/// \copyright SPDX-License-Identifier: Apache-2.0 /// \author Леонид Юрьев aka Leonid Yuriev \date 2015-2024 /// /// https://en.wikipedia.org/wiki/Operating_system_abstraction_layer #include "internals.h" #if defined(_WIN32) || defined(_WIN64) #include #include #if !MDBX_WITHOUT_MSVC_CRT && defined(_DEBUG) #include #endif static int waitstatus2errcode(DWORD result) { switch (result) { case WAIT_OBJECT_0: return MDBX_SUCCESS; case WAIT_FAILED: return (int)GetLastError(); case WAIT_ABANDONED: return ERROR_ABANDONED_WAIT_0; case WAIT_IO_COMPLETION: return ERROR_USER_APC; case WAIT_TIMEOUT: return ERROR_TIMEOUT; default: return ERROR_UNHANDLED_ERROR; } } /* Map a result from an NTAPI call to WIN32 error code. */ static int ntstatus2errcode(NTSTATUS status) { DWORD dummy; OVERLAPPED ov; memset(&ov, 0, sizeof(ov)); ov.Internal = status; /* Zap: '_Param_(1)' could be '0' */ MDBX_SUPPRESS_GOOFY_MSVC_ANALYZER(6387); return GetOverlappedResult(nullptr, &ov, &dummy, FALSE) ? MDBX_SUCCESS : (int)GetLastError(); } /* We use native NT APIs to setup the memory map, so that we can * let the DB file grow incrementally instead of always preallocating * the full size. These APIs are defined in and * but those headers are meant for driver-level development and * conflict with the regular user-level headers, so we explicitly * declare them here. Using these APIs also means we must link to * ntdll.dll, which is not linked by default in user code. */ extern NTSTATUS NTAPI NtCreateSection(OUT PHANDLE SectionHandle, IN ACCESS_MASK DesiredAccess, IN OPTIONAL POBJECT_ATTRIBUTES ObjectAttributes, IN OPTIONAL PLARGE_INTEGER MaximumSize, IN ULONG SectionPageProtection, IN ULONG AllocationAttributes, IN OPTIONAL HANDLE FileHandle); typedef struct _SECTION_BASIC_INFORMATION { ULONG Unknown; ULONG SectionAttributes; LARGE_INTEGER SectionSize; } SECTION_BASIC_INFORMATION, *PSECTION_BASIC_INFORMATION; extern NTSTATUS NTAPI NtMapViewOfSection(IN HANDLE SectionHandle, IN HANDLE ProcessHandle, IN OUT PVOID *BaseAddress, IN ULONG_PTR ZeroBits, IN SIZE_T CommitSize, IN OUT OPTIONAL PLARGE_INTEGER SectionOffset, IN OUT PSIZE_T ViewSize, IN SECTION_INHERIT InheritDisposition, IN ULONG AllocationType, IN ULONG Win32Protect); extern NTSTATUS NTAPI NtUnmapViewOfSection(IN HANDLE ProcessHandle, IN OPTIONAL PVOID BaseAddress); /* Zap: Inconsistent annotation for 'NtClose'... */ MDBX_SUPPRESS_GOOFY_MSVC_ANALYZER(28251) extern NTSTATUS NTAPI NtClose(HANDLE Handle); extern NTSTATUS NTAPI NtAllocateVirtualMemory(IN HANDLE ProcessHandle, IN OUT PVOID *BaseAddress, IN ULONG_PTR ZeroBits, IN OUT PSIZE_T RegionSize, IN ULONG AllocationType, IN ULONG Protect); extern NTSTATUS NTAPI NtFreeVirtualMemory(IN HANDLE ProcessHandle, IN PVOID *BaseAddress, IN OUT PSIZE_T RegionSize, IN ULONG FreeType); #ifndef WOF_CURRENT_VERSION typedef struct _WOF_EXTERNAL_INFO { DWORD Version; DWORD Provider; } WOF_EXTERNAL_INFO, *PWOF_EXTERNAL_INFO; #endif /* WOF_CURRENT_VERSION */ #ifndef WIM_PROVIDER_CURRENT_VERSION #define WIM_PROVIDER_HASH_SIZE 20 typedef struct _WIM_PROVIDER_EXTERNAL_INFO { DWORD Version; DWORD Flags; LARGE_INTEGER DataSourceId; BYTE ResourceHash[WIM_PROVIDER_HASH_SIZE]; } WIM_PROVIDER_EXTERNAL_INFO, *PWIM_PROVIDER_EXTERNAL_INFO; #endif /* WIM_PROVIDER_CURRENT_VERSION */ #ifndef FILE_PROVIDER_CURRENT_VERSION typedef struct _FILE_PROVIDER_EXTERNAL_INFO_V1 { ULONG Version; ULONG Algorithm; ULONG Flags; } FILE_PROVIDER_EXTERNAL_INFO_V1, *PFILE_PROVIDER_EXTERNAL_INFO_V1; #endif /* FILE_PROVIDER_CURRENT_VERSION */ #ifndef STATUS_OBJECT_NOT_EXTERNALLY_BACKED #define STATUS_OBJECT_NOT_EXTERNALLY_BACKED ((NTSTATUS)0xC000046DL) #endif #ifndef STATUS_INVALID_DEVICE_REQUEST #define STATUS_INVALID_DEVICE_REQUEST ((NTSTATUS)0xC0000010L) #endif #ifndef STATUS_NOT_SUPPORTED #define STATUS_NOT_SUPPORTED ((NTSTATUS)0xC00000BBL) #endif #ifndef FILE_DEVICE_FILE_SYSTEM #define FILE_DEVICE_FILE_SYSTEM 0x00000009 #endif #ifndef FSCTL_GET_EXTERNAL_BACKING #define FSCTL_GET_EXTERNAL_BACKING CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 196, METHOD_BUFFERED, FILE_ANY_ACCESS) #endif #ifndef ERROR_NOT_CAPABLE #define ERROR_NOT_CAPABLE 775L #endif #endif /* _WIN32 || _WIN64 */ /*----------------------------------------------------------------------------*/ #if defined(__ANDROID_API__) __extern_C void __assert2(const char *file, int line, const char *function, const char *msg) __noreturn; #define __assert_fail(assertion, file, line, function) __assert2(file, line, function, assertion) #elif defined(__UCLIBC__) MDBX_NORETURN __extern_C void __assert(const char *, const char *, unsigned, const char *) #ifdef __THROW __THROW #else __nothrow #endif /* __THROW */ ; #define __assert_fail(assertion, file, line, function) __assert(assertion, file, line, function) #elif _POSIX_C_SOURCE > 200212 && \ /* workaround for avoid musl libc wrong prototype */ (defined(__GLIBC__) || defined(__GNU_LIBRARY__)) /* Prototype should match libc runtime. ISO POSIX (2003) & LSB 1.x-3.x */ MDBX_NORETURN __extern_C void __assert_fail(const char *assertion, const char *file, unsigned line, const char *function) #ifdef __THROW __THROW #else __nothrow #endif /* __THROW */ ; #elif defined(__APPLE__) || defined(__MACH__) __extern_C void __assert_rtn(const char *function, const char *file, int line, const char *assertion) /* __nothrow */ #ifdef __dead2 __dead2 #else MDBX_NORETURN #endif /* __dead2 */ #ifdef __disable_tail_calls __disable_tail_calls #endif /* __disable_tail_calls */ ; #define __assert_fail(assertion, file, line, function) __assert_rtn(function, file, line, assertion) #elif defined(__sun) || defined(__SVR4) || defined(__svr4__) MDBX_NORETURN __extern_C void __assert_c99(const char *assection, const char *file, int line, const char *function); #define __assert_fail(assertion, file, line, function) __assert_c99(assertion, file, line, function) #elif defined(__OpenBSD__) __extern_C __dead void __assert2(const char *file, int line, const char *function, const char *assertion) /* __nothrow */; #define __assert_fail(assertion, file, line, function) __assert2(file, line, function, assertion) #elif defined(__NetBSD__) __extern_C __dead void __assert13(const char *file, int line, const char *function, const char *assertion) /* __nothrow */; #define __assert_fail(assertion, file, line, function) __assert13(file, line, function, assertion) #elif defined(__FreeBSD__) || defined(__BSD__) || defined(__bsdi__) || defined(__DragonFly__) __extern_C void __assert(const char *function, const char *file, int line, const char *assertion) /* __nothrow */ #ifdef __dead2 __dead2 #else MDBX_NORETURN #endif /* __dead2 */ #ifdef __disable_tail_calls __disable_tail_calls #endif /* __disable_tail_calls */ ; #define __assert_fail(assertion, file, line, function) __assert(function, file, line, assertion) #endif /* __assert_fail */ __cold void mdbx_assert_fail(const MDBX_env *env, const char *msg, const char *func, unsigned line) { #if MDBX_DEBUG if (env && env->assert_func) env->assert_func(env, msg, func, line); #else (void)env; assert_fail(msg, func, line); } MDBX_NORETURN __cold void assert_fail(const char *msg, const char *func, unsigned line) { #endif /* MDBX_DEBUG */ if (globals.logger.ptr) debug_log(MDBX_LOG_FATAL, func, line, "assert: %s\n", msg); else { #if defined(_WIN32) || defined(_WIN64) char *message = nullptr; const int num = osal_asprintf(&message, "\r\nMDBX-ASSERTION: %s, %s:%u", msg, func ? func : "unknown", line); if (num < 1 || !message) message = ""; OutputDebugStringA(message); #else __assert_fail(msg, "mdbx", line, func); #endif } while (1) { #if defined(_WIN32) || defined(_WIN64) #if !MDBX_WITHOUT_MSVC_CRT && defined(_DEBUG) _CrtDbgReport(_CRT_ASSERT, func ? func : "unknown", line, "libmdbx", "assertion failed: %s", msg); #else if (IsDebuggerPresent()) DebugBreak(); #endif FatalExit(STATUS_ASSERTION_FAILURE); #else abort(); #endif } } __cold void mdbx_panic(const char *fmt, ...) { va_list ap; va_start(ap, fmt); char *message = nullptr; const int num = osal_vasprintf(&message, fmt, ap); va_end(ap); const char *const const_message = unlikely(num < 1 || !message) ? "" : message; if (globals.logger.ptr) debug_log(MDBX_LOG_FATAL, "panic", 0, "%s", const_message); while (1) { #if defined(_WIN32) || defined(_WIN64) #if !MDBX_WITHOUT_MSVC_CRT && defined(_DEBUG) _CrtDbgReport(_CRT_ASSERT, "mdbx.c", 0, "libmdbx", "panic: %s", const_message); #else OutputDebugStringA("\r\nMDBX-PANIC: "); OutputDebugStringA(const_message); if (IsDebuggerPresent()) DebugBreak(); #endif FatalExit(ERROR_UNHANDLED_ERROR); #else __assert_fail(const_message, "mdbx", 0, "panic"); abort(); #endif } } /*----------------------------------------------------------------------------*/ #ifndef osal_vasprintf MDBX_INTERNAL int osal_vasprintf(char **strp, const char *fmt, va_list ap) { va_list ones; va_copy(ones, ap); const int needed = vsnprintf(nullptr, 0, fmt, ones); va_end(ones); if (unlikely(needed < 0 || needed >= INT_MAX)) { *strp = nullptr; return needed; } *strp = osal_malloc(needed + (size_t)1); if (unlikely(*strp == nullptr)) { #if defined(_WIN32) || defined(_WIN64) SetLastError(MDBX_ENOMEM); #else errno = MDBX_ENOMEM; #endif return -1; } const int actual = vsnprintf(*strp, needed + (size_t)1, fmt, ap); assert(actual == needed); if (unlikely(actual < 0)) { osal_free(*strp); *strp = nullptr; } return actual; } #endif /* osal_vasprintf */ #ifndef osal_asprintf MDBX_INTERNAL int osal_asprintf(char **strp, const char *fmt, ...) { va_list ap; va_start(ap, fmt); const int rc = osal_vasprintf(strp, fmt, ap); va_end(ap); return rc; } #endif /* osal_asprintf */ #ifndef osal_memalign_alloc MDBX_INTERNAL int osal_memalign_alloc(size_t alignment, size_t bytes, void **result) { assert(is_powerof2(alignment) && alignment >= sizeof(void *)); #if defined(_WIN32) || defined(_WIN64) (void)alignment; *result = VirtualAlloc(nullptr, bytes, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); return *result ? MDBX_SUCCESS : MDBX_ENOMEM /* ERROR_OUTOFMEMORY */; #elif defined(_ISOC11_SOURCE) *result = aligned_alloc(alignment, ceil_powerof2(bytes, alignment)); return *result ? MDBX_SUCCESS : errno; #elif _POSIX_VERSION >= 200112L && (!defined(__ANDROID_API__) || __ANDROID_API__ >= 17) *result = nullptr; return posix_memalign(result, alignment, bytes); #elif __GLIBC_PREREQ(2, 16) || __STDC_VERSION__ >= 201112L *result = memalign(alignment, bytes); return *result ? MDBX_SUCCESS : errno; #else #error FIXME #endif } #endif /* osal_memalign_alloc */ #ifndef osal_memalign_free MDBX_INTERNAL void osal_memalign_free(void *ptr) { #if defined(_WIN32) || defined(_WIN64) VirtualFree(ptr, 0, MEM_RELEASE); #else osal_free(ptr); #endif } #endif /* osal_memalign_free */ #ifndef osal_strdup char *osal_strdup(const char *str) { if (!str) return nullptr; size_t bytes = strlen(str) + 1; char *dup = osal_malloc(bytes); if (dup) memcpy(dup, str, bytes); return dup; } #endif /* osal_strdup */ /*----------------------------------------------------------------------------*/ MDBX_INTERNAL int osal_condpair_init(osal_condpair_t *condpair) { int rc; memset(condpair, 0, sizeof(osal_condpair_t)); #if defined(_WIN32) || defined(_WIN64) if (!(condpair->mutex = CreateMutexW(nullptr, FALSE, nullptr))) { rc = (int)GetLastError(); goto bailout_mutex; } if (!