/// \author Леонид Юрьев aka Leonid Yuriev \date 2015-2024 /// \copyright SPDX-License-Identifier: Apache-2.0 #include "test.h++" #include #if defined(HAVE_IEEE754_H) || __has_include() #include #endif #if defined(__APPLE__) || defined(__MACH__) #include #endif /* defined(__APPLE__) || defined(__MACH__) */ std::string format(const char *fmt, ...) { va_list ap, ones; va_start(ap, fmt); va_copy(ones, ap); #ifdef _MSC_VER int needed = _vscprintf(fmt, ap); #else int needed = vsnprintf(nullptr, 0, fmt, ap); #endif assert(needed >= 0); va_end(ap); std::string result; result.reserve((size_t)needed + 1); result.resize((size_t)needed, '\0'); MDBX_MAYBE_UNUSED int actual = vsnprintf((char *)result.data(), result.capacity(), fmt, ones); assert(actual == needed); (void)actual; va_end(ones); return result; } std::string data2hex(const void *ptr, size_t bytes, simple_checksum &checksum) { std::string result; if (bytes > 0) { const uint8_t *data = (const uint8_t *)ptr; checksum.push(data, bytes); result.reserve(bytes * 2); const uint8_t *const end = data + bytes; do { char h = *data >> 4; char l = *data & 15; result.push_back((l < 10) ? l + '0' : l - 10 + 'a'); result.push_back((h < 10) ? h + '0' : h - 10 + 'a'); } while (++data < end); } assert(result.size() == bytes * 2); return result; } bool hex2data(const char *hex_begin, const char *hex_end, void *ptr, size_t bytes, simple_checksum &checksum) { if (bytes * 2 != (size_t)(hex_end - hex_begin)) return false; uint8_t *data = (uint8_t *)ptr; for (const char *hex = hex_begin; hex != hex_end; hex += 2, ++data) { unsigned l = hex[0], h = hex[1]; if (l >= '0' && l <= '9') l = l - '0'; else if (l >= 'A' && l <= 'F') l = l - 'A' + 10; else if (l >= 'a' && l <= 'f') l = l - 'a' + 10; else return false; if (h >= '0' && h <= '9') h = h - '0'; else if (h >= 'A' && h <= 'F') h = h - 'A' + 10; else if (h >= 'a' && h <= 'f') h = h - 'a' + 10; else return false; uint32_t c = l + (h << 4); checksum.push(c); *data = (uint8_t)c; } return true; } bool is_samedata(const MDBX_val *a, const MDBX_val *b) { return a->iov_len == b->iov_len && memcmp(a->iov_base, b->iov_base, a->iov_len) == 0; } //----------------------------------------------------------------------------- uint64_t prng64_white(uint64_t &state) { state = prng64_map2_careless(state); return bleach64(state); } uint32_t prng32_fast(uint64_t &state) { return uint32_t(prng64_careless(state) >> 32); } uint32_t prng32_white(uint64_t &state) { return bleach32(uint32_t(prng64_careless(state) >> 32)); } void prng_fill(uint64_t &state, void *ptr, size_t bytes) { uint32_t u32 = prng32_fast(state); while (bytes >= 4) { memcpy(ptr, &u32, 4); ptr = (uint32_t *)ptr + 1; bytes -= 4; u32 = prng32_fast(state); } switch (bytes & 3) { case 3: memcpy(ptr, &u32, 3); break; case 2: memcpy(ptr, &u32, 2); break; case 1: memcpy(ptr, &u32, 1); break; case 0: break; } } /* __thread */ uint64_t prng_state; void prng_seed(uint64_t seed) { prng_state = bleach64(seed); } uint32_t prng32(void) { return prng32_white(prng_state); } uint64_t prng64(void) { return prng64_white(prng_state); } void prng_fill(void *ptr, size_t bytes) { prng_fill(prng_state, ptr, bytes); } double double_from_lower(uint64_t salt) { #ifdef IEEE754_DOUBLE_BIAS ieee754_double r; r.ieee.negative = 0; r.ieee.exponent = IEEE754_DOUBLE_BIAS; r.ieee.mantissa0 = (unsigned)(salt >> 32); r.ieee.mantissa1 = (unsigned)salt; return r.d; #else const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1; const double scale = 1.0 / (double)top; return (salt & top) * scale; #endif } double double_from_upper(uint64_t salt) { #ifdef IEEE754_DOUBLE_BIAS ieee754_double r; r.ieee.negative = 0; r.ieee.exponent = IEEE754_DOUBLE_BIAS; salt >>= 64 - DBL_MANT_DIG; r.ieee.mantissa0 = unsigned(salt >> 32); r.ieee.mantissa1 = unsigned(salt); return r.d; #else const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1; const double scale = 1.0 / (double)top; return (salt >> (64 - DBL_MANT_DIG)) * scale; #endif } bool flipcoin() { return prng32() & 1; } bool flipcoin_x2() { return (prng32() & 3) == 0; } bool flipcoin_x3() { return (prng32() & 7) == 0; } bool flipcoin_x4() { return (prng32() & 15) == 0; } bool flipcoin_n(unsigned n) { return (prng64() & ((UINT64_C(1) << n) - 1)) == 0; } bool jitter(unsigned probability_percent) { const uint32_t top = UINT32_MAX - UINT32_MAX % 100; uint32_t dice, edge = (top) / 100 * probability_percent; do dice = prng32(); while (dice >= top); return dice < edge; } void jitter_delay(bool extra) { unsigned dice = prng32() & 3; if (dice == 0) { log_trace("== jitter.no-delay"); } else { log_trace(">> jitter.delay: dice %u", dice); do { cpu_relax(); memory_barrier(); cpu_relax(); if (dice > 1) { osal_yield(); cpu_relax(); if (dice > 2) { size_t us = prng32() & (extra ? 0xffff /* 656 ms */ : 0x3ff /* 1 ms */); log_trace("== jitter.delay: %0.6f", us / 1000000.0); osal_udelay(us); } } } while (flipcoin()); log_trace("<< jitter.delay: dice %u", dice); } }