mirror of
https://github.com/isar/libmdbx.git
synced 2025-01-02 01:34:12 +08:00
380 lines
11 KiB
C++
380 lines
11 KiB
C++
/*
|
|
* Copyright 2017-2021 Leonid Yuriev <leo@yuriev.ru>
|
|
* and other libmdbx authors: please see AUTHORS file.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted only as authorized by the OpenLDAP
|
|
* Public License.
|
|
*
|
|
* A copy of this license is available in the file LICENSE in the
|
|
* top-level directory of the distribution or, alternatively, at
|
|
* <http://www.OpenLDAP.org/license.html>.
|
|
*/
|
|
|
|
#include "test.h"
|
|
#include <float.h>
|
|
#if defined(HAVE_IEEE754_H) || __has_include(<ieee754.h>)
|
|
#include <ieee754.h>
|
|
#endif
|
|
#if defined(__APPLE__) || defined(__MACH__)
|
|
#include <mach/mach_time.h>
|
|
#endif /* defined(__APPLE__) || defined(__MACH__) */
|
|
|
|
std::string format(const char *fmt, ...) {
|
|
va_list ap, ones;
|
|
va_start(ap, fmt);
|
|
va_copy(ones, ap);
|
|
#ifdef _MSC_VER
|
|
int needed = _vscprintf(fmt, ap);
|
|
#else
|
|
int needed = vsnprintf(nullptr, 0, fmt, ap);
|
|
#endif
|
|
assert(needed >= 0);
|
|
va_end(ap);
|
|
std::string result;
|
|
result.reserve((size_t)needed + 1);
|
|
result.resize((size_t)needed, '\0');
|
|
int actual = vsnprintf((char *)result.data(), result.capacity(), fmt, ones);
|
|
assert(actual == needed);
|
|
(void)actual;
|
|
va_end(ones);
|
|
return result;
|
|
}
|
|
|
|
std::string data2hex(const void *ptr, size_t bytes, simple_checksum &checksum) {
|
|
std::string result;
|
|
if (bytes > 0) {
|
|
const uint8_t *data = (const uint8_t *)ptr;
|
|
checksum.push(data, bytes);
|
|
result.reserve(bytes * 2);
|
|
const uint8_t *const end = data + bytes;
|
|
do {
|
|
char h = *data >> 4;
|
|
char l = *data & 15;
|
|
result.push_back((l < 10) ? l + '0' : l - 10 + 'a');
|
|
result.push_back((h < 10) ? h + '0' : h - 10 + 'a');
|
|
} while (++data < end);
|
|
}
|
|
assert(result.size() == bytes * 2);
|
|
return result;
|
|
}
|
|
|
|
bool hex2data(const char *hex_begin, const char *hex_end, void *ptr,
|
|
size_t bytes, simple_checksum &checksum) {
|
|
if (bytes * 2 != (size_t)(hex_end - hex_begin))
|
|
return false;
|
|
|
|
uint8_t *data = (uint8_t *)ptr;
|
|
for (const char *hex = hex_begin; hex != hex_end; hex += 2, ++data) {
|
|
unsigned l = hex[0], h = hex[1];
|
|
|
|
if (l >= '0' && l <= '9')
|
|
l = l - '0';
|
|
else if (l >= 'A' && l <= 'F')
|
|
l = l - 'A' + 10;
|
|
else if (l >= 'a' && l <= 'f')
|
|
l = l - 'a' + 10;
|
|
else
|
|
return false;
|
|
|
|
if (h >= '0' && h <= '9')
|
|
h = h - '0';
|
|
else if (h >= 'A' && h <= 'F')
|
|
h = h - 'A' + 10;
|
|
else if (h >= 'a' && h <= 'f')
|
|
h = h - 'a' + 10;
|
|
else
|
|
return false;
|
|
|
|
uint32_t c = l + (h << 4);
|
|
checksum.push(c);
|
|
*data = (uint8_t)c;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool is_samedata(const MDBX_val *a, const MDBX_val *b) {
|
|
return a->iov_len == b->iov_len &&
