multivalue() const {
size_t result;
error::success_or_throw(::mdbx_cursor_count(*this, &result));
return result;
}
inline bool cursor::eof() const {
return error::boolean_or_throw(::mdbx_cursor_eof(*this));
}
inline bool cursor::on_first() const {
return error::boolean_or_throw(::mdbx_cursor_on_first(*this));
}
inline bool cursor::on_last() const {
return error::boolean_or_throw(::mdbx_cursor_on_last(*this));
}
inline bool cursor::on_first_multival() const {
return error::boolean_or_throw(::mdbx_cursor_on_first_dup(*this));
}
inline bool cursor::on_last_multival() const {
return error::boolean_or_throw(::mdbx_cursor_on_last_dup(*this));
}
inline cursor::estimate_result cursor::estimate(const slice &key,
const slice &value) const {
return estimate_result(*this, multi_exactkey_lowerboundvalue, key, value);
}
inline cursor::estimate_result cursor::estimate(const slice &key) const {
return estimate_result(*this, key_lowerbound, key);
}
inline cursor::estimate_result
cursor::estimate(move_operation operation) const {
return estimate_result(*this, operation);
}
inline void cursor::renew(const ::mdbx::txn &txn) {
error::success_or_throw(::mdbx_cursor_renew(txn, handle_));
}
inline void cursor::bind(const ::mdbx::txn &txn,
::mdbx::map_handle map_handle) {
error::success_or_throw(::mdbx_cursor_bind(txn, handle_, map_handle.dbi));
}
inline void cursor::unbind() {
error::success_or_throw(::mdbx_cursor_unbind(handle_));
}
inline txn cursor::txn() const {
MDBX_txn *txn = ::mdbx_cursor_txn(handle_);
error::throw_on_nullptr(txn, MDBX_EINVAL);
return ::mdbx::txn(txn);
}
inline map_handle cursor::map() const {
const MDBX_dbi dbi = ::mdbx_cursor_dbi(handle_);
if (MDBX_UNLIKELY(dbi > MDBX_MAX_DBI))
error::throw_exception(MDBX_EINVAL);
return map_handle(dbi);
}
inline MDBX_error_t cursor::put(const slice &key, slice *value,
MDBX_put_flags_t flags) noexcept {
return MDBX_error_t(::mdbx_cursor_put(handle_, &key, value, flags));
}
inline void cursor::put(const slice &key, slice value, put_mode mode) {
error::success_or_throw(put(key, &value, MDBX_put_flags_t(mode)));
}
inline void cursor::insert(const slice &key, slice value) {
error::success_or_throw(
put(key, &value /* takes the present value in case MDBX_KEYEXIST */,
MDBX_put_flags_t(put_mode::insert_unique)));
}
inline value_result cursor::try_insert(const slice &key, slice value) {
const int err =
put(key, &value /* takes the present value in case MDBX_KEYEXIST */,
MDBX_put_flags_t(put_mode::insert_unique));
switch (err) {
case MDBX_SUCCESS:
return value_result{slice(), true};
case MDBX_KEYEXIST:
return value_result{value, false};
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline slice cursor::insert_reserve(const slice &key, size_t value_length) {
slice result(nullptr, value_length);
error::success_or_throw(
put(key, &result /* takes the present value in case MDBX_KEYEXIST */,
MDBX_put_flags_t(put_mode::insert_unique) | MDBX_RESERVE));
return result;
}
inline value_result cursor::try_insert_reserve(const slice &key,
size_t value_length) {
slice result(nullptr, value_length);
const int err =
put(key, &result /* takes the present value in case MDBX_KEYEXIST */,
MDBX_put_flags_t(put_mode::insert_unique) | MDBX_RESERVE);
switch (err) {
case MDBX_SUCCESS:
return value_result{result, true};
case MDBX_KEYEXIST:
return value_result{result, false};
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline void cursor::upsert(const slice &key, const slice &value) {
error::success_or_throw(put(key, const_cast<slice *>(&value),
MDBX_put_flags_t(put_mode::upsert)));
}
inline slice cursor::upsert_reserve(const slice &key, size_t value_length) {
slice result(nullptr, value_length);
error::success_or_throw(
put(key, &result, MDBX_put_flags_t(put_mode::upsert) | MDBX_RESERVE));
return result;
}
inline void cursor::update(const slice &key, const slice &value) {