(condpair->event[0] = CreateEventW(nullptr, FALSE, FALSE, nullptr))) { rc = (int)GetLastError(); goto bailout_event; } if ((condpair->event[1] = CreateEventW(nullptr, FALSE, FALSE, nullptr))) return MDBX_SUCCESS; rc = (int)GetLastError(); (void)CloseHandle(condpair->event[0]); bailout_event: (void)CloseHandle(condpair->mutex); #else rc = pthread_mutex_init(&condpair->mutex, nullptr); if (unlikely(rc != 0)) goto bailout_mutex; rc = pthread_cond_init(&condpair->cond[0], nullptr); if (unlikely(rc != 0)) goto bailout_cond; rc = pthread_cond_init(&condpair->cond[1], nullptr); if (likely(rc == 0)) return MDBX_SUCCESS; (void)pthread_cond_destroy(&condpair->cond[0]); bailout_cond: (void)pthread_mutex_destroy(&condpair->mutex); #endif bailout_mutex: memset(condpair, 0, sizeof(osal_condpair_t)); return rc; } MDBX_INTERNAL int osal_condpair_destroy(osal_condpair_t *condpair) { #if defined(_WIN32) || defined(_WIN64) int rc = CloseHandle(condpair->mutex) ? MDBX_SUCCESS : (int)GetLastError(); rc = CloseHandle(condpair->event[0]) ? rc : (int)GetLastError(); rc = CloseHandle(condpair->event[1]) ? rc : (int)GetLastError(); #else int err, rc = pthread_mutex_destroy(&condpair->mutex); rc = (err = pthread_cond_destroy(&condpair->cond[0])) ? err : rc; rc = (err = pthread_cond_destroy(&condpair->cond[1])) ? err : rc; #endif memset(condpair, 0, sizeof(osal_condpair_t)); return rc; } MDBX_INTERNAL int osal_condpair_lock(osal_condpair_t *condpair) { #if defined(_WIN32) || defined(_WIN64) DWORD code = WaitForSingleObject(condpair->mutex, INFINITE); return waitstatus2errcode(code); #else return osal_pthread_mutex_lock(&condpair->mutex); #endif } MDBX_INTERNAL int osal_condpair_unlock(osal_condpair_t *condpair) { #if defined(_WIN32) || defined(_WIN64) return ReleaseMutex(condpair->mutex) ? MDBX_SUCCESS : (int)GetLastError(); #else return pthread_mutex_unlock(&condpair->mutex); #endif } MDBX_INTERNAL int osal_condpair_signal(osal_condpair_t *condpair, bool part) { #if defined(_WIN32) || defined(_WIN64) return SetEvent(condpair->event[part]) ? MDBX_SUCCESS : (int)GetLastError(); #else return pthread_cond_signal(&condpair->cond[part]); #endif } MDBX_INTERNAL int osal_condpair_wait(osal_condpair_t *condpair, bool part) { #if defined(_WIN32) || defined(_WIN64) DWORD code = SignalObjectAndWait(condpair->mutex, condpair->event[part], INFINITE, FALSE); if (code == WAIT_OBJECT_0) { code = WaitForSingleObject(condpair->mutex, INFINITE); if (code == WAIT_OBJECT_0) return MDBX_SUCCESS; } return waitstatus2errcode(code); #else return pthread_cond_wait(&condpair->cond[part], &condpair->mutex); #endif } /*----------------------------------------------------------------------------*/ MDBX_INTERNAL int osal_fastmutex_init(osal_fastmutex_t *fastmutex) { #if defined(_WIN32) || defined(_WIN64) InitializeCriticalSection(fastmutex); return MDBX_SUCCESS; #elif MDBX_DEBUG pthread_mutexattr_t ma; int rc = pthread_mutexattr_init(&ma); if (likely(!rc)) { rc = pthread_mutexattr_settype(&ma, PTHREAD_MUTEX_ERRORCHECK); if (likely(!rc) || rc == ENOTSUP) rc = pthread_mutex_init(fastmutex, &ma); pthread_mutexattr_destroy(&ma); } return rc; #else return pthread_mutex_init(fastmutex, nullptr); #endif } MDBX_INTERNAL int osal_fastmutex_destroy(osal_fastmutex_t *fastmutex) { #if defined(_WIN32) || defined(_WIN64) DeleteCriticalSection(fastmutex); return MDBX_SUCCESS; #else return pthread_mutex_destroy(fastmutex); #endif } MDBX_INTERNAL int osal_fastmutex_acquire(osal_fastmutex_t *fastmutex) { #if defined(_WIN32) || defined(_WIN64) __try { EnterCriticalSection(fastmutex); } __except ((GetExceptionCode() == 0xC0000194 /* STATUS_POSSIBLE_DEADLOCK / EXCEPTION_POSSIBLE_DEADLOCK */) ? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) { return MDBX_EDEADLK; } return MDBX_SUCCESS; #else return osal_pthread_mutex_lock(fastmutex); #endif } MDBX_INTERNAL int osal_fastmutex_release(osal_fastmutex_t *fastmutex) { #if defined(_WIN32) || defined(_WIN64) LeaveCriticalSection(fastmutex); return MDBX_SUCCESS; #else return pthread_mutex_unlock(fastmutex); #endif } /*----------------------------------------------------------------------------*/ #if defined(_WIN32) || defined(_WIN64) MDBX_INTERNAL int osal_mb2w(const char *const src, wchar_t **const pdst) { const size_t dst_wlen = MultiByteToWideChar(CP_THREAD_ACP, MB_ERR_INVALID_CHARS, src, -1, nullptr, 0); wchar_t *dst = *pdst; int rc = ERROR_INVALID_NAME; if (unlikely(dst_wlen < 2 || dst_wlen > /* MAX_PATH */ INT16_MAX)) goto bailout; dst = osal_realloc(dst, dst_wlen * sizeof(wchar_t)); rc = MDBX_ENOMEM; if (unlikely(!dst)) goto bailout; *pdst = dst; if (likely(dst_wlen == (size_t)MultiByteToWideChar(CP_THREAD_ACP, MB_ERR_INVALID_CHARS, src, -1, dst, (int)dst_wlen))) return MDBX_SUCCESS; rc = ERROR_INVALID_NAME; bailout: if (*pdst) { osal_free(*pdst); *pdst = nullptr; } return rc; } #endif /* Windows */ /*----------------------------------------------------------------------------*/ #if defined(_WIN32) || defined(_WIN64) #define ior_alignment_mask (ior->pagesize - 1) #define ior_WriteFile_flag 1 #define OSAL_IOV_MAX (4096 / sizeof(ior_sgv_element)) static void ior_put_event(osal_ioring_t *ior, HANDLE event) { assert(event && event != INVALID_HANDLE_VALUE && event != ior); assert(ior->event_stack < ior->allocated); ior->event_pool[ior->event_stack] = event; ior->event_stack += 1; } static HANDLE ior_get_event(osal_ioring_t *ior) { assert(ior->event_stack <= ior->allocated); if (ior->event_stack > 0) { ior->event_stack -= 1; assert(ior->event_pool[ior->event_stack] != 0); return ior->event_pool[ior->event_stack]; } return CreateEventW(nullptr, true, false, nullptr); } static void WINAPI ior_wocr(DWORD err, DWORD bytes, OVERLAPPED *ov) { osal_ioring_t *ior = ov->hEvent; ov->Internal = err; ov->InternalHigh = bytes; if (++ior->async_completed >= ior->async_waiting) SetEvent(ior->async_done); } #elif MDBX_HAVE_PWRITEV #if defined(_SC_IOV_MAX) static size_t osal_iov_max; #define OSAL_IOV_MAX osal_iov_max #else #define OSAL_IOV_MAX IOV_MAX #endif #else #undef OSAL_IOV_MAX #endif /* OSAL_IOV_MAX */ MDBX_INTERNAL int osal_ioring_create(osal_ioring_t *ior #if defined(_WIN32) || defined(_WIN64) , bool enable_direct, mdbx_filehandle_t overlapped_fd #endif /* Windows */ ) { memset(ior, 0, sizeof(osal_ioring_t)); #if defined(_WIN32) || defined(_WIN64) ior->overlapped_fd = overlapped_fd; ior->direct = enable_direct && overlapped_fd; ior->pagesize = globals.sys_pagesize; ior->pagesize_ln2 = globals.sys_pagesize_ln2; ior->async_done = ior_get_event(ior); if (!ior->async_done) return GetLastError(); #endif /* !Windows */ #if MDBX_HAVE_PWRITEV && defined(_SC_IOV_MAX) assert(osal_iov_max > 0); #endif /* MDBX_HAVE_PWRITEV && _SC_IOV_MAX */ ior->boundary = ptr_disp(ior->pool, ior->allocated); return MDBX_SUCCESS; } static inline size_t ior_offset(const ior_item_t *item) { #if defined(_WIN32) || defined(_WIN64) return item->ov.Offset | (size_t)((sizeof(size_t) > sizeof(item->ov.Offset)) ? (uint64_t)item->ov.OffsetHigh << 32 : 0); #else return item->offset; #endif /* !Windows */ } static inline ior_item_t *ior_next(ior_item_t *item, size_t sgvcnt) { #if defined(ior_sgv_element) assert(sgvcnt > 0); return (ior_item_t *)ptr_disp(item, sizeof(ior_item_t) - sizeof(ior_sgv_element) + sizeof(ior_sgv_element) * sgvcnt); #else assert(sgvcnt == 1); (void)sgvcnt; return item + 1; #endif } MDBX_INTERNAL int osal_ioring_add(osal_ioring_t *ior, const size_t offset, void *data, const size_t bytes) { assert(bytes && data); assert(bytes % MDBX_MIN_PAGESIZE == 0 && bytes <= MAX_WRITE); assert(offset % MDBX_MIN_PAGESIZE == 0 && offset + (uint64_t)bytes <= MAX_MAPSIZE); #if defined(_WIN32) || defined(_WIN64) const unsigned segments = (unsigned)(bytes >> ior->pagesize_ln2); const bool use_gather = ior->direct && ior->overlapped_fd && ior->slots_left >= segments; #endif /* Windows */ ior_item_t *item = ior->pool; if (likely(ior->last)) { item = ior->last; if (unlikely(ior_offset(item) + ior_last_bytes(ior, item) == offset) && likely(ior_last_bytes(ior, item) + bytes <= MAX_WRITE)) { #if defined(_WIN32) || defined(_WIN64) if (use_gather && ((bytes | (uintptr_t)data | ior->last_bytes | (uintptr_t)(uint64_t)item->sgv[0].Buffer) & ior_alignment_mask) == 0 && ior->last_sgvcnt + (size_t)segments < OSAL_IOV_MAX) { assert(ior->overlapped_fd); assert((item->single.iov_len & ior_WriteFile_flag) == 0); assert(item->sgv[ior->last_sgvcnt].Buffer == 0); ior->last_bytes += bytes; size_t i = 0; do { item->sgv[ior->last_sgvcnt + i].Buffer = PtrToPtr64(data); data = ptr_disp(data, ior->pagesize); } while (++i < segments); ior->slots_left -= segments; item->sgv[ior->last_sgvcnt += segments].Buffer = 0; assert((item->single.iov_len & ior_WriteFile_flag) == 0); return MDBX_SUCCESS; } const void *end = ptr_disp(item->single.iov_base, item->single.iov_len - ior_WriteFile_flag); if (unlikely(end == data)) { assert((item->single.iov_len & ior_WriteFile_flag) != 0); item->single.iov_len += bytes; return MDBX_SUCCESS; } #elif MDBX_HAVE_PWRITEV assert((int)item->sgvcnt > 0); const void *end = ptr_disp(item->sgv[item->sgvcnt - 1].iov_base, item->sgv[item->sgvcnt - 1].iov_len); if (unlikely(end == data)) { item->sgv[item->sgvcnt - 1].iov_len += bytes; ior->last_bytes += bytes; return MDBX_SUCCESS; } if (likely(item->sgvcnt < OSAL_IOV_MAX)) { if (unlikely(ior->slots_left < 1)) return MDBX_RESULT_TRUE; item->sgv[item->sgvcnt].iov_base = data; item->sgv[item->sgvcnt].iov_len = bytes; ior->last_bytes += bytes; item->sgvcnt += 1; ior->slots_left -= 1; return MDBX_SUCCESS; } #else const void *end = ptr_disp(item->single.iov_base, item->single.iov_len); if (unlikely(end == data)) { item->single.iov_len += bytes; return MDBX_SUCCESS; } #endif } item = ior_next(item, ior_last_sgvcnt(ior, item)); } if (unlikely(ior->slots_left < 1)) return MDBX_RESULT_TRUE; unsigned slots_used = 1; #if defined(_WIN32) || defined(_WIN64) item->ov.Internal = item->ov.InternalHigh = 0; item->ov.Offset = (DWORD)offset; item->ov.OffsetHigh = HIGH_DWORD(offset); item->ov.hEvent = 0; if (!use_gather || ((bytes | (uintptr_t)(data)) & ior_alignment_mask) != 0 || segments > OSAL_IOV_MAX) { /* WriteFile() */ item->single.iov_base = data; item->single.iov_len = bytes + ior_WriteFile_flag; assert((item->single.iov_len & ior_WriteFile_flag) != 0); } else { /* WriteFileGather() */ assert(ior->overlapped_fd); item->sgv[0].Buffer = PtrToPtr64(data); for (size_t i = 1; i < segments; ++i) { data = ptr_disp(data, ior->pagesize); item->sgv[i].Buffer = PtrToPtr64(data); } item->sgv[slots_used = segments].Buffer = 0; assert((item->single.iov_len & ior_WriteFile_flag) == 0); } ior->last_bytes = bytes; ior_last_sgvcnt(ior, item) = slots_used; #elif MDBX_HAVE_PWRITEV item->offset = offset; item->sgv[0].iov_base = data; item->sgv[0].iov_len = bytes; ior->last_bytes = bytes; ior_last_sgvcnt(ior, item) = slots_used; #else item->offset = offset; item->single.iov_base = data; item->single.iov_len = bytes; #endif /* !Windows */ ior->slots_left -= slots_used; ior->last = item; return MDBX_SUCCESS; } MDBX_INTERNAL void osal_ioring_walk(osal_ioring_t *ior, iov_ctx_t *ctx, void (*callback)(iov_ctx_t *ctx, size_t offset, void *data, size_t bytes)) { for (ior_item_t *item = ior->pool; item <= ior->last;) { #if defined(_WIN32) || defined(_WIN64) size_t offset = ior_offset(item); char *data = item->single.iov_base; size_t bytes = item->single.iov_len - ior_WriteFile_flag; size_t i = 1; if (bytes & ior_WriteFile_flag) { data = Ptr64ToPtr(item->sgv[0].Buffer); bytes = ior->pagesize; /* Zap: Reading invalid data from 'item->sgv' */ MDBX_SUPPRESS_GOOFY_MSVC_ANALYZER(6385); while (item->sgv[i].Buffer) { if (data + ior->pagesize != item->sgv[i].Buffer) { callback(ctx, offset, data, bytes); offset += bytes; data = Ptr64ToPtr(item->sgv[i].Buffer); bytes = 0; } bytes += ior->pagesize; ++i; } } assert(bytes < MAX_WRITE); callback(ctx, offset, data, bytes); #elif MDBX_HAVE_PWRITEV assert(item->sgvcnt > 0); size_t offset = item->offset; size_t i = 0; do { callback(ctx, offset, item->sgv[i].iov_base, item->sgv[i].iov_len); offset += item->sgv[i].iov_len; } while (++i != item->sgvcnt); #else const size_t i = 1; callback(ctx, item->offset, item->single.iov_base, item->single.iov_len); #endif item = ior_next(item, i); } } MDBX_INTERNAL osal_ioring_write_result_t osal_ioring_write(osal_ioring_t *ior, mdbx_filehandle_t fd) { osal_ioring_write_result_t r = {MDBX_SUCCESS, 0}; #if defined(_WIN32) || defined(_WIN64) HANDLE *const end_wait_for = ior->event_pool + ior->allocated + /* был выделен один дополнительный элемент для async_done */ 1; HANDLE *wait_for = end_wait_for; LONG async_started = 0; for (ior_item_t *item = ior->pool; item <= ior->last;) { item->ov.Internal = STATUS_PENDING; size_t i = 1, bytes = item->single.iov_len - ior_WriteFile_flag; r.wops += 1; if (bytes & ior_WriteFile_flag) { assert(ior->overlapped_fd && fd == ior->overlapped_fd); bytes = ior->pagesize; /* Zap: Reading invalid data from 'item->sgv' */ MDBX_SUPPRESS_GOOFY_MSVC_ANALYZER(6385); while (item->sgv[i].Buffer) { bytes += ior->pagesize; ++i; } assert(bytes < MAX_WRITE); item->ov.hEvent = ior_get_event(ior); if (unlikely(!item->ov.hEvent)) { bailout_geterr: r.err = GetLastError(); bailout_rc: assert(r.err != MDBX_SUCCESS); CancelIo(fd); return r; } if (WriteFileGather(fd, item->sgv, (DWORD)bytes, nullptr, &item->ov)) { assert(item->ov.Internal == 0 && WaitForSingleObject(item->ov.hEvent, 0) == WAIT_OBJECT_0); ior_put_event(ior, item->ov.hEvent); item->ov.hEvent = 0; } else { r.err = (int)GetLastError(); if (unlikely(r.err != ERROR_IO_PENDING)) { void *data = Ptr64ToPtr(item->sgv[0].Buffer); ERROR("%s: fd %p, item %p (%zu), addr %p pgno %u, bytes %zu," " offset %" PRId64 ", err %d", "WriteFileGather", fd, __Wpedantic_format_voidptr(item), item - ior->pool, data, ((page_t *)data)->pgno, bytes, item->ov.Offset + ((uint64_t)item->ov.OffsetHigh << 32), r.err); goto bailout_rc; } assert(wait_for > ior->event_pool + ior->event_stack); *--wait_for = item->ov.hEvent; } } else if (fd == ior->overlapped_fd) { assert(bytes < MAX_WRITE); retry: item->ov.hEvent = ior; if (WriteFileEx(fd, item->single.iov_base, (DWORD)bytes, &item->ov, ior_wocr)) { async_started += 1; } else { r.err = (int)GetLastError(); switch (r.err) { default: ERROR("%s: fd %p, item %p (%zu), addr %p pgno %u, bytes %zu," " offset %" PRId64 ", err %d", "WriteFileEx", fd, __Wpedantic_format_voidptr(item), item - ior->pool, item->single.iov_base, ((page_t *)item->single.iov_base)->pgno, bytes, item->ov.Offset + ((uint64_t)item->ov.OffsetHigh << 32), r.err); goto bailout_rc; case ERROR_NOT_FOUND: case ERROR_USER_MAPPED_FILE: case ERROR_LOCK_VIOLATION: WARNING("%s: fd %p, item %p (%zu), addr %p pgno %u, bytes %zu," " offset %" PRId64 ", err %d", "WriteFileEx", fd, __Wpedantic_format_voidptr(item), item - ior->pool, item->single.iov_base, ((page_t *)item->single.iov_base)->pgno, bytes, item->ov.Offset + ((uint64_t)item->ov.OffsetHigh << 32), r.err); SleepEx(0, true); goto retry; case ERROR_INVALID_USER_BUFFER: case ERROR_NOT_ENOUGH_MEMORY: if (SleepEx(0, true) == WAIT_IO_COMPLETION) goto retry; goto bailout_rc; case ERROR_IO_PENDING: async_started += 1; } } } else { assert(bytes < MAX_WRITE); DWORD written = 0; if (!WriteFile(fd, item->single.iov_base, (DWORD)bytes, &written, &item->ov)) { r.err = (int)GetLastError(); ERROR("%s: fd %p, item %p (%zu), addr %p pgno %u, bytes %zu," " offset %" PRId64 ", err %d", "WriteFile", fd, __Wpedantic_format_voidptr(item), item - ior->pool, item->single.iov_base, ((page_t *)item->single.iov_base)->pgno, bytes, item->ov.Offset + ((uint64_t)item->ov.OffsetHigh << 32), r.err); goto bailout_rc; } else if (unlikely(written != bytes)) { r.err = ERROR_WRITE_FAULT; goto bailout_rc; } } item = ior_next(item, i); } assert(ior->async_waiting > ior->async_completed && ior->async_waiting == INT_MAX); ior->async_waiting = async_started; if (async_started > ior->async_completed && end_wait_for == wait_for) { assert(wait_for > ior->event_pool + ior->event_stack); *--wait_for = ior->async_done; } const size_t pending_count = end_wait_for - wait_for; if (pending_count) { /* Ждем до MAXIMUM_WAIT_OBJECTS (64) последних хендлов, а после избирательно * ждем посредством GetOverlappedResult(), если какие-то более ранние * элементы еще не завершены. В целом, так получается меньше системных * вызовов, т.е. меньше накладных расходов. Однако, не факт что эта экономия * не будет перекрыта неэффективностью реализации * WaitForMultipleObjectsEx(), но тогда это проблемы на стороне M$. */ DWORD madness; do madness = WaitForMultipleObjectsEx( (pending_count < MAXIMUM_WAIT_OBJECTS) ? (DWORD)pending_count : MAXIMUM_WAIT_OBJECTS, wait_for, true, /* сутки */ 86400000ul, true); while (madness == WAIT_IO_COMPLETION); STATIC_ASSERT(WAIT_OBJECT_0 == 0); if (/* madness >= WAIT_OBJECT_0 && */ madness < WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS) r.err = MDBX_SUCCESS; else if (madness >= WAIT_ABANDONED_0 && madness < WAIT_ABANDONED_0 + MAXIMUM_WAIT_OBJECTS) { r.err = ERROR_ABANDONED_WAIT_0; goto bailout_rc; } else if (madness == WAIT_TIMEOUT) { r.err = WAIT_TIMEOUT; goto bailout_rc; } else { r.err = /* madness == WAIT_FAILED */ MDBX_PROBLEM; goto bailout_rc; } assert(ior->async_waiting == ior->async_completed); for (ior_item_t *item = ior->pool; item <= ior->last;) { size_t i = 1, bytes = item->single.iov_len - ior_WriteFile_flag; void *data = item->single.iov_base; if (bytes & ior_WriteFile_flag) { data = Ptr64ToPtr(item->sgv[0].Buffer); bytes = ior->pagesize; /* Zap: Reading invalid data from 'item->sgv' */ MDBX_SUPPRESS_GOOFY_MSVC_ANALYZER(6385); while (item->sgv[i].Buffer) { bytes += ior->pagesize; ++i; } if (!HasOverlappedIoCompleted(&item->ov)) { DWORD written = 0; if (unlikely(!GetOverlappedResult(fd, &item->ov, &written, true))) { ERROR("%s: item %p (%zu), addr %p pgno %u, bytes %zu," " offset %" PRId64 ", err %d", "GetOverlappedResult", __Wpedantic_format_voidptr(item), item - ior->pool, data, ((page_t *)data)->pgno, bytes, item->ov.Offset + ((uint64_t)item->ov.OffsetHigh << 32), (int)GetLastError()); goto bailout_geterr; } assert(MDBX_SUCCESS == item->ov.Internal); assert(written == item->ov.InternalHigh); } } else { assert(HasOverlappedIoCompleted(&item->ov)); } assert(item->ov.Internal != ERROR_IO_PENDING); if (unlikely(item->ov.Internal != MDBX_SUCCESS)) { DWORD written = 0; r.err = (int)item->ov.Internal; if ((r.err & 0x80000000) && GetOverlappedResult(nullptr, &item->ov, &written, true)) r.err = (int)GetLastError(); ERROR("%s: item %p (%zu), addr %p pgno %u, bytes %zu," " offset %" PRId64 ", err %d", "Result", __Wpedantic_format_voidptr(item), item - ior->pool, data, ((page_t *)data)->pgno, bytes, item->ov.Offset + ((uint64_t)item->ov.OffsetHigh << 32), (int)GetLastError()); goto bailout_rc; } if (unlikely(item->ov.InternalHigh != bytes)) { r.err = ERROR_WRITE_FAULT; goto bailout_rc; } item = ior_next(item, i); } assert(ior->async_waiting == ior->async_completed); } else { assert(r.err == MDBX_SUCCESS); } assert(ior->async_waiting == ior->async_completed); #else STATIC_ASSERT_MSG(sizeof(off_t) >= sizeof(size_t), "libmdbx requires 64-bit file I/O on 64-bit systems"); for (ior_item_t *item = ior->pool; item <= ior->last;) { #if MDBX_HAVE_PWRITEV assert(item->sgvcnt > 0); if (item->sgvcnt == 1) r.err = osal_pwrite(fd, item->sgv[0].iov_base, item->sgv[0].iov_len, item->offset); else r.err = osal_pwritev(fd, item->sgv, item->sgvcnt, item->offset); // TODO: io_uring_prep_write(sqe, fd, ...); item = ior_next(item, item->sgvcnt); #else r.err = osal_pwrite(fd, item->single.iov_base, item->single.iov_len, item->offset); item = ior_next(item, 1); #endif r.wops += 1; if (unlikely(r.err != MDBX_SUCCESS)) break; } // TODO: io_uring_submit(&ring) // TODO: err = io_uring_wait_cqe(&ring, &cqe); // TODO: io_uring_cqe_seen(&ring, cqe); #endif /* !Windows */ return r; } MDBX_INTERNAL void osal_ioring_reset(osal_ioring_t *ior) { #if defined(_WIN32) || defined(_WIN64) if (ior->last) { for (ior_item_t *item = ior->pool; item <= ior->last;) { if (!HasOverlappedIoCompleted(&item->ov)) { assert(ior->overlapped_fd); CancelIoEx(ior->overlapped_fd, &item->ov); } if (item->ov.hEvent && item->ov.hEvent != ior) ior_put_event(ior, item->ov.hEvent); size_t i = 1; if ((item->single.iov_len & ior_WriteFile_flag) == 0) { /* Zap: Reading invalid data from 'item->sgv' */ MDBX_SUPPRESS_GOOFY_MSVC_ANALYZER(6385); while (item->sgv[i].Buffer) ++i; } item = ior_next(item, i); } } ior->async_waiting = INT_MAX; ior->async_completed = 0; ResetEvent(ior->async_done); #endif /* !Windows */ ior->slots_left = ior->allocated; ior->last = nullptr; } static void ior_cleanup(osal_ioring_t *ior, const size_t since) { osal_ioring_reset(ior); #if defined(_WIN32) || defined(_WIN64) for (size_t i = since; i < ior->event_stack; ++i) { /* Zap: Using uninitialized memory '**ior.event_pool' */ MDBX_SUPPRESS_GOOFY_MSVC_ANALYZER(6001); CloseHandle(ior->event_pool[i]); } ior->event_stack = 0; #else (void)since; #endif /* Windows */ } MDBX_INTERNAL int osal_ioring_resize(osal_ioring_t *ior, size_t items) { assert(items > 0 && items < INT_MAX / sizeof(ior_item_t)); #if defined(_WIN32) || defined(_WIN64) if (ior->state & IOR_STATE_LOCKED) return MDBX_SUCCESS; const bool useSetFileIoOverlappedRange = ior->overlapped_fd && imports.SetFileIoOverlappedRange && items > 42; const size_t ceiling = useSetFileIoOverlappedRange ? ((items < 65536 / 2 / sizeof(ior_item_t)) ? 65536 : 65536 * 4) : 1024; const size_t bytes = ceil_powerof2(sizeof(ior_item_t) * items, ceiling); items = bytes / sizeof(ior_item_t); #endif /* Windows */ if (items != ior->allocated) { assert(items >= osal_ioring_used(ior)); if (items < ior->allocated) ior_cleanup(ior, items); #if defined(_WIN32) || defined(_WIN64) void *ptr = osal_realloc(ior->event_pool, (items + /* extra for waiting the async_done */ 1) * sizeof(HANDLE)); if (unlikely(!ptr)) return MDBX_ENOMEM; ior->event_pool = ptr; int err = osal_memalign_alloc(ceiling, bytes, &ptr); if (unlikely(err != MDBX_SUCCESS)) return err; if (ior->pool) { memcpy(ptr, ior->pool, ior->allocated * sizeof(ior_item_t)); osal_memalign_free(ior->pool); } #else void *ptr = osal_realloc(ior->pool, sizeof(ior_item_t) * items); if (unlikely(!ptr)) return MDBX_ENOMEM; #endif ior->pool = ptr; if (items > ior->allocated) memset(ior->pool + ior->allocated, 0, sizeof(ior_item_t) * (items - ior->allocated)); ior->allocated = (unsigned)items; ior->boundary = ptr_disp(ior->pool, ior->allocated); #if defined(_WIN32) || defined(_WIN64) if (useSetFileIoOverlappedRange) { if (imports.SetFileIoOverlappedRange(ior->overlapped_fd, ptr, (ULONG)bytes)) ior->state += IOR_STATE_LOCKED; else return GetLastError(); } #endif /* Windows */ } return MDBX_SUCCESS; } MDBX_INTERNAL void osal_ioring_destroy(osal_ioring_t *ior) { if (ior->allocated) ior_cleanup(ior, 0); #if defined(_WIN32) || defined(_WIN64) osal_memalign_free(ior->pool); osal_free(ior->event_pool); CloseHandle(ior->async_done); if (ior->overlapped_fd) CloseHandle(ior->overlapped_fd); #else osal_free(ior->pool); #endif memset(ior, 0, sizeof(osal_ioring_t)); } /*----------------------------------------------------------------------------*/ MDBX_INTERNAL int osal_removefile(const pathchar_t *pathname) { #if defined(_WIN32) || defined(_WIN64) return DeleteFileW(pathname) ? MDBX_SUCCESS : (int)GetLastError(); #else return unlink(pathname) ? errno : MDBX_SUCCESS; #endif } #if !(defined(_WIN32) || defined(_WIN64)) static bool is_valid_fd(int fd) { return !(isatty(fd) < 0 && errno == EBADF); } #endif /*! Windows */ MDBX_INTERNAL int osal_removedirectory(const pathchar_t *pathname) { #if defined(_WIN32) || defined(_WIN64) return RemoveDirectoryW(pathname) ? MDBX_SUCCESS : (int)GetLastError(); #else return rmdir(pathname) ? errno : MDBX_SUCCESS; #endif } MDBX_INTERNAL int osal_fileexists(const pathchar_t *pathname) { #if defined(_WIN32) || defined(_WIN64) if (GetFileAttributesW(pathname) != INVALID_FILE_ATTRIBUTES) return MDBX_RESULT_TRUE; int err = GetLastError(); return (err == ERROR_FILE_NOT_FOUND || err == ERROR_PATH_NOT_FOUND) ? MDBX_RESULT_FALSE : err; #else if (access(pathname, F_OK) == 0) return MDBX_RESULT_TRUE; int err = errno; return (err == ENOENT || err == ENOTDIR) ? MDBX_RESULT_FALSE : err; #endif } MDBX_INTERNAL pathchar_t *osal_fileext(const pathchar_t *pathname, size_t len) { const pathchar_t *ext = nullptr; for (size_t i = 0; i < len && pathname[i]; i++) if (pathname[i] == '.') ext = pathname + i; else if (osal_isdirsep(pathname[i])) ext = nullptr; return (pathchar_t *)ext; } MDBX_INTERNAL bool osal_pathequal(const pathchar_t *l, const pathchar_t *r, size_t len) { #if defined(_WIN32) || defined(_WIN64) for (size_t i = 0; i < len; ++i) { pathchar_t a = l[i]; pathchar_t b = r[i]; a = (a == '\\') ? '/' : a; b = (b == '\\') ? '/' : b; if (a != b) return false; } return true; #else return memcmp(l, r, len * sizeof(pathchar_t)) == 0; #endif } MDBX_INTERNAL int osal_openfile(const enum osal_openfile_purpose purpose, const MDBX_env *env, const pathchar_t *pathname, mdbx_filehandle_t *fd, mdbx_mode_t unix_mode_bits) { *fd = INVALID_HANDLE_VALUE; #if defined(_WIN32) || defined(_WIN64) DWORD CreationDisposition = unix_mode_bits ? OPEN_ALWAYS : OPEN_EXISTING; DWORD FlagsAndAttributes = FILE_FLAG_POSIX_SEMANTICS | FILE_ATTRIBUTE_NOT_CONTENT_INDEXED; DWORD DesiredAccess = FILE_READ_ATTRIBUTES; DWORD ShareMode = (env->flags & MDBX_EXCLUSIVE) ? 