|
|
memcmp(a->iov_base, b->iov_base, a->iov_len) == 0;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
/* TODO: replace my 'libmera' from t1ha. */
|
|
uint64_t entropy_ticks(void) {
|
|
#if defined(EMSCRIPTEN)
|
|
return (uint64_t)emscripten_get_now();
|
|
#endif /* EMSCRIPTEN */
|
|
|
|
#if defined(__APPLE__) || defined(__MACH__)
|
|
return mach_absolute_time();
|
|
#endif /* defined(__APPLE__) || defined(__MACH__) */
|
|
|
|
#if defined(__sun__) || defined(__sun)
|
|
return gethrtime();
|
|
#endif /* __sun__ */
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
|
|
#if defined(__ia64__)
|
|
uint64_t ticks;
|
|
__asm __volatile("mov %0=ar.itc" : "=r"(ticks));
|
|
return ticks;
|
|
#elif defined(__hppa__)
|
|
uint64_t ticks;
|
|
__asm __volatile("mfctl 16, %0" : "=r"(ticks));
|
|
return ticks;
|
|
#elif defined(__s390__)
|
|
uint64_t ticks;
|
|
__asm __volatile("stck 0(%0)" : : "a"(&(ticks)) : "memory", "cc");
|
|
return ticks;
|
|
#elif defined(__alpha__) || defined(__alpha)
|
|
uint64_t ticks;
|
|
__asm __volatile("rpcc %0" : "=r"(ticks));
|
|
return ticks;
|
|
#elif defined(__sparc__) || defined(__sparc) || defined(__sparc64__) || \
|
|
defined(__sparc64) || defined(__sparc_v8plus__) || \
|
|
defined(__sparc_v8plus) || defined(__sparc_v8plusa__) || \
|
|
defined(__sparc_v8plusa) || defined(__sparc_v9__) || defined(__sparc_v9)
|
|
|
|
union {
|
|
uint64_t u64;
|
|
struct {
|
|
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
|
uint32_t h, l;
|
|
#else
|
|
uint32_t l, h;
|
|
#endif
|
|
} u32;
|
|
} cycles;
|
|
|
|
#if defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || \
|
|
defined(__sparc_v9__) || defined(__sparc_v8plus) || \
|
|
defined(__sparc_v8plusa) || defined(__sparc_v9)
|
|
|
|
#if UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul || \
|
|
defined(__sparc64__) || defined(__sparc64)
|
|
__asm __volatile("rd %%tick, %0" : "=r"(cycles.u64));
|
|
#else
|
|
__asm __volatile("rd %%tick, %1; srlx %1, 32, %0"
|
|
: "=r"(cycles.u32.h), "=r"(cycles.u32.l));
|
|
#endif /* __sparc64__ */
|
|
|
|
#else
|
|
__asm __volatile(".byte 0x83, 0x41, 0x00, 0x00; mov %%g1, %0"
|
|
: "=r"(cycles.u64)
|
|
:
|
|
: "%g1");
|
|
#endif /* __sparc8plus__ || __sparc_v9__ */
|
|
return cycles.u64;
|
|
|
|
#elif (defined(__powerpc64__) || defined(__ppc64__) || defined(__ppc64) || \
|
|
defined(__powerpc64))
|
|
uint64_t ticks;
|
|
__asm __volatile("mfspr %0, 268" : "=r"(ticks));
|
|
return ticks;
|
|
#elif (defined(__powerpc__) || defined(__ppc__) || defined(__powerpc) || \
|
|
defined(__ppc))
|
|
#if UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul
|
|
uint64_t ticks;
|
|
__asm __volatile("mftb %0" : "=r"(ticks));
|
|
*now = ticks;
|
|
#else
|
|
uint64_t ticks;
|
|
uint32_t low, high_before, high_after;
|
|
__asm __volatile("mftbu %0; mftb %1; mftbu %2"
|
|
: "=r"(high_before), "=r"(low), "=r"(high_after));
|
|