error::success_or_throw(put(key, const_cast<slice *>(&value),
MDBX_put_flags_t(put_mode::update)));
}
inline bool cursor::try_update(const slice &key, const slice &value) {
const int err =
put(key, const_cast<slice *>(&value), MDBX_put_flags_t(put_mode::update));
switch (err) {
case MDBX_SUCCESS:
return true;
case MDBX_NOTFOUND:
return false;
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline slice cursor::update_reserve(const slice &key, size_t value_length) {
slice result(nullptr, value_length);
error::success_or_throw(
put(key, &result, MDBX_put_flags_t(put_mode::update) | MDBX_RESERVE));
return result;
}
inline value_result cursor::try_update_reserve(const slice &key,
size_t value_length) {
slice result(nullptr, value_length);
const int err =
put(key, &result, MDBX_put_flags_t(put_mode::update) | MDBX_RESERVE);
switch (err) {
case MDBX_SUCCESS:
return value_result{result, true};
case MDBX_NOTFOUND:
return value_result{slice(), false};
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline bool cursor::erase(bool whole_multivalue) {
const int err = ::mdbx_cursor_del(handle_, whole_multivalue ? MDBX_ALLDUPS
: MDBX_CURRENT);
switch (err) {
case MDBX_SUCCESS:
MDBX_CXX20_LIKELY return true;
case MDBX_NOTFOUND:
return false;
default:
MDBX_CXX20_UNLIKELY error::throw_exception(err);
}
}
inline bool cursor::erase(const slice &key, bool whole_multivalue) {
bool found = seek(key);
return found ? erase(whole_multivalue) : found;
}
inline bool cursor::erase(const slice &key, const slice &value) {
move_result data = find_multivalue(key, value, false);
return data.done && erase();
}
/// end cxx_api @}
} // namespace mdbx
//------------------------------------------------------------------------------
/// \brief The `std:: namespace part of libmdbx C++ API
/// \ingroup cxx_api
namespace std {
/// \defgroup cxx_api C++ API
/// @{
inline string to_string(const ::mdbx::slice &value) {
ostringstream out;
out << value;
return out.str();
}
template <class ALLOCATOR, typename CAPACITY_POLICY>
inline string
to_string(const ::mdbx::buffer<ALLOCATOR, CAPACITY_POLICY> &buffer) {
ostringstream out;
out << buffer;
return out.str();
}
inline string to_string(const ::mdbx::pair &value) {
ostringstream out;
out << value;
return out.str();
}
inline string to_string(const ::mdbx::env::geometry &value) {
ostringstream out;
out << value;
return out.str();
}
inline string to_string(const ::mdbx::env::operate_parameters &value) {
ostringstream out;
out << value;
return out.str();
}
inline string to_string(const ::mdbx::env::mode &value) {
ostringstream out;
out << value;
return out.str();
}
inline string to_string(const ::mdbx::env::durability &value) {
ostringstream out;
out << value;
return out.str();
}
inline string to_string(const ::mdbx::env::reclaiming_options &value) {
ostringstream out;
out << value;
return out.str();
}
inline string to_string(const ::mdbx::env::operate_options &value) {
ostringstream out;
out << value;
return out.str();
}
inline string to_string(const ::mdbx::env_managed::create_parameters &value) {
ostringstream out;
out << value;
return out.str();
}
inline string to_string(const ::MDBX_log_level_t &value) {
ostringstream out;
out << value;
return out.str();
}
inline string to_string(const ::MDBX_debug_flags_t &value) {
ostringstream out;
out << value;
return out.str();
}
inline string to_string(const ::mdbx::error &value) {
ostringstream out;
out << value;
return out.str();
}
inline string to_string(const ::MDBX_error_t &errcode) {
return to_string(::mdbx::error(errcode));
}
template <> struct hash<::mdbx::slice> {
MDBX_CXX14_CONSTEXPR size_t
operator()(::mdbx::slice const &slice) const noexcept {
return slice.hash_value();
}
};
/// end cxx_api @}
} // namespace std
#if defined(__LCC__) && __LCC__ >= 126
#pragma diagnostic pop
#endif
#ifdef _MSC_VER
#pragma warning(pop)
#endif