0 : (FILE_SHARE_READ | FILE_SHARE_WRITE); switch (purpose) { default: return ERROR_INVALID_PARAMETER; case MDBX_OPEN_LCK: CreationDisposition = OPEN_ALWAYS; DesiredAccess |= GENERIC_READ | GENERIC_WRITE; FlagsAndAttributes |= FILE_ATTRIBUTE_HIDDEN | FILE_ATTRIBUTE_TEMPORARY; break; case MDBX_OPEN_DXB_READ: CreationDisposition = OPEN_EXISTING; DesiredAccess |= GENERIC_READ; ShareMode |= FILE_SHARE_READ; break; case MDBX_OPEN_DXB_LAZY: DesiredAccess |= GENERIC_READ | GENERIC_WRITE; break; case MDBX_OPEN_DXB_OVERLAPPED_DIRECT: FlagsAndAttributes |= FILE_FLAG_NO_BUFFERING; /* fall through */ __fallthrough; case MDBX_OPEN_DXB_OVERLAPPED: FlagsAndAttributes |= FILE_FLAG_OVERLAPPED; /* fall through */ __fallthrough; case MDBX_OPEN_DXB_DSYNC: CreationDisposition = OPEN_EXISTING; DesiredAccess |= GENERIC_WRITE | GENERIC_READ; FlagsAndAttributes |= FILE_FLAG_WRITE_THROUGH; break; case MDBX_OPEN_COPY: CreationDisposition = CREATE_NEW; ShareMode = 0; DesiredAccess |= GENERIC_WRITE; if (env->ps >= globals.sys_pagesize) FlagsAndAttributes |= FILE_FLAG_NO_BUFFERING; break; case MDBX_OPEN_DELETE: CreationDisposition = OPEN_EXISTING; ShareMode |= FILE_SHARE_DELETE; DesiredAccess = FILE_READ_ATTRIBUTES | FILE_WRITE_ATTRIBUTES | DELETE | SYNCHRONIZE; break; } *fd = CreateFileW(pathname, DesiredAccess, ShareMode, nullptr, CreationDisposition, FlagsAndAttributes, nullptr); if (*fd == INVALID_HANDLE_VALUE) { int err = (int)GetLastError(); if (err == ERROR_ACCESS_DENIED && purpose == MDBX_OPEN_LCK) { if (GetFileAttributesW(pathname) == INVALID_FILE_ATTRIBUTES && GetLastError() == ERROR_FILE_NOT_FOUND) err = ERROR_FILE_NOT_FOUND; } return err; } BY_HANDLE_FILE_INFORMATION info; if (!GetFileInformationByHandle(*fd, &info)) { int err = (int)GetLastError(); CloseHandle(*fd); *fd = INVALID_HANDLE_VALUE; return err; } const DWORD AttributesDiff = (info.dwFileAttributes ^ FlagsAndAttributes) & (FILE_ATTRIBUTE_HIDDEN | FILE_ATTRIBUTE_NOT_CONTENT_INDEXED | FILE_ATTRIBUTE_TEMPORARY | FILE_ATTRIBUTE_COMPRESSED); if (AttributesDiff) (void)SetFileAttributesW(pathname, info.dwFileAttributes ^ AttributesDiff); #else int flags = unix_mode_bits ? O_CREAT : 0; switch (purpose) { default: return EINVAL; case MDBX_OPEN_LCK: flags |= O_RDWR; break; case MDBX_OPEN_DXB_READ: flags = O_RDONLY; break; case MDBX_OPEN_DXB_LAZY: flags |= O_RDWR; break; case MDBX_OPEN_COPY: flags = O_CREAT | O_WRONLY | O_EXCL; break; case MDBX_OPEN_DXB_DSYNC: flags |= O_WRONLY; #if defined(O_DSYNC) flags |= O_DSYNC; #elif defined(O_SYNC) flags |= O_SYNC; #elif defined(O_FSYNC) flags |= O_FSYNC; #endif break; case MDBX_OPEN_DELETE: flags = O_RDWR; break; } const bool direct_nocache_for_copy = env->ps >= globals.sys_pagesize && purpose == MDBX_OPEN_COPY; if (direct_nocache_for_copy) { #if defined(O_DIRECT) flags |= O_DIRECT; #endif /* O_DIRECT */ #if defined(O_NOCACHE) flags |= O_NOCACHE; #endif /* O_NOCACHE */ } #ifdef O_CLOEXEC flags |= O_CLOEXEC; #endif /* O_CLOEXEC */ /* Safeguard for https://libmdbx.dqdkfa.ru/dead-github/issues/144 */ #if STDIN_FILENO == 0 && STDOUT_FILENO == 1 && STDERR_FILENO == 2 int stub_fd0 = -1, stub_fd1 = -1, stub_fd2 = -1; static const char dev_null[] = "/dev/null"; if (!is_valid_fd(STDIN_FILENO)) { WARNING("STD%s_FILENO/%d is invalid, open %s for temporary stub", "IN", STDIN_FILENO, dev_null); stub_fd0 = open(dev_null, O_RDONLY | O_NOCTTY); } if (!is_valid_fd(STDOUT_FILENO)) { WARNING("STD%s_FILENO/%d is invalid, open %s for temporary stub", "OUT", STDOUT_FILENO, dev_null); stub_fd1 = open(dev_null, O_WRONLY | O_NOCTTY); } if (!is_valid_fd(STDERR_FILENO)) { WARNING("STD%s_FILENO/%d is invalid, open %s for temporary stub", "ERR", STDERR_FILENO, dev_null); stub_fd2 = open(dev_null, O_WRONLY | O_NOCTTY); } #else #error "Unexpected or unsupported UNIX or POSIX system" #endif /* STDIN_FILENO == 0 && STDERR_FILENO == 2 */ *fd = open(pathname, flags, unix_mode_bits); #if defined(O_DIRECT) if (*fd < 0 && (flags & O_DIRECT) && (errno == EINVAL || errno == EAFNOSUPPORT)) { flags &= ~(O_DIRECT | O_EXCL); *fd = open(pathname, flags, unix_mode_bits); } #endif /* O_DIRECT */ if (*fd < 0 && errno == EACCES && purpose == MDBX_OPEN_LCK) { struct stat unused; if (stat(pathname, &unused) == 0 || errno != ENOENT) errno = EACCES /* restore errno if file exists */; } /* Safeguard for https://libmdbx.dqdkfa.ru/dead-github/issues/144 */ #if STDIN_FILENO == 0 && STDOUT_FILENO == 1 && STDERR_FILENO == 2 if (*fd == STDIN_FILENO) { WARNING("Got STD%s_FILENO/%d, avoid using it by dup(fd)", "IN", STDIN_FILENO); assert(stub_fd0 == -1); *fd = dup(stub_fd0 = *fd); } if (*fd == STDOUT_FILENO) { WARNING("Got STD%s_FILENO/%d, avoid using it by dup(fd)", "OUT", STDOUT_FILENO); assert(stub_fd1 == -1); *fd = dup(stub_fd1 = *fd); } if (*fd == STDERR_FILENO) { WARNING("Got STD%s_FILENO/%d, avoid using it by dup(fd)", "ERR", STDERR_FILENO); assert(stub_fd2 == -1); *fd = dup(stub_fd2 = *fd); } if (stub_fd0 != -1) close(stub_fd0); if (stub_fd1 != -1) close(stub_fd1); if (stub_fd2 != -1) close(stub_fd2); if (*fd >= STDIN_FILENO && *fd <= STDERR_FILENO) { ERROR("Rejecting the use of a FD in the range " "STDIN_FILENO/%d..STDERR_FILENO/%d to prevent database corruption", STDIN_FILENO, STDERR_FILENO); close(*fd); return EBADF; } #else #error "Unexpected or unsupported UNIX or POSIX system" #endif /* STDIN_FILENO == 0 && STDERR_FILENO == 2 */ if (*fd < 0) return errno; #if defined(FD_CLOEXEC) && !defined(O_CLOEXEC) const int fd_flags = fcntl(*fd, F_GETFD); if (fd_flags != -1) (void)fcntl(*fd, F_SETFD, fd_flags | FD_CLOEXEC); #endif /* FD_CLOEXEC && !O_CLOEXEC */ if (direct_nocache_for_copy) { #if defined(F_NOCACHE) && !defined(O_NOCACHE) (void)fcntl(*fd, F_NOCACHE, 1); #endif /* F_NOCACHE */ } #endif return MDBX_SUCCESS; } MDBX_INTERNAL int osal_closefile(mdbx_filehandle_t fd) { #if defined(_WIN32) || defined(_WIN64) return CloseHandle(fd) ? MDBX_SUCCESS : (int)GetLastError(); #else assert(fd > STDERR_FILENO); return (close(fd) == 0) ? MDBX_SUCCESS : errno; #endif } MDBX_INTERNAL int osal_pread(mdbx_filehandle_t fd, void *buf, size_t bytes, uint64_t offset) { if (bytes > MAX_WRITE) return MDBX_EINVAL; #if defined(_WIN32) || defined(_WIN64) OVERLAPPED ov; ov.hEvent = 0; ov.Offset = (DWORD)offset; ov.OffsetHigh = HIGH_DWORD(offset); DWORD read = 0; if (unlikely(!ReadFile(fd, buf, (DWORD)bytes, &read, &ov))) { int rc = (int)GetLastError(); return (rc == MDBX_SUCCESS) ? /* paranoia */ ERROR_READ_FAULT : rc; } #else STATIC_ASSERT_MSG(sizeof(off_t) >= sizeof(size_t), "libmdbx requires 64-bit file I/O on 64-bit systems"); intptr_t read = pread(fd, buf, bytes, offset); if (read < 0) { int rc = errno; return (rc == MDBX_SUCCESS) ? /* paranoia */ MDBX_EIO : rc; } #endif return (bytes == (size_t)read) ? MDBX_SUCCESS : MDBX_ENODATA; } MDBX_INTERNAL int osal_pwrite(mdbx_filehandle_t fd, const void *buf, size_t bytes, uint64_t offset) { while (true) { #if defined(_WIN32) || defined(_WIN64) OVERLAPPED ov; ov.hEvent = 0; ov.Offset = (DWORD)offset; ov.OffsetHigh = HIGH_DWORD(offset); DWORD written; if (unlikely(!WriteFile(fd, buf, likely(bytes <= MAX_WRITE) ? (DWORD)bytes : MAX_WRITE, &written, &ov))) return (int)GetLastError(); if (likely(bytes == written)) return MDBX_SUCCESS; #else STATIC_ASSERT_MSG(sizeof(off_t) >= sizeof(size_t), "libmdbx requires 64-bit file I/O on 64-bit systems"); const intptr_t written = pwrite(fd, buf, likely(bytes <= MAX_WRITE) ? bytes : MAX_WRITE, offset); if (likely(bytes == (size_t)written)) return MDBX_SUCCESS; if (written < 0) { const int rc = errno; if (rc != EINTR) return rc; continue; } #endif bytes -= written; offset += written; buf = ptr_disp(buf, written); } } MDBX_INTERNAL int osal_write(mdbx_filehandle_t fd, const void *buf, size_t bytes) { while (true) { #if defined(_WIN32) || defined(_WIN64) DWORD written; if (unlikely(!WriteFile(fd, buf, likely(bytes <= MAX_WRITE) ? (DWORD)bytes : MAX_WRITE, &written, nullptr))) return (int)GetLastError(); if (likely(bytes == written)) return MDBX_SUCCESS; #else STATIC_ASSERT_MSG(sizeof(off_t) >= sizeof(size_t), "libmdbx requires 64-bit file I/O on 64-bit systems"); const intptr_t written = write(fd, buf, likely(bytes <= MAX_WRITE) ? bytes : MAX_WRITE); if (likely(bytes == (size_t)written)) return MDBX_SUCCESS; if (written < 0) { const int rc = errno; if (rc != EINTR) return rc; continue; } #endif bytes -= written; buf = ptr_disp(buf, written); } } int osal_pwritev(mdbx_filehandle_t fd, struct iovec *iov, size_t sgvcnt, uint64_t offset) { size_t expected = 0; for (size_t i = 0; i < sgvcnt; ++i) expected += iov[i].iov_len; #if !MDBX_HAVE_PWRITEV size_t written = 0; for (size_t i = 0; i < sgvcnt; ++i) { int rc = osal_pwrite(fd, iov[i].iov_base, iov[i].iov_len, offset); if (unlikely(rc != MDBX_SUCCESS)) return rc; written += iov[i].iov_len; offset += iov[i].iov_len; } return (expected == written) ? MDBX_SUCCESS : MDBX_EIO /* ERROR_WRITE_FAULT */; #else int rc; intptr_t written; do { STATIC_ASSERT_MSG(sizeof(off_t) >= sizeof(size_t), "libmdbx requires 64-bit file I/O on 64-bit systems"); written = pwritev(fd, iov, sgvcnt, offset); if (likely(expected == (size_t)written)) return MDBX_SUCCESS; rc = errno; } while (rc == EINTR); return (written < 0) ? rc : MDBX_EIO /* Use which error code? */; #endif } MDBX_INTERNAL int osal_fsync(mdbx_filehandle_t fd, enum osal_syncmode_bits mode_bits) { #if defined(_WIN32) || defined(_WIN64) if ((mode_bits & (MDBX_SYNC_DATA | MDBX_SYNC_IODQ)) && !FlushFileBuffers(fd)) return (int)GetLastError(); return MDBX_SUCCESS; #else #if defined(__APPLE__) && MDBX_APPLE_SPEED_INSTEADOF_DURABILITY == MDBX_OSX_WANNA_DURABILITY if (mode_bits & MDBX_SYNC_IODQ) return likely(fcntl(fd, F_FULLFSYNC) != -1) ? MDBX_SUCCESS : errno; #endif /* MacOS */ /* LY: This approach is always safe and without appreciable performance * degradation, even on a kernel with fdatasync's bug. * * For more info about of a corresponding fdatasync() bug * see http://www.spinics.net/lists/linux-ext4/msg33714.html */ while (1) { switch (mode_bits & (MDBX_SYNC_DATA | MDBX_SYNC_SIZE)) { case MDBX_SYNC_NONE: case MDBX_SYNC_KICK: return MDBX_SUCCESS /* nothing to do */; #if defined(_POSIX_SYNCHRONIZED_IO) && _POSIX_SYNCHRONIZED_IO > 0 case MDBX_SYNC_DATA: if (likely(fdatasync(fd) == 0)) return MDBX_SUCCESS; break /* error */; #if defined(__linux__) || defined(__gnu_linux__) case MDBX_SYNC_SIZE: assert(globals.linux_kernel_version >= 0x03060000); return MDBX_SUCCESS; #endif /* Linux */ #endif /* _POSIX_SYNCHRONIZED_IO > 0 */ default: if (likely(fsync(fd) == 0)) return MDBX_SUCCESS; } int rc = errno; if (rc != EINTR) return rc; } #endif } int osal_filesize(mdbx_filehandle_t fd, uint64_t *length) { #if defined(_WIN32) || defined(_WIN64) BY_HANDLE_FILE_INFORMATION info; if (!GetFileInformationByHandle(fd, &info)) return (int)GetLastError(); *length = info.nFileSizeLow | (uint64_t)info.nFileSizeHigh << 32; #else struct stat st; STATIC_ASSERT_MSG(sizeof(off_t) <= sizeof(uint64_t), "libmdbx requires 64-bit file I/O on 64-bit systems"); if (fstat(fd, &st)) return errno; *length = st.st_size; #endif return MDBX_SUCCESS; } MDBX_INTERNAL int osal_is_pipe(mdbx_filehandle_t fd) { #if defined(_WIN32) || defined(_WIN64) switch (GetFileType(fd)) { case FILE_TYPE_DISK: return MDBX_RESULT_FALSE; case FILE_TYPE_CHAR: case FILE_TYPE_PIPE: return MDBX_RESULT_TRUE; default: return (int)GetLastError(); } #else struct stat info; if (fstat(fd, &info)) return errno; switch (info.st_mode & S_IFMT) { case S_IFBLK: case S_IFREG: return MDBX_RESULT_FALSE; case S_IFCHR: case S_IFIFO: case S_IFSOCK: return MDBX_RESULT_TRUE; case S_IFDIR: case S_IFLNK: default: return MDBX_INCOMPATIBLE; } #endif } MDBX_INTERNAL int osal_ftruncate(mdbx_filehandle_t fd, uint64_t length) { #if defined(_WIN32) || defined(_WIN64) if (imports.SetFileInformationByHandle) { FILE_END_OF_FILE_INFO EndOfFileInfo; EndOfFileInfo.EndOfFile.QuadPart = length; return imports.SetFileInformationByHandle(fd, FileEndOfFileInfo, &EndOfFileInfo, sizeof(FILE_END_OF_FILE_INFO)) ? MDBX_SUCCESS : (int)GetLastError(); } else { LARGE_INTEGER li; li.QuadPart = length; return (SetFilePointerEx(fd, li, nullptr, FILE_BEGIN) && SetEndOfFile(fd)) ? MDBX_SUCCESS : (int)GetLastError(); } #else STATIC_ASSERT_MSG(sizeof(off_t) >= sizeof(size_t), "libmdbx requires 64-bit file I/O on 64-bit systems"); return ftruncate(fd, length) == 0 ? MDBX_SUCCESS : errno; #endif } MDBX_INTERNAL int osal_fseek(mdbx_filehandle_t fd, uint64_t pos) { #if defined(_WIN32) || defined(_WIN64) LARGE_INTEGER li; li.QuadPart = pos; return SetFilePointerEx(fd, li, nullptr, FILE_BEGIN) ? MDBX_SUCCESS : (int)GetLastError(); #else STATIC_ASSERT_MSG(sizeof(off_t) >= sizeof(size_t), "libmdbx requires 64-bit file I/O on 64-bit systems"); return (lseek(fd, pos, SEEK_SET) < 0) ? errno : MDBX_SUCCESS; #endif } /*----------------------------------------------------------------------------*/ MDBX_INTERNAL int osal_thread_create(osal_thread_t *thread, THREAD_RESULT(THREAD_CALL *start_routine)(void *), void *arg) { #if defined(_WIN32) || defined(_WIN64) *thread = CreateThread(nullptr, 0, start_routine, arg, 0, nullptr); return *thread ? MDBX_SUCCESS : (int)GetLastError(); #else return pthread_create(thread, nullptr, start_routine, arg); #endif } MDBX_INTERNAL int osal_thread_join(osal_thread_t thread) { #if defined(_WIN32) || defined(_WIN64) DWORD code = WaitForSingleObject(thread, INFINITE); return waitstatus2errcode(code); #else void *unused_retval = &unused_retval; return pthread_join(thread, &unused_retval); #endif } /*----------------------------------------------------------------------------*/ MDBX_INTERNAL int osal_msync(const osal_mmap_t *map, size_t offset, size_t length, enum osal_syncmode_bits mode_bits) { if (!MDBX_MMAP_NEEDS_JOLT && mode_bits == MDBX_SYNC_NONE) return MDBX_SUCCESS; void *ptr = ptr_disp(map->base, offset); #if defined(_WIN32) || defined(_WIN64) if (!FlushViewOfFile(ptr, length)) return (int)GetLastError(); if ((mode_bits & (MDBX_SYNC_DATA | MDBX_SYNC_IODQ)) && !FlushFileBuffers(map->fd)) return (int)GetLastError(); #else #if defined(__linux__) || defined(__gnu_linux__) /* Since Linux 2.6.19, MS_ASYNC is in fact a no-op. The kernel properly * tracks dirty pages and flushes ones as necessary. */ // // However, this behavior may be changed in custom kernels, // so just leave such optimization to the libc discretion. // NOTE: The MDBX_MMAP_NEEDS_JOLT must be defined to 1 for such cases. // // assert(mdbx.linux_kernel_version > 0x02061300); // if (mode_bits <= MDBX_SYNC_KICK) // return MDBX_SUCCESS; #endif /* Linux */ if (msync(ptr, length, (mode_bits & MDBX_SYNC_DATA) ? MS_SYNC : MS_ASYNC)) return errno; if ((mode_bits & MDBX_SYNC_SIZE) && fsync(map->fd)) return errno; #endif return MDBX_SUCCESS; } MDBX_INTERNAL int osal_check_fs_rdonly(mdbx_filehandle_t handle, const pathchar_t *pathname, int err) { #if defined(_WIN32) || defined(_WIN64) (void)pathname; (void)err; if (!imports.GetVolumeInformationByHandleW) return MDBX_ENOSYS; DWORD unused, flags; if (!imports.GetVolumeInformationByHandleW(handle, nullptr, 0, nullptr, &unused, &flags, nullptr, 0)) return (int)GetLastError(); if ((flags & FILE_READ_ONLY_VOLUME) == 0) return MDBX_EACCESS; #else struct statvfs info; if (err != MDBX_ENOFILE) { if (statvfs(pathname, &info) == 0) return (info.f_flag & ST_RDONLY) ? MDBX_SUCCESS : err; if (errno != MDBX_ENOFILE) return errno; } if (fstatvfs(handle, &info)) return errno; if ((info.f_flag & ST_RDONLY) == 0) return (err == MDBX_ENOFILE) ? MDBX_EACCESS : err; #endif /* !Windows */ return MDBX_SUCCESS; } MDBX_INTERNAL int osal_check_fs_incore(mdbx_filehandle_t handle) { #if defined(_WIN32) || defined(_WIN64) (void)handle; #else struct statfs statfs_info; if (fstatfs(handle, &statfs_info)) return errno; #if defined(__OpenBSD__) const unsigned type = 0; #else const unsigned type = statfs_info.f_type; #endif switch (type) { case 0x28cd3d45 /* CRAMFS_MAGIC */: case 0x858458f6 /* RAMFS_MAGIC */: case 0x01021994 /* TMPFS_MAGIC */: case 0x73717368 /* SQUASHFS_MAGIC */: case 0x7275 /* ROMFS_MAGIC */: return MDBX_RESULT_TRUE; } #if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__BSD__) || defined(__bsdi__) || \ defined(__DragonFly__) || defined(__APPLE__) || defined(__MACH__) || defined(MFSNAMELEN) || \ defined(MFSTYPENAMELEN) || defined(VFS_NAMELEN) const char *const name = statfs_info.f_fstypename; const size_t name_len = sizeof(statfs_info.f_fstypename); #else const char *const name = ""; const size_t name_len = 0; #endif if (name_len) { if (strncasecmp("tmpfs", name, 6) == 0 || strncasecmp("mfs", name, 4) == 0 || strncasecmp("ramfs", name, 6) == 0 || strncasecmp("romfs", name, 6) == 0) return MDBX_RESULT_TRUE; } #endif /* !Windows */ return MDBX_RESULT_FALSE; } static int osal_check_fs_local(mdbx_filehandle_t handle, int flags) { #if defined(_WIN32) || defined(_WIN64) if (globals.running_under_Wine && !(flags & MDBX_EXCLUSIVE)) return ERROR_NOT_CAPABLE /* workaround for Wine */; if (GetFileType(handle) != FILE_TYPE_DISK) return ERROR_FILE_OFFLINE; if (imports.GetFileInformationByHandleEx) { FILE_REMOTE_PROTOCOL_INFO RemoteProtocolInfo; if (imports.GetFileInformationByHandleEx(handle, FileRemoteProtocolInfo, &RemoteProtocolInfo, sizeof(RemoteProtocolInfo))) { if ((RemoteProtocolInfo.Flags & REMOTE_PROTOCOL_INFO_FLAG_OFFLINE) && !(flags & MDBX_RDONLY)) return ERROR_FILE_OFFLINE; if (!(RemoteProtocolInfo.Flags & REMOTE_PROTOCOL_INFO_FLAG_LOOPBACK) && !(flags & MDBX_EXCLUSIVE)) return ERROR_REMOTE_STORAGE_MEDIA_ERROR; } } if (imports.NtFsControlFile) { NTSTATUS rc; struct { WOF_EXTERNAL_INFO wof_info; union { WIM_PROVIDER_EXTERNAL_INFO wim_info; FILE_PROVIDER_EXTERNAL_INFO_V1 file_info; }; size_t reserved_for_microsoft_madness[42]; } GetExternalBacking_OutputBuffer; IO_STATUS_BLOCK StatusBlock; rc = imports.NtFsControlFile(handle, nullptr, nullptr, nullptr, &StatusBlock, FSCTL_GET_EXTERNAL_BACKING, nullptr, 0, &GetExternalBacking_OutputBuffer, sizeof(GetExternalBacking_OutputBuffer)); if (NT_SUCCESS(rc)) { if (!(flags & MDBX_EXCLUSIVE)) return ERROR_REMOTE_STORAGE_MEDIA_ERROR; } else if (rc != STATUS_OBJECT_NOT_EXTERNALLY_BACKED && rc != STATUS_INVALID_DEVICE_REQUEST && rc != STATUS_NOT_SUPPORTED) return ntstatus2errcode(rc); } if (imports.GetVolumeInformationByHandleW && imports.GetFinalPathNameByHandleW) { WCHAR *PathBuffer = osal_malloc(sizeof(WCHAR) * INT16_MAX); if (!PathBuffer) return MDBX_ENOMEM; int rc = MDBX_SUCCESS; DWORD VolumeSerialNumber, FileSystemFlags; if (!imports.GetVolumeInformationByHandleW(handle, PathBuffer, INT16_MAX, &VolumeSerialNumber, nullptr, &FileSystemFlags, nullptr, 0)) { rc = (int)GetLastError(); goto bailout; } if ((flags & MDBX_RDONLY) == 0) { if (FileSystemFlags & (FILE_SEQUENTIAL_WRITE_ONCE | FILE_READ_ONLY_VOLUME | FILE_VOLUME_IS_COMPRESSED)) { rc = ERROR_REMOTE_STORAGE_MEDIA_ERROR; goto bailout; } } if (imports.GetFinalPathNameByHandleW(handle, PathBuffer, INT16_MAX, FILE_NAME_NORMALIZED | VOLUME_NAME_NT)) { if (_wcsnicmp(PathBuffer, L"\\Device\\Mup\\", 12) == 0) { if (!(flags & MDBX_EXCLUSIVE)) { rc = ERROR_REMOTE_STORAGE_MEDIA_ERROR; goto bailout; } } } if (F_ISSET(flags, MDBX_RDONLY | MDBX_EXCLUSIVE) && (FileSystemFlags & FILE_READ_ONLY_VOLUME)) { /* without-LCK (exclusive readonly) mode for DB on a read-only volume */ goto bailout; } if (imports.GetFinalPathNameByHandleW(handle, PathBuffer, INT16_MAX, FILE_NAME_NORMALIZED | VOLUME_NAME_DOS)) { UINT DriveType = GetDriveTypeW(PathBuffer); if (DriveType == DRIVE_NO_ROOT_DIR && _wcsnicmp(PathBuffer, L"\\\\?\\", 4) == 0 && _wcsnicmp(PathBuffer + 5, L":\\", 2) == 0) { PathBuffer[7] = 0; DriveType = GetDriveTypeW(PathBuffer + 4); } switch (DriveType) { case DRIVE_CDROM: if (flags & MDBX_RDONLY) break; // fall through case DRIVE_UNKNOWN: case DRIVE_NO_ROOT_DIR: case DRIVE_REMOTE: default: if (!(flags & MDBX_EXCLUSIVE)) rc = ERROR_REMOTE_STORAGE_MEDIA_ERROR; // fall through case DRIVE_REMOVABLE: case DRIVE_FIXED: case DRIVE_RAMDISK: break; } } bailout: osal_free(PathBuffer); return rc; } #else struct statvfs statvfs_info; if (fstatvfs(handle, &statvfs_info)) return errno; #if defined(ST_LOCAL) || defined(ST_EXPORTED) const unsigned long st_flags = statvfs_info.f_flag; #endif /* ST_LOCAL || ST_EXPORTED */ #if defined(__NetBSD__) const unsigned type = 0; const char *const name = statvfs_info.f_fstypename; const size_t name_len = VFS_NAMELEN; #elif defined(_AIX) || defined(__OS400__) const char *const name = statvfs_info.f_basetype; const size_t name_len = sizeof(statvfs_info.f_basetype); struct stat st; if (fstat(handle, &st)) return errno; const unsigned type = st.st_vfstype; if ((st.st_flag & FS_REMOTE) != 0 && !(flags & MDBX_EXCLUSIVE)) return MDBX_EREMOTE; #elif defined(FSTYPSZ) || defined(_FSTYPSZ) const unsigned type = 0; const char *const name = statvfs_info.f_basetype; const size_t name_len = sizeof(statvfs_info.f_basetype); #elif defined(__sun) || defined(__SVR4) || defined(__svr4__) || defined(ST_FSTYPSZ) || defined(_ST_FSTYPSZ) const unsigned type = 0; struct stat st; if (fstat(handle, &st)) return errno; const char *const name = st.st_fstype; const size_t name_len = strlen(name); #else struct statfs statfs_info; if (fstatfs(handle, &statfs_info)) return errno; #if defined(__OpenBSD__) const unsigned type = 0; #else const unsigned type = statfs_info.f_type; #endif #if defined(MNT_LOCAL) || defined(MNT_EXPORTED) const unsigned long mnt_flags = statfs_info.f_flags; #endif /* MNT_LOCAL || MNT_EXPORTED */ #if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__BSD__) || defined(__bsdi__) || \ defined(__DragonFly__) || defined(__APPLE__) || defined(__MACH__) || defined(MFSNAMELEN) || \ defined(MFSTYPENAMELEN) || defined(VFS_NAMELEN) const char *const name = statfs_info.f_fstypename; const size_t name_len = sizeof(statfs_info.f_fstypename); #elif defined(__ANDROID_API__) && __ANDROID_API__ < 21 const char *const name = ""; const unsigned name_len = 0; #else const char *name = ""; unsigned name_len = 0; struct stat st; if (fstat(handle, &st)) return errno; char pathbuf[PATH_MAX]; FILE *mounted = nullptr; #if defined(__linux__) || defined(__gnu_linux__) mounted = setmntent("/proc/mounts", "r"); #endif /* Linux */ if (!mounted) mounted = setmntent("/etc/mtab", "r"); if (mounted) { const struct mntent *ent; #if defined(_BSD_SOURCE) || defined(_SVID_SOURCE) || defined(__BIONIC__) || \ (defined(_DEFAULT_SOURCE) && __GLIBC_PREREQ(2, 19)) struct mntent entbuf; const bool should_copy = false; while (nullptr != (ent = getmntent_r(mounted, &entbuf, pathbuf, sizeof(pathbuf)))) #else const bool should_copy = true; while (nullptr != (ent = getmntent(mounted))) #endif { struct stat mnt; if (!stat(ent->mnt_dir, &mnt) && mnt.st_dev == st.st_dev) { if (should_copy) { name = strncpy(pathbuf, ent->mnt_fsname, name_len = sizeof(pathbuf) - 1); pathbuf[name_len] = 0; } else { name = ent->mnt_fsname; name_len = strlen(name); } break; } } endmntent(mounted); } #endif /* !xBSD && !Android/Bionic */ #endif if (name_len) { if (((name_len > 2 && strncasecmp("nfs", name, 3) == 0) || strncasecmp("cifs", name, name_len) == 0 || strncasecmp("ncpfs", name, name_len) == 0 || strncasecmp("smbfs", name, name_len) == 0 || strcasecmp("9P" /* WSL2 */, name) == 0 || ((name_len > 3 && strncasecmp("fuse", name, 4) == 0) && strncasecmp("fuseblk", name, name_len) != 0)) && !(flags & MDBX_EXCLUSIVE)) return MDBX_EREMOTE; if (strcasecmp("ftp", name) == 0 || strcasecmp("http", name) == 0 || strcasecmp("sshfs", name) == 0) return MDBX_EREMOTE; } #ifdef ST_LOCAL if ((st_flags & ST_LOCAL) == 0 && !(flags & MDBX_EXCLUSIVE)) return MDBX_EREMOTE; #elif defined(MNT_LOCAL) if ((mnt_flags & MNT_LOCAL) == 0 && !(flags & MDBX_EXCLUSIVE)) return MDBX_EREMOTE; #endif /* ST/MNT_LOCAL */ #ifdef ST_EXPORTED if ((st_flags & ST_EXPORTED) != 0 && !(flags & MDBX_RDONLY)) return MDBX_EREMOTE; #elif defined(MNT_EXPORTED) if ((mnt_flags & MNT_EXPORTED) != 0 && !(flags & MDBX_RDONLY)) return MDBX_EREMOTE; #endif /* ST/MNT_EXPORTED */ switch (type) { case 0xFF534D42 /* CIFS_MAGIC_NUMBER */: case 0x6969 /* NFS_SUPER_MAGIC */: case 0x564c /* NCP_SUPER_MAGIC */: case 0x517B /* SMB_SUPER_MAGIC */: #if defined(__digital__) || defined(__osf__) || defined(__osf) case 0x0E /* Tru64 NFS */: #endif #ifdef ST_FST_NFS case ST_FST_NFS: #endif if ((flags & MDBX_EXCLUSIVE) == 0) return MDBX_EREMOTE; case 0: default: break; } #endif /* Unix */ return MDBX_SUCCESS; } static int check_mmap_limit(const size_t limit) { const bool should_check = #if defined(__SANITIZE_ADDRESS__) true; #else RUNNING_ON_VALGRIND; #endif /* __SANITIZE_ADDRESS__ */ if (should_check) { intptr_t pagesize, total_ram_pages, avail_ram_pages; int err = mdbx_get_sysraminfo(&pagesize, &total_ram_pages, &avail_ram_pages); if (unlikely(err != MDBX_SUCCESS)) return err; const int log2page = log2n_powerof2(pagesize); if ((limit >> (log2page + 7)) > (size_t)total_ram_pages || (limit >> (log2page + 6)) > (size_t)avail_ram_pages) { ERROR("%s (%zu pages) is too large for available (%zu pages) or total " "(%zu pages) system RAM", "database upper size limit", limit >> log2page, avail_ram_pages, total_ram_pages); return MDBX_TOO_LARGE; } } return MDBX_SUCCESS; } MDBX_INTERNAL int osal_mmap(const int flags, osal_mmap_t *map, size_t size, const size_t limit, const unsigned options) { assert(size <= limit); map->limit = 0; map->current = 0; map->base = nullptr; map->filesize = 0; #if defined(_WIN32) || defined(_WIN64) map->section = nullptr; #endif /* Windows */ int err = osal_check_fs_local(map->fd, flags); if (unlikely(err != MDBX_SUCCESS)) return err; err = check_mmap_limit(limit); if (unlikely(err != MDBX_SUCCESS)) return err; if ((flags & MDBX_RDONLY) == 0 && (options & MMAP_OPTION_TRUNCATE) != 0) { err = osal_ftruncate(map->fd, size); VERBOSE("ftruncate %zu, err %d", size, err); if (err != MDBX_SUCCESS) return err; map->filesize = size; #if !(defined(_WIN32) || defined(_WIN64)) map->current = size; #endif /* !Windows */ } else { err = osal_filesize(map->fd, &map->filesize); VERBOSE("filesize %" PRIu64 ", err %d", map->filesize, err); if (err != MDBX_SUCCESS) return err; #if defined(_WIN32) || defined(_WIN64) if (map->filesize < size) { WARNING("file size (%zu) less than requested for mapping (%zu)", (size_t)map->filesize, size); size = (size_t)map->filesize; } #else map->current = (map->filesize > limit) ? limit : (size_t)map->filesize; #endif /* !Windows */ } #if defined(_WIN32) || defined(_WIN64) LARGE_INTEGER SectionSize; SectionSize.QuadPart = size; err = NtCreateSection(&map->section, /* DesiredAccess */ (flags & MDBX_WRITEMAP) ? SECTION_QUERY | SECTION_MAP_READ | SECTION_EXTEND_SIZE | SECTION_MAP_WRITE : SECTION_QUERY | SECTION_MAP_READ | SECTION_EXTEND_SIZE, /* ObjectAttributes */ nullptr, /* MaximumSize (InitialSize) */ &SectionSize, /* SectionPageProtection */ (flags & MDBX_RDONLY) ? PAGE_READONLY : PAGE_READWRITE, /* AllocationAttributes */ SEC_RESERVE, map->fd); if (!NT_SUCCESS(err)) return ntstatus2errcode(err); SIZE_T ViewSize = (flags & MDBX_RDONLY) ? 0 : globals.running_under_Wine ? size : limit; err = NtMapViewOfSection(map->section, GetCurrentProcess(), &map->base, /* ZeroBits */ 0, /* CommitSize */ 0, /* SectionOffset */ nullptr, &ViewSize, /* InheritDisposition */ ViewUnmap, /* AllocationType */ (flags & MDBX_RDONLY) ? 0 : MEM_RESERVE, /* Win32Protect */ (flags & MDBX_WRITEMAP) ? PAGE_READWRITE : PAGE_READONLY); if (!NT_SUCCESS(err)) { NtClose(map->section); map->section = 0; map->base = nullptr; return ntstatus2errcode(err); } assert(map->base != MAP_FAILED); map->current = (size_t)SectionSize.QuadPart; map->limit = ViewSize; #else /* Windows */ #ifndef MAP_TRYFIXED #define MAP_TRYFIXED 0 #endif #ifndef MAP_HASSEMAPHORE #define MAP_HASSEMAPHORE 0 #endif #ifndef MAP_CONCEAL #define MAP_CONCEAL 0 #endif #ifndef MAP_NOSYNC #define MAP_NOSYNC 0 #endif #ifndef MAP_FIXED_NOREPLACE #define MAP_FIXED_NOREPLACE 0 #endif #ifndef MAP_NORESERVE #define MAP_NORESERVE 0 #endif map->base = mmap(nullptr, limit, (flags & MDBX_WRITEMAP) ? PROT_READ | PROT_WRITE : PROT_READ, MAP_SHARED | MAP_FILE | MAP_NORESERVE | (F_ISSET(flags, MDBX_UTTERLY_NOSYNC) ? MAP_NOSYNC : 0) | ((options & MMAP_OPTION_SEMAPHORE) ? MAP_HASSEMAPHORE | MAP_NOSYNC : MAP_CONCEAL), map->fd, 0); if (unlikely(map->base == MAP_FAILED)) { map->limit = 0; map->current = 0; map->base = nullptr; assert(errno != 0); return errno; } map->limit = limit; #ifdef MADV_DONTFORK if (unlikely(madvise(map->base, map->limit, MADV_DONTFORK) != 0)) return errno; #endif /* MADV_DONTFORK */ #ifdef MADV_NOHUGEPAGE (void)madvise(map->base, map->limit, MADV_NOHUGEPAGE); #endif /* MADV_NOHUGEPAGE */ #endif /* ! Windows */ VALGRIND_MAKE_MEM_DEFINED(map->base, map->current); MDBX_ASAN_UNPOISON_MEMORY_REGION(map->base, map->current); return MDBX_SUCCESS; } MDBX_INTERNAL int osal_munmap(osal_mmap_t *map) { VALGRIND_MAKE_MEM_NOACCESS(map->base, map->current); /* Unpoisoning is required for ASAN to avoid false-positive diagnostic * when this memory will re-used by malloc or another mmapping. * See https://libmdbx.dqdkfa.ru/dead-github/pull/93#issuecomment-613687203 */ MDBX_ASAN_UNPOISON_MEMORY_REGION(map->base, (map->filesize && map->filesize < map->limit) ? map->filesize : map->limit); #if defined(_WIN32) || defined(_WIN64) if (map->section) NtClose(map->section); NTSTATUS rc = NtUnmapViewOfSection(GetCurrentProcess(), map->base); if (!NT_SUCCESS(rc)) ntstatus2errcode(rc); #else if (unlikely(munmap(map->base, map->limit))) { assert(errno != 0); return errno; } #endif /* ! Windows */ map->limit = 0; map->current = 0; map->base = nullptr; return MDBX_SUCCESS; } MDBX_INTERNAL int osal_mresize(const int flags, osal_mmap_t *map, size_t size, size_t limit) { int rc = osal_filesize(map->fd, &map->filesize); VERBOSE("flags 0x%x, size %zu, limit %zu, filesize %" PRIu64, flags, size, limit, map->filesize); assert(size <= limit); if (rc != MDBX_SUCCESS) { map->filesize = 0; return rc; } #if defined(_WIN32) || defined(_WIN64) assert(size != map->current || limit != map->limit || size < map->filesize); NTSTATUS status; LARGE_INTEGER SectionSize; int err; if (limit == map->limit && size > map->current) { if ((flags & MDBX_RDONLY) && map->filesize >= size) { map->current = size; return MDBX_SUCCESS; } else if (!(flags & MDBX_RDONLY) && /* workaround for Wine */ imports.NtExtendSection) { /* growth rw-section */ SectionSize.QuadPart = size; status = imports.NtExtendSection(map->section, &SectionSize); if (!NT_SUCCESS(status)) return ntstatus2errcode(status); map->current = size; if (map->filesize < size) map->filesize = size; return MDBX_SUCCESS; } } if (limit > map->limit) { err = check_mmap_limit(limit); if (unlikely(err != MDBX_SUCCESS)) return err; /* check ability of address space for growth before unmap */ PVOID BaseAddress = (PBYTE)map->base + map->limit; SIZE_T RegionSize = limit - map->limit; status = NtAllocateVirtualMemory(GetCurrentProcess(), &BaseAddress, 0, &RegionSize, MEM_RESERVE, PAGE_NOACCESS); if (status == (NTSTATUS) /* STATUS_CONFLICTING_ADDRESSES */ 0xC0000018) return MDBX_UNABLE_EXTEND_MAPSIZE; if (!NT_SUCCESS(status)) return ntstatus2errcode(status); status = NtFreeVirtualMemory(GetCurrentProcess(), &BaseAddress, &RegionSize, MEM_RELEASE); if (!NT_SUCCESS(status)) return ntstatus2errcode(status); } /* Windows unable: * - shrink a mapped file; * - change size of mapped view; * - extend read-only mapping; * Therefore we should unmap/map entire section. */ if ((flags & MDBX_MRESIZE_MAY_UNMAP) == 0) { if (size <= map->current && limit == map->limit) return MDBX_SUCCESS; return MDBX_EPERM; } /* Unpoisoning is required for ASAN to avoid false-positive diagnostic * when this memory will re-used by malloc or another mmapping. * See https://libmdbx.dqdkfa.ru/dead-github/pull/93#issuecomment-613687203 */ MDBX_ASAN_UNPOISON_MEMORY_REGION(map->base, map->limit); status = NtUnmapViewOfSection(GetCurrentProcess(), map->base); if (!NT_SUCCESS(status)) return ntstatus2errcode(status); status = NtClose(map->section); map->section = nullptr; PVOID ReservedAddress = nullptr; SIZE_T ReservedSize = limit; if (!NT_SUCCESS(status)) { bailout_ntstatus: err = ntstatus2errcode(status); map->base = nullptr; map->current = map->limit = 0; if (ReservedAddress) { ReservedSize = 0; status = NtFreeVirtualMemory(GetCurrentProcess(), &ReservedAddress, &ReservedSize, MEM_RELEASE); assert(NT_SUCCESS(status)); (void)status; } return err; } retry_file_and_section: /* resizing of the file may take a while, * therefore we reserve address space to avoid occupy it by other threads */ ReservedAddress = map->base; status = NtAllocateVirtualMemory(GetCurrentProcess(), &ReservedAddress, 0, &ReservedSize, MEM_RESERVE, PAGE_NOACCESS); if (!NT_SUCCESS(status)) { ReservedAddress = nullptr; if (status != (NTSTATUS) /* STATUS_CONFLICTING_ADDRESSES */ 0xC0000018) goto bailout_ntstatus /* no way to recovery */; if (flags & MDBX_MRESIZE_MAY_MOVE) /* the base address could be changed */ map->base = nullptr; } if ((flags & MDBX_RDONLY) == 0 && map->filesize != size) { err = osal_ftruncate(map->fd, size); if (err == MDBX_SUCCESS) map->filesize = size; /* ignore error, because Windows unable shrink file * that already mapped (by another process) */ } SectionSize.QuadPart = size; status = NtCreateSection(&map->section, /* DesiredAccess */ (flags & MDBX_WRITEMAP) ? SECTION_QUERY | SECTION_MAP_READ | SECTION_EXTEND_SIZE | SECTION_MAP_WRITE : SECTION_QUERY | SECTION_MAP_READ | SECTION_EXTEND_SIZE, /* ObjectAttributes */ nullptr, /* MaximumSize (InitialSize) */ &SectionSize, /* SectionPageProtection */ (flags & MDBX_RDONLY) ? PAGE_READONLY : PAGE_READWRITE, /* AllocationAttributes */ SEC_RESERVE, map->fd); if (!NT_SUCCESS(status)) goto bailout_ntstatus; if (ReservedAddress) { /* release reserved address space */ ReservedSize = 0; status = NtFreeVirtualMemory(GetCurrentProcess(), &ReservedAddress, &ReservedSize, MEM_RELEASE); ReservedAddress = nullptr; if (!NT_SUCCESS(status)) goto bailout_ntstatus; } retry_mapview:; SIZE_T ViewSize = (flags & MDBX_RDONLY) ? size : limit; status = NtMapViewOfSection(map->section, GetCurrentProcess(), &map->base, /* ZeroBits */ 0, /* CommitSize */ 0, /* SectionOffset */ nullptr, &ViewSize, /* InheritDisposition */ ViewUnmap, /* AllocationType */ (flags & MDBX_RDONLY) ? 0 : MEM_RESERVE, /* Win32Protect */ (flags & MDBX_WRITEMAP) ? PAGE_READWRITE : PAGE_READONLY); if (!NT_SUCCESS(status)) { if (status == (NTSTATUS) /* STATUS_CONFLICTING_ADDRESSES */ 0xC0000018 && map->base && (flags & MDBX_MRESIZE_MAY_MOVE) != 0) { /* try remap at another base address */ map->base = nullptr; goto retry_mapview; } NtClose(map->section); map->section = nullptr; if (map->base && (size != map->current || limit != map->limit)) { /* try remap with previously size and limit, * but will return MDBX_UNABLE_EXTEND_MAPSIZE on success */ rc = (limit > map->limit) ? MDBX_UNABLE_EXTEND_MAPSIZE : MDBX_EPERM; size = map->current; ReservedSize = limit = map->limit; goto retry_file_and_section; } /* no way to recovery */ goto bailout_ntstatus; } assert(map->base != MAP_FAILED); map->current = (size_t)SectionSize.QuadPart; map->limit = ViewSize; #else /* Windows */ if (flags & MDBX_RDONLY) { if (size > map->filesize) rc = MDBX_UNABLE_EXTEND_MAPSIZE; else if (size < map->filesize && map->filesize > limit) rc = MDBX_EPERM; map->current = (map->filesize > limit) ? limit : (size_t)map->filesize; } else { if (size > map->filesize || (size < map->filesize && (flags & txn_shrink_allowed))) { rc = osal_ftruncate(map->fd, size); VERBOSE("ftruncate %zu, err %d", size, rc); if (rc != MDBX_SUCCESS) return rc; map->filesize = size; } if (map->current > size) { /* Clearing asan's bitmask for the region which released in shrinking, * since: * - after the shrinking we will get an exception when accessing * this region and (therefore) do not need the help of ASAN. * - this allows us to clear the mask only within the file size * when closing the mapping. */ MDBX_ASAN_UNPOISON_MEMORY_REGION(ptr_disp(map->base, size), ((map->current < map->limit) ? map->current : map->limit) - size); } map->current = (size < map->limit) ? size : map->limit; } if (limit == map->limit) return rc; if (limit < map->limit) { /* unmap an excess at end of mapping. */ // coverity[offset_free : FALSE] if (unlikely(munmap(ptr_disp(map->base, limit), map->limit - limit))) { assert(errno != 0); return errno; } map->limit = limit; return rc; } int err = check_mmap_limit(limit); if (unlikely(err != MDBX_SUCCESS)) return err; assert(limit > map->limit); void *ptr = MAP_FAILED; #if (defined(__linux__) || defined(__gnu_linux__)) && defined(_GNU_SOURCE) ptr = mremap(map->base, map->limit, limit, #if defined(MREMAP_MAYMOVE) (flags & MDBX_MRESIZE_MAY_MOVE) ? MREMAP_MAYMOVE : #endif /* MREMAP_MAYMOVE */ 0); if (ptr == MAP_FAILED) { err = errno; assert(err != 0); switch (err) { default: return err; case 0 /* paranoia */: case EAGAIN: case ENOMEM: return MDBX_UNABLE_EXTEND_MAPSIZE; case EFAULT /* MADV_DODUMP / MADV_DONTDUMP are mixed for mmap-range */: break; } } #endif /* Linux & _GNU_SOURCE */ const unsigned mmap_flags = MAP_CONCEAL | MAP_SHARED | MAP_FILE | MAP_NORESERVE | (F_ISSET(flags, MDBX_UTTERLY_NOSYNC) ? MAP_NOSYNC : 0); const unsigned mmap_prot = (flags & MDBX_WRITEMAP) ? PROT_READ | PROT_WRITE : PROT_READ; if (ptr == MAP_FAILED) { /* Try to mmap additional space beyond the end of mapping. */ ptr = mmap(ptr_disp(map->base, map->limit), limit - map->limit, mmap_prot, mmap_flags | MAP_FIXED_NOREPLACE, map->fd, map->limit); if (ptr == ptr_disp(map->base, map->limit)) /* успешно прилепили отображение в конец */ ptr = map->base; else if (ptr != MAP_FAILED) { /* the desired address is busy, unmap unsuitable one */ if (unlikely(munmap(ptr, limit - map->limit))) { assert(errno != 0); return errno; } ptr = MAP_FAILED; } else { err = errno; assert(err != 0); switch (err) { default: return err; case 0 /* paranoia */: case EAGAIN: case ENOMEM: return MDBX_UNABLE_EXTEND_MAPSIZE; case EEXIST: /* address busy */ case EINVAL: /* kernel don't support MAP_FIXED_NOREPLACE */ break; } } } if (ptr == MAP_FAILED) { /* unmap and map again whole region */ if ((flags & MDBX_MRESIZE_MAY_UNMAP) == 0) { /* TODO: Perhaps here it is worth to implement suspend/resume threads * and perform unmap/map as like for Windows. */ return MDBX_UNABLE_EXTEND_MAPSIZE; } if (unlikely(munmap(map->base, map->limit))) { assert(errno != 0); return errno; } // coverity[pass_freed_arg : FALSE] ptr = mmap(map->base, limit, mmap_prot, (flags & MDBX_MRESIZE_MAY_MOVE) ? mmap_flags : mmap_flags | (MAP_FIXED_NOREPLACE ? MAP_FIXED_NOREPLACE : MAP_FIXED), map->fd, 0); if (MAP_FIXED_NOREPLACE != 0 && MAP_FIXED_NOREPLACE != MAP_FIXED && unlikely(ptr == MAP_FAILED) && !(flags & MDBX_MRESIZE_MAY_MOVE) && errno == /* kernel don't support MAP_FIXED_NOREPLACE */ EINVAL) // coverity[pass_freed_arg : FALSE] ptr = mmap(map->base, limit, mmap_prot, mmap_flags | MAP_FIXED, map->fd, 0); if (unlikely(ptr == MAP_FAILED)) { /* try to restore prev mapping */ // coverity[pass_freed_arg : FALSE] ptr = mmap(map->base, map->limit, mmap_prot, (flags & MDBX_MRESIZE_MAY_MOVE) ? mmap_flags : mmap_flags | (MAP_FIXED_NOREPLACE ? MAP_FIXED_NOREPLACE : MAP_FIXED), map->fd, 0); if (MAP_FIXED_NOREPLACE != 0 && MAP_FIXED_NOREPLACE != MAP_FIXED && unlikely(ptr == MAP_FAILED) && !(flags & MDBX_MRESIZE_MAY_MOVE) && errno == /* kernel don't support MAP_FIXED_NOREPLACE */ EINVAL) // coverity[pass_freed_arg : FALSE] ptr = mmap(map->base, map->limit, mmap_prot, mmap_flags | MAP_FIXED, map->fd, 0); if (unlikely(ptr == MAP_FAILED)) { VALGRIND_MAKE_MEM_NOACCESS(map->base, map->current); /* Unpoisoning is required for ASAN to avoid false-positive diagnostic * when this memory will re-used by malloc or another mmapping. * See * https://libmdbx.dqdkfa.ru/dead-github/pull/93#issuecomment-613687203 */ MDBX_ASAN_UNPOISON_MEMORY_REGION(map->base, (map->current < map->limit) ? map->current : map->limit); map->limit = 0; map->current = 0; map->base = nullptr; assert(errno != 0); return errno; } rc = MDBX_UNABLE_EXTEND_MAPSIZE; limit = map->limit; } } assert(ptr && ptr != MAP_FAILED); if (map->base != ptr) { VALGRIND_MAKE_MEM_NOACCESS(map->base, map->current); /* Unpoisoning is required for ASAN to avoid false-positive diagnostic * when this memory will re-used by malloc or another mmapping. * See * https://libmdbx.dqdkfa.ru/dead-github/pull/93#issuecomment-613687203 */ MDBX_ASAN_UNPOISON_MEMORY_REGION(map->base, (map->current < map->limit) ? map->current : map->limit); VALGRIND_MAKE_MEM_DEFINED(ptr, map->current); MDBX_ASAN_UNPOISON_MEMORY_REGION(ptr, map->current); map->base = ptr; } map->limit = limit; map->current = size; #ifdef MADV_DONTFORK if (unlikely(madvise(map->base, map->limit, MADV_DONTFORK) != 0)) { assert(errno != 0); return errno; } #endif /* MADV_DONTFORK */ #ifdef MADV_NOHUGEPAGE (void)madvise(map->base, map->limit, MADV_NOHUGEPAGE); #endif /* MADV_NOHUGEPAGE */ #endif /* POSIX / Windows */ /* Zap: Redundant code */ MDBX_SUPPRESS_GOOFY_MSVC_ANALYZER(6287); assert(rc != MDBX_SUCCESS || (map->base != nullptr && map->base != MAP_FAILED && map->current == size && map->limit == limit && map->filesize >= size)); return rc; } /*----------------------------------------------------------------------------*/ __cold MDBX_INTERNAL void osal_jitter(bool tiny) { for (;;) { #if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || defined(__x86_64__) unsigned salt = 5296013u * (unsigned)__rdtsc(); salt ^= salt >> 11; salt *= 25810541u; #elif (defined(_WIN32) || defined(_WIN64)) && MDBX_WITHOUT_MSVC_CRT static ULONG state; const unsigned salt = (unsigned)RtlRandomEx(&state); #else const unsigned salt = rand(); #endif const int coin = salt % (tiny ? 29u : 43u); if (coin < 43 / 3) break; #if defined(_WIN32) || defined(_WIN64) if (coin < 43 * 2 / 3) SwitchToThread(); else { static HANDLE timer; if (!timer) timer = CreateWaitableTimer(NULL, TRUE, NULL); LARGE_INTEGER ft; ft.QuadPart = coin * (int64_t)-10; // Convert to 100 nanosecond interval, // negative value indicates relative time. SetWaitableTimer(timer, &ft, 0, NULL, NULL, 0); WaitForSingleObject(timer, INFINITE); // CloseHandle(timer); break; } #else sched_yield(); if (coin > 43 * 2 / 3) usleep(coin); #endif } } /*----------------------------------------------------------------------------*/ #if defined(_WIN32) || defined(_WIN64) static LARGE_INTEGER performance_frequency; #elif defined(__APPLE__) || defined(__MACH__) #include static uint64_t ratio_16dot16_to_monotine; #elif defined(__linux__) || defined(__gnu_linux__) static clockid_t posix_clockid; __cold static clockid_t choice_monoclock(void) { struct timespec probe; #if defined(CLOCK_BOOTTIME) if (clock_gettime(CLOCK_BOOTTIME, &probe) == 0) return CLOCK_BOOTTIME; #elif defined(CLOCK_MONOTONIC_RAW) if (clock_gettime(CLOCK_MONOTONIC_RAW, &probe) == 0) return CLOCK_MONOTONIC_RAW; #elif defined(CLOCK_MONOTONIC_COARSE) if (clock_gettime(CLOCK_MONOTONIC_COARSE, &probe) == 0) return CLOCK_MONOTONIC_COARSE; #endif return CLOCK_MONOTONIC; } #elif defined(CLOCK_MONOTONIC) #define posix_clockid CLOCK_MONOTONIC #else #define posix_clockid CLOCK_REALTIME #endif MDBX_INTERNAL uint64_t osal_16dot16_to_monotime(uint32_t seconds_16dot16) { #if defined(_WIN32) || defined(_WIN64) const uint64_t ratio = performance_frequency.QuadPart; #elif defined(__APPLE__) || defined(__MACH__) const uint64_t ratio = ratio_16dot16_to_monotine; #else const uint64_t ratio = UINT64_C(1000000000); #endif const uint64_t ret = (ratio * seconds_16dot16 + 32768) >> 16; return likely(ret || seconds_16dot16 == 0) ? ret : /* fix underflow */ 1; } static uint64_t monotime_limit; MDBX_INTERNAL uint32_t osal_monotime_to_16dot16(uint64_t monotime) { if (unlikely(monotime > monotime_limit)) return UINT32_MAX; const uint32_t ret = #if defined(_WIN32) || defined(_WIN64) (uint32_t)((monotime << 16) / performance_frequency.QuadPart); #elif defined(__APPLE__) || defined(__MACH__) (uint32_t)((monotime << 16) / ratio_16dot16_to_monotine); #else (uint32_t)((monotime << 7) / 1953125); #endif return ret; } MDBX_INTERNAL uint64_t osal_monotime(void) { #if defined(_WIN32) || defined(_WIN64) LARGE_INTEGER counter; if (QueryPerformanceCounter(&counter)) return counter.QuadPart; #elif defined(__APPLE__) || defined(__MACH__) return mach_absolute_time(); #else struct timespec ts; if (likely(clock_gettime(posix_clockid, &ts) == 0)) return ts.tv_sec * UINT64_C(1000000000) + ts.tv_nsec; #endif return 0; } MDBX_INTERNAL uint64_t osal_cputime(size_t *optional_page_faults) { #if defined(_WIN32) || defined(_WIN64) if (optional_page_faults) { PROCESS_MEMORY_COUNTERS pmc; *optional_page_faults = GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc)) ? pmc.PageFaultCount : 0; } FILETIME unused, usermode; if (GetThreadTimes(GetCurrentThread(), /* CreationTime */ &unused, /* ExitTime */ &unused, /* KernelTime */ &unused, /* UserTime */ &usermode)) { /* one second = 10_000_000 * 100ns = 78125 * (1 << 7) * 100ns; * result = (h * f / 10_000_000) << 32) + l * f / 10_000_000 = * = ((h * f) >> 7) / 78125) << 32) + ((l * f) >> 7) / 78125; * 1) {h, l} *= f; * 2) {h, l} >>= 7; * 3) result = ((h / 78125) << 32) + l / 78125; */ uint64_t l = usermode.dwLowDateTime * performance_frequency.QuadPart; uint64_t h = usermode.dwHighDateTime * performance_frequency.QuadPart; l = h << (64 - 7) | l >> 7; h = h >> 7; return ((h / 78125) << 32) + l / 78125; } #elif defined(RUSAGE_THREAD) || defined(RUSAGE_LWP) #ifndef RUSAGE_THREAD #define RUSAGE_THREAD RUSAGE_LWP /* Solaris */ #endif struct rusage usage; if (getrusage(RUSAGE_THREAD, &usage) == 0) { if (optional_page_faults) *optional_page_faults = usage.ru_majflt; return usage.ru_utime.tv_sec * UINT64_C(1000000000) + usage.ru_utime.tv_usec * 1000u; } if (optional_page_faults) *optional_page_faults = 0; #elif defined(CLOCK_THREAD_CPUTIME_ID) if (optional_page_faults) *optional_page_faults = 0; struct timespec ts; if (likely(clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts) == 0)) return ts.tv_sec * UINT64_C(1000000000) + ts.tv_nsec; #else /* FIXME */ if (optional_page_faults) *optional_page_faults = 0; #endif return 0; } /*----------------------------------------------------------------------------*/ static void bootid_shake(bin128_t *p) { /* Bob Jenkins's PRNG: https://burtleburtle.net/bob/rand/smallprng.html */ const uint32_t e = p->a - (p->b << 23 | p->b >> 9); p->a = p->b ^ (p->c << 16 | p->c >> 16); p->b = p->c + (p->d << 11 | p->d >> 21); p->c = p->d + e; p->d = e + p->a; } __cold static void bootid_collect(bin128_t *p, const void *s, size_t n) { p->y += UINT64_C(64526882297375213); bootid_shake(p); for (size_t i = 0; i < n; ++i) { bootid_shake(p); p->y ^= UINT64_C(48797879452804441) * ((const uint8_t *)s)[i]; bootid_shake(p); p->y += 14621231; } bootid_shake(p); /* minor non-linear tomfoolery */ const unsigned z = p->x % 61 + 1; p->y = p->y << z | p->y >> (64 - z); bootid_shake(p); bootid_shake(p); const unsigned q = p->x % 59 + 1; p->y = p->y << q | p->y >> (64 - q); bootid_shake(p); bootid_shake(p); bootid_shake(p); } static size_t hamming_weight(size_t v) { const size_t m1 = (size_t)UINT64_C(0x5555555555555555); const size_t m2 = (size_t)UINT64_C(0x3333333333333333); const size_t m4 = (size_t)UINT64_C(0x0f0f0f0f0f0f0f0f); const size_t h01 = (size_t)UINT64_C(0x0101010101010101); v -= (v >> 1) & m1; v = (v & m2) + ((v >> 2) & m2); v = (v + (v >> 4)) & m4; return (v * h01) >> (sizeof(v) * 8 - 8); } static inline size_t hw64(uint64_t v) { size_t r = hamming_weight((size_t)v); if (sizeof(v) > sizeof(r)) r += hamming_weight((size_t)(v >> sizeof(r) * 4 >> sizeof(r) * 4)); return r; } static bool check_uuid(bin128_t uuid) { size_t hw = hw64(uuid.x) + hw64(uuid.y) + hw64(uuid.x ^ uuid.y); return (hw >> 6) == 1; } #if defined(_WIN32) || defined(_WIN64) __cold static uint64_t windows_systemtime_ms() { FILETIME ft; GetSystemTimeAsFileTime(&ft); return ((uint64_t)ft.dwHighDateTime << 32 | ft.dwLowDateTime) / 10000ul; } __cold static uint64_t windows_bootime(void) { unsigned confirmed = 0; uint64_t boottime = 0; uint64_t up0 = imports.GetTickCount64(); uint64_t st0 = windows_systemtime_ms(); for (uint64_t fuse = st0; up0 && st0 < fuse + 1000 * 1000u / 42;) { YieldProcessor(); const uint64_t up1 = imports.GetTickCount64(); const uint64_t st1 = windows_systemtime_ms(); if (st1 > fuse && st1 == st0 && up1 == up0) { uint64_t diff = st1 - up1; if (boottime == diff) { if (++confirmed > 4) return boottime; } else { confirmed = 0; boottime = diff; } fuse = st1; Sleep(1); } st0 = st1; up0 = up1; } return 0; } __cold static LSTATUS mdbx_RegGetValue(HKEY hKey, LPCSTR lpSubKey, LPCSTR lpValue, PVOID pvData, LPDWORD pcbData) { LSTATUS rc; if (!imports.RegGetValueA) { /* an old Windows 2000/XP */ HKEY hSubKey; rc = RegOpenKeyA(hKey, lpSubKey, &hSubKey); if (rc == ERROR_SUCCESS) { rc = RegQueryValueExA(hSubKey, lpValue, nullptr, nullptr, pvData, pcbData); RegCloseKey(hSubKey); } return rc; } rc = imports.RegGetValueA(hKey, lpSubKey, lpValue, RRF_RT_ANY, nullptr, pvData, pcbData); if (rc != ERROR_FILE_NOT_FOUND) return rc; rc = imports.RegGetValueA(hKey, lpSubKey, lpValue, RRF_RT_ANY | 0x00010000 /* RRF_SUBKEY_WOW6464KEY */, nullptr, pvData, pcbData); if (rc != ERROR_FILE_NOT_FOUND) return rc; return imports.RegGetValueA(hKey, lpSubKey, lpValue, RRF_RT_ANY | 0x00020000 /* RRF_SUBKEY_WOW6432KEY */, nullptr, pvData, pcbData); } #endif __cold MDBX_MAYBE_UNUSED static bool bootid_parse_uuid(bin128_t *s, const void *p, const size_t n) { if (n > 31) { unsigned bits = 0; for (unsigned i = 0; i < n; ++i) /* try parse an UUID in text form */ { uint8_t c = ((const uint8_t *)p)[i]; if (c >= '0' && c <= '9') c -= '0'; else if (c >= 'a' && c <= 'f') c -= 'a' - 10; else if (c >= 'A' && c <= 'F') c -= 'A' - 10; else continue; assert(c <= 15); c ^= s->y >> 60; s->y = s->y << 4 | s->x >> 60; s->x = s->x << 4 | c; bits += 4; } if (bits > 42 * 3) /* UUID parsed successfully */ return true; } if (n > 15) /* is enough handle it as a binary? */ { if (n == sizeof(bin128_t)) { bin128_t aligned; memcpy(&aligned, p, sizeof(bin128_t)); s->x += aligned.x; s->y += aligned.y; } else bootid_collect(s, p, n); return check_uuid(*s); } if (n) bootid_collect(s, p, n); return false; } #if defined(__linux__) || defined(__gnu_linux__) __cold static bool is_inside_lxc(void) { bool inside_lxc = false; FILE *mounted = setmntent("/proc/mounts", "r"); if (mounted) { const struct mntent *ent; while (nullptr != (ent = getmntent(mounted))) { if (strcmp(ent->mnt_fsname, "lxcfs") == 0 && strncmp(ent->mnt_dir, "/proc/", 6) == 0) { inside_lxc = true; break; } } endmntent(mounted); } return inside_lxc; } __cold static bool proc_read_uuid(const char *path, bin128_t *target) { const int fd = open(path, O_RDONLY | O_NOFOLLOW); if (fd != -1) { struct statfs fs; char buf[42]; const ssize_t len = (fstatfs(fd, &fs) == 0 && (fs.f_type == /* procfs */ 0x9FA0 || (fs.f_type == /* tmpfs */ 0x1021994 && is_inside_lxc()))) ? read(fd, buf, sizeof(buf)) : -1; const int err = close(fd); assert(err == 0); (void)err; if (len > 0) return bootid_parse_uuid(target, buf, len); } return false; } #endif /* Linux */ __cold static bin128_t osal_bootid(void) { bin128_t uuid = {{0, 0}}; bool got_machineid = false, got_boottime = false, got_bootseq = false; #if defined(__linux__) || defined(__gnu_linux__) if (proc_read_uuid("/proc/sys/kernel/random/boot_id", &uuid)) return uuid; #endif /* Linux */ #if defined(__APPLE__) || defined(__MACH__) { char buf[42]; size_t len = sizeof(buf); if (!sysctlbyname("kern.bootsessionuuid", buf, &len, nullptr, 0) && bootid_parse_uuid(&uuid, buf, len)) return uuid; #if defined(__MAC_OS_X_VERSION_MIN_REQUIRED) && __MAC_OS_X_VERSION_MIN_REQUIRED > 1050 uuid_t hostuuid; struct timespec wait = {0, 1000000000u / 42}; if (!gethostuuid(hostuuid, &wait)) got_machineid = bootid_parse_uuid(&uuid, hostuuid, sizeof(hostuuid)); #endif /* > 10.5 */ struct timeval boottime; len = sizeof(boottime); if (!sysctlbyname("kern.boottime", &boottime, &len, nullptr, 0) && len == sizeof(boottime) && boottime.tv_sec) got_boottime = true; } #endif /* Apple/Darwin */ #if defined(_WIN32) || defined(_WIN64) { union buf { DWORD BootId; DWORD BaseTime; SYSTEM_TIMEOFDAY_INFORMATION SysTimeOfDayInfo; struct { LARGE_INTEGER BootTime; LARGE_INTEGER CurrentTime; LARGE_INTEGER TimeZoneBias; ULONG TimeZoneId; ULONG Reserved; ULONGLONG BootTimeBias; ULONGLONG SleepTimeBias; } SysTimeOfDayInfoHacked; wchar_t MachineGuid[42]; char DigitalProductId[248]; } buf; static const char HKLM_MicrosoftCryptography[] = "SOFTWARE\\Microsoft\\Cryptography"; DWORD len = sizeof(buf); /* Windows is madness and must die */ if (mdbx_RegGetValue(HKEY_LOCAL_MACHINE, HKLM_MicrosoftCryptography, "MachineGuid", &buf.MachineGuid, &len) == ERROR_SUCCESS && len < sizeof(buf)) got_machineid = bootid_parse_uuid(&uuid, &buf.MachineGuid, len); if (!got_machineid) { /* again, Windows is madness */ static const char HKLM_WindowsNT[] = "SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion"; static const char HKLM_WindowsNT_DPK[] = "SOFTWARE\\Microsoft\\Windows " "NT\\CurrentVersion\\DefaultProductKey"; static const char HKLM_WindowsNT_DPK2[] = "SOFTWARE\\Microsoft\\Windows " "NT\\CurrentVersion\\DefaultProductKey2"; len = sizeof(buf); if (mdbx_RegGetValue(HKEY_LOCAL_MACHINE, HKLM_WindowsNT, "DigitalProductId", &buf.DigitalProductId, &len) == ERROR_SUCCESS && len > 42 && len < sizeof(buf)) { bootid_collect(&uuid, &buf.DigitalProductId, len); got_machineid = true; } len = sizeof(buf); if (mdbx_RegGetValue(HKEY_LOCAL_MACHINE, HKLM_WindowsNT_DPK, "DigitalProductId", &buf.DigitalProductId, &len) == ERROR_SUCCESS && len > 42 && len < sizeof(buf)) { bootid_collect(&uuid, &buf.DigitalProductId, len); got_machineid = true; } len = sizeof(buf); if (mdbx_RegGetValue(HKEY_LOCAL_MACHINE, HKLM_WindowsNT_DPK2, "DigitalProductId", &buf.DigitalProductId, &len) == ERROR_SUCCESS && len > 42 && len < sizeof(buf)) { bootid_collect(&uuid, &buf.DigitalProductId, len); got_machineid = true; } } static const char HKLM_PrefetcherParams[] = "SYSTEM\\CurrentControlSet\\Control\\Session Manager\\Memory " "Management\\PrefetchParameters"; len = sizeof(buf); if (mdbx_RegGetValue(HKEY_LOCAL_MACHINE, HKLM_PrefetcherParams, "BootId", &buf.BootId, &len) == ERROR_SUCCESS && len > 1 && len < sizeof(buf)) { bootid_collect(&uuid, &buf.BootId, len); got_bootseq = true; } len = sizeof(buf); if (mdbx_RegGetValue(HKEY_LOCAL_MACHINE, HKLM_PrefetcherParams, "BaseTime", &buf.BaseTime, &len) == ERROR_SUCCESS && len >= sizeof(buf.BaseTime) && buf.BaseTime) { bootid_collect(&uuid, &buf.BaseTime, len); got_boottime = true; } /* BootTime from SYSTEM_TIMEOFDAY_INFORMATION */ NTSTATUS status = NtQuerySystemInformation(0x03 /* SystemTmeOfDayInformation */, &buf.SysTimeOfDayInfo, sizeof(buf.SysTimeOfDayInfo), &len); if (NT_SUCCESS(status) && len >= offsetof(union buf, SysTimeOfDayInfoHacked.BootTimeBias) + sizeof(buf.SysTimeOfDayInfoHacked.BootTimeBias) && buf.SysTimeOfDayInfoHacked.BootTime.QuadPart) { const uint64_t UnbiasedBootTime = buf.SysTimeOfDayInfoHacked.BootTime.QuadPart - buf.SysTimeOfDayInfoHacked.BootTimeBias; if (UnbiasedBootTime) { bootid_collect(&uuid, &UnbiasedBootTime, sizeof(UnbiasedBootTime)); got_boottime = true; } } if (!got_boottime) { uint64_t boottime = windows_bootime(); if (boottime) { bootid_collect(&uuid, &boottime, sizeof(boottime)); got_boottime = true; } } } #endif /* Windows */ #if defined(CTL_HW) && defined(HW_UUID) if (!got_machineid) { static const int mib[] = {CTL_HW, HW_UUID}; char buf[42]; size_t len = sizeof(buf); if (sysctl( #ifdef SYSCTL_LEGACY_NONCONST_MIB (int *) #endif mib, ARRAY_LENGTH(mib), &buf, &len, nullptr, 0) == 0) got_machineid = bootid_parse_uuid(&uuid, buf, len); } #endif /* CTL_HW && HW_UUID */ #if defined(CTL_KERN) && defined(KERN_HOSTUUID) if (!got_machineid) { static const int mib[] = {CTL_KERN, KERN_HOSTUUID}; char buf[42]; size_t len = sizeof(buf); if (sysctl( #ifdef SYSCTL_LEGACY_NONCONST_MIB (int *) #endif mib, ARRAY_LENGTH(mib), &buf, &len, nullptr, 0) == 0) got_machineid = bootid_parse_uuid(&uuid, buf, len); } #endif /* CTL_KERN && KERN_HOSTUUID */ #if defined(__NetBSD__) if (!got_machineid) { char buf[42]; size_t len = sizeof(buf); if (sysctlbyname("machdep.dmi.system-uuid", buf, &len, nullptr, 0) == 0) got_machineid = bootid_parse_uuid(&uuid, buf, len); } #endif /* __NetBSD__ */ #if !(defined(_WIN32) || defined(_WIN64)) if (!got_machineid) { int fd = open("/etc/machine-id", O_RDONLY); if (fd == -1) fd = open("/var/lib/dbus/machine-id", O_RDONLY); if (fd != -1) { char buf[42]; const ssize_t len = read(fd, buf, sizeof(buf)); const int err = close(fd); assert(err == 0); (void)err; if (len > 0) got_machineid = bootid_parse_uuid(&uuid, buf, len); } } #endif /* !Windows */ #if _XOPEN_SOURCE_EXTENDED if (!got_machineid) { const long hostid = gethostid(); if (hostid != 0 && hostid != -1) { bootid_collect(&uuid, &hostid, sizeof(hostid)); got_machineid = true; } } #endif /* _XOPEN_SOURCE_EXTENDED */ if (!got_machineid) { lack: uuid.x = uuid.y = 0; return uuid; } /*--------------------------------------------------------------------------*/ #if defined(CTL_KERN) && defined(KERN_BOOTTIME) if (!got_boottime) { static const int mib[] = {CTL_KERN, KERN_BOOTTIME}; struct timeval boottime; size_t len = sizeof(boottime); if (sysctl( #ifdef SYSCTL_LEGACY_NONCONST_MIB (int *) #endif mib, ARRAY_LENGTH(mib), &boottime, &len, nullptr, 0) == 0 && len == sizeof(boottime) && boottime.tv_sec) { bootid_collect(&uuid, &boottime, len); got_boottime = true; } } #endif /* CTL_KERN && KERN_BOOTTIME */ #if defined(__sun) || defined(__SVR4) || defined(__svr4__) if (!got_boottime) { kstat_ctl_t *kc = kstat_open(); if (kc) { kstat_t *kp = kstat_lookup(kc, "unix", 0, "system_misc"); if (kp && kstat_read(kc, kp, 0) != -1) { kstat_named_t *kn = (kstat_named_t *)kstat_data_lookup(kp, "boot_time"); if (kn) { switch (kn->data_type) { case KSTAT_DATA_INT32: case KSTAT_DATA_UINT32: bootid_collect(&uuid, &kn->value, sizeof(int32_t)); got_boottime = true; case KSTAT_DATA_INT64: case KSTAT_DATA_UINT64: bootid_collect(&uuid, &kn->value, sizeof(int64_t)); got_boottime = true; } } } kstat_close(kc); } } #endif /* SunOS / Solaris */ #if _XOPEN_SOURCE_EXTENDED && defined(BOOT_TIME) if (!got_boottime) { setutxent(); const struct utmpx id = {.ut_type = BOOT_TIME}; const struct utmpx *entry = getutxid(&id); if (entry) { bootid_collect(&uuid, entry, sizeof(*entry)); got_boottime = true; while (unlikely((entry = getutxid(&id)) != nullptr)) { /* have multiple reboot records, assuming we can distinguish next * bootsession even if RTC is wrong or absent */ bootid_collect(&uuid, entry, sizeof(*entry)); got_bootseq = true; } } endutxent(); } #endif /* _XOPEN_SOURCE_EXTENDED && BOOT_TIME */ if (!got_bootseq) { if (!got_boottime || !MDBX_TRUST_RTC) goto lack; #if defined(_WIN32) || defined(_WIN64) FILETIME now; GetSystemTimeAsFileTime(&now); if (0x1CCCCCC > now.dwHighDateTime) #else struct timespec mono, real; if (clock_gettime(CLOCK_MONOTONIC, &mono) || clock_gettime(CLOCK_REALTIME, &real) || /* wrong time, RTC is mad or absent */ 1555555555l > real.tv_sec || /* seems no adjustment by RTC/NTP, i.e. a fake time */ real.tv_sec < mono.tv_sec || 1234567890l > real.tv_sec - mono.tv_sec || (real.tv_sec - mono.tv_sec) % 900u == 0) #endif goto lack; } return uuid; } __cold int mdbx_get_sysraminfo(intptr_t *page_size, intptr_t *total_pages, intptr_t *avail_pages) { if (!page_size && !total_pages && !avail_pages) return LOG_IFERR(MDBX_EINVAL); if (total_pages) *total_pages = -1; if (avail_pages) *avail_pages = -1; const intptr_t pagesize = globals.sys_pagesize; if (page_size) *page_size = pagesize; if (unlikely(pagesize < MDBX_MIN_PAGESIZE || !is_powerof2(pagesize))) return LOG_IFERR(MDBX_INCOMPATIBLE); MDBX_MAYBE_UNUSED const int log2page = log2n_powerof2(pagesize); assert(pagesize == (INT64_C(1) << log2page)); (void)log2page; #if defined(_WIN32) || defined(_WIN64) MEMORYSTATUSEX info; memset(&info, 0, sizeof(info)); info.dwLength = sizeof(info); if (!GlobalMemoryStatusEx(&info)) return LOG_IFERR((int)GetLastError()); #endif if (total_pages) { #if defined(_WIN32) || defined(_WIN64) const intptr_t total_ram_pages = (intptr_t)(info.ullTotalPhys >> log2page); #elif defined(_SC_PHYS_PAGES) const intptr_t total_ram_pages = sysconf(_SC_PHYS_PAGES); if (total_ram_pages == -1) return LOG_IFERR(errno); #elif defined(_SC_AIX_REALMEM) const intptr_t total_ram_Kb = sysconf(_SC_AIX_REALMEM); if (total_ram_Kb == -1) return LOG_IFERR(errno); const intptr_t total_ram_pages = (total_ram_Kb << 10) >> log2page; #elif defined(HW_USERMEM) || defined(HW_PHYSMEM64) || defined(HW_MEMSIZE) || defined(HW_PHYSMEM) size_t ram, len = sizeof(ram); static const int mib[] = {CTL_HW, #if defined(HW_USERMEM) HW_USERMEM #elif defined(HW_PHYSMEM64) HW_PHYSMEM64 #elif defined(HW_MEMSIZE) HW_MEMSIZE #else HW_PHYSMEM #endif }; if (sysctl( #ifdef SYSCTL_LEGACY_NONCONST_MIB (int *) #endif mib, ARRAY_LENGTH(mib), &ram, &len, nullptr, 0) != 0) return LOG_IFERR(errno); if (len != sizeof(ram)) return LOG_IFERR(MDBX_ENOSYS); const intptr_t total_ram_pages = (intptr_t)(ram >> log2page); #else #error "FIXME: Get User-accessible or physical RAM" #endif *total_pages = total_ram_pages; if (total_ram_pages < 1) return LOG_IFERR(MDBX_ENOSYS); } if (avail_pages) { #if defined(_WIN32) || defined(_WIN64) const intptr_t avail_ram_pages = (intptr_t)(info.ullAvailPhys >> log2page); #elif defined(_SC_AVPHYS_PAGES) const intptr_t avail_ram_pages = sysconf(_SC_AVPHYS_PAGES); if (avail_ram_pages == -1) return LOG_IFERR(errno); #elif defined(__MACH__) mach_msg_type_number_t count = HOST_VM_INFO_COUNT; vm_statistics_data_t vmstat; mach_port_t mport = mach_host_self(); kern_return_t kerr = host_statistics(mach_host_self(), HOST_VM_INFO, (host_info_t)&vmstat, &count); mach_port_deallocate(mach_task_self(), mport); if (unlikely(kerr != KERN_SUCCESS)) return LOG_IFERR(MDBX_ENOSYS); const intptr_t avail_ram_pages = vmstat.free_count; #elif defined(VM_TOTAL) || defined(VM_METER) struct vmtotal info; size_t len = sizeof(info); static const int mib[] = {CTL_VM, #if defined(VM_TOTAL) VM_TOTAL #elif defined(VM_METER) VM_METER #endif }; if (sysctl( #ifdef SYSCTL_LEGACY_NONCONST_MIB (int *) #endif mib, ARRAY_LENGTH(mib), &info, &len, nullptr, 0) != 0) return LOG_IFERR(errno); if (len != sizeof(info)) return LOG_IFERR(MDBX_ENOSYS); const intptr_t avail_ram_pages = info.t_free; #else #error "FIXME: Get Available RAM" #endif *avail_pages = avail_ram_pages; if (avail_ram_pages < 1) return LOG_IFERR(MDBX_ENOSYS); } return MDBX_SUCCESS; } /*----------------------------------------------------------------------------*/ #ifdef __FreeBSD__ #include #endif /* FreeBSD */ #ifdef __IPHONE_OS_VERSION_MIN_REQUIRED #include #elif __GLIBC_PREREQ(2, 25) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__BSD__) || defined(__bsdi__) || \ defined(__DragonFly__) || defined(__APPLE__) || __has_include() #include #endif /* sys/random.h */ #if defined(_WIN32) || defined(_WIN64) #include #endif /* Windows */ MDBX_INTERNAL bin128_t osal_guid(const MDBX_env *env) { struct { uint64_t begin, end, cputime; uintptr_t thread, pid; const void *x, *y; bin128_t