ticks = (uint64_t)high_after << 32;
|
|
ticks |= low & /* zeroes if high part has changed */
|
|
~(high_before - high_after);
|
|
#endif
|
|
#elif (defined(__aarch64__) || (defined(__ARM_ARCH) && __ARM_ARCH > 7)) && \
|
|
!defined(MDBX_SAFE4QEMU)
|
|
uint64_t virtual_timer;
|
|
__asm __volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer));
|
|
return virtual_timer;
|
|
#elif (defined(__ARM_ARCH) && __ARM_ARCH > 5 && __ARM_ARCH < 8) || \
|
|
defined(_M_ARM)
|
|
static uint32_t pmcntenset = 0x00425B00;
|
|
if (unlikely(pmcntenset == 0x00425B00)) {
|
|
uint32_t pmuseren;
|
|
#ifdef _M_ARM
|
|
pmuseren = _MoveFromCoprocessor(15, 0, 9, 14, 0);
|
|
#else
|
|
__asm("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren));
|
|
#endif
|
|
if (1 & pmuseren /* Is it allowed for user mode code? */) {
|
|
#ifdef _M_ARM
|
|
pmcntenset = _MoveFromCoprocessor(15, 0, 9, 12, 1);
|
|
#else
|
|
__asm("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset));
|
|
#endif
|
|
} else
|
|
pmcntenset = 0;
|
|
}
|
|
if (pmcntenset & 0x80000000ul /* Is it counting? */) {
|
|
#ifdef _M_ARM
|
|
return __rdpmccntr64();
|
|
#else
|
|
uint32_t pmccntr;
|
|
__asm __volatile("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr));
|
|
return pmccntr;
|
|
#endif
|
|
}
|
|
#elif ((defined(_MIPS_ISA) && defined(_MIPS_ISA_MIPS2) && \
|
|
_MIPS_ISA >= _MIPS_ISA_MIPS2) || \
|
|
(defined(__mips) && __mips >= 2) || defined(_R4000)) && \
|
|
!defined(MDBX_SAFE4QEMU) /* QEMU may not emulate the CC register \
|
|
(High-resolution cycle counter) */
|
|
unsigned count;
|
|
__asm __volatile("rdhwr %0, $2" : "=r"(count));
|
|
return count;
|
|
#endif /* arch selector */
|
|
#endif /* __GNUC__ || __clang__ */
|
|
|
|
#if defined(__e2k__) || defined(__ia32__)
|
|
return __rdtsc();
|
|
#elif defined(_WIN32) || defined(_WIN64) || defined(_WINDOWS)
|
|
LARGE_INTEGER PerformanceCount;
|
|
if (QueryPerformanceCounter(&PerformanceCount))
|
|
return PerformanceCount.QuadPart;
|
|
return GetTickCount64();
|
|
#else
|
|
struct timespec ts;
|
|
#if defined(CLOCK_MONOTONIC_COARSE)
|
|
clockid_t clk_id = CLOCK_MONOTONIC_COARSE;
|
|
#elif defined(CLOCK_MONOTONIC_RAW)
|
|
clockid_t clk_id = CLOCK_MONOTONIC_RAW;
|
|
#else
|
|
clockid_t clk_id = CLOCK_MONOTONIC;
|
|
#endif
|
|
int rc = clock_gettime(clk_id, &ts);
|
|
if (unlikely(rc))
|
|
failure_perror("clock_gettime()", rc);
|
|
|
|
return (((uint64_t)ts.tv_sec) << 32) + ts.tv_nsec;
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
uint64_t prng64_white(uint64_t &state) {
|
|
state = prng64_map2_careless(state);
|
|
return bleach64(state);
|
|
}
|
|
|
|
uint32_t prng32(uint64_t &state) {
|
|
return (uint32_t)(prng64_careless(state) >> 32);
|
|
}
|
|
|
|
void prng_fill(uint64_t &state, void *ptr, size_t bytes) {
|
|
uint32_t u32 = prng32(state);
|
|
|
|
while (bytes >= 4) {
|
|
memcpy(ptr, &u32, 4);
|
|
ptr = (uint32_t *)ptr + 1;
|
|
bytes -= 4;
|
|
u32 = prng32(state);
|
|
}
|
|
|
|
switch (bytes & 3) {
|
|
case 3:
|
|
memcpy(ptr, &u32, 3);
|
|
break;
|
|
case 2:
|
|
memcpy(ptr, &u32, 2);
|
|
break;
|
|
case 1:
|
|
memcpy(ptr, &u32, 1);
|
|
break;
|
|
case 0:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static __thread uint64_t prng_state;
|
|
|
|
void prng_seed(uint64_t seed) { prng_state = bleach64(seed); }
|
|
|
|
uint32_t prng32(void) { return prng32(prng_state); }
|
|
|
|
uint64_t prng64(void) { return prng64_white(prng_state); }
|
|
|
|
void prng_fill(void *ptr, size_t bytes) { prng_fill(prng_state, ptr, bytes); }
|
|
|
|
uint64_t entropy_white() { return bleach64(entropy_ticks()); }
|
|
|
|
double double_from_lower(uint64_t salt) {
|
|
#ifdef IEEE754_DOUBLE_BIAS
|
|
ieee754_double r;
|
|
r.ieee.negative = 0;
|
|
r.ieee.exponent = IEEE754_DOUBLE_BIAS;
|
|
r.ieee.mantissa0 = (unsigned)(salt >> 32);
|
|
r.ieee.mantissa1 = (unsigned)salt;
|
|
return r.d;
|
|
#else
|
|
const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1;
|
|
const double scale = 1.0 / (double)top;
|
|
return (salt & top) * scale;
|
|
#endif
|
|
}
|
|
|
|
double double_from_upper(uint64_t salt) {
|
|
#ifdef IEEE754_DOUBLE_BIAS
|
|
ieee754_double r;
|
|
r.ieee.negative = 0;
|
|
r.ieee.exponent = IEEE754_DOUBLE_BIAS;
|
|
salt >>= 64 - DBL_MANT_DIG;
|
|
r.ieee.mantissa0 = unsigned(salt >> 32);
|
|
r.ieee.mantissa1 = unsigned(salt);
|
|
return r.d;
|
|
#else
|
|
const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1;
|
|
const double scale = 1.0 / (double)top;
|
|
return (salt >> (64 - DBL_MANT_DIG)) * scale;
|
|
#endif
|
|
}
|
|
|
|
bool flipcoin() { return bleach32((uint32_t)entropy_ticks()) & 1; }
|
|
bool flipcoin_x2() { return (bleach32((uint32_t)entropy_ticks()) & 3) == 0; }
|
|
bool flipcoin_x3() { return (bleach32((uint32_t)entropy_ticks()) & 7) == 0; }
|
|
bool flipcoin_x4() { return (bleach32((uint32_t)entropy_ticks()) & 15) == 0; }
|
|
bool flipcoin_n(unsigned n) {
|
|
return (bleach64(entropy_ticks()) & ((UINT64_C(1) << n) - 1)) == 0;
|
|
}
|
|
|
|
bool jitter(unsigned probability_percent) {
|
|
const uint32_t top = UINT32_MAX - UINT32_MAX % 100;
|
|
uint32_t dice, edge = (top) / 100 * probability_percent;
|
|
do
|
|
dice = bleach32((uint32_t)entropy_ticks());
|
|
while (dice >= top);
|
|
return dice < edge;
|
|
}
|
|
|
|
void jitter_delay(bool extra) {
|
|
unsigned dice = entropy_white() & 3;
|
|
if (dice == 0) {
|
|
log_trace("== jitter.no-delay");
|
|
} else {
|
|
log_trace(">> jitter.delay: dice %u", dice);
|
|
do {
|
|
cpu_relax();
|
|
memory_barrier();
|
|
cpu_relax();
|
|
if (dice > 1) {
|
|
osal_yield();
|
|
cpu_relax();
|
|
if (dice > 2) {
|
|
unsigned us = entropy_white() &
|
|
(extra ? 0xffff /* 656 ms */ : 0x3ff /* 1 ms */);
|
|
log_trace("== jitter.delay: %0.6f", us / 1000000.0);
|
|
osal_udelay(us);
|
|
}
|
|
}
|
|
} while (flipcoin());
|
|
log_trace("<< jitter.delay: dice %u", dice);
|
|
}
|
|
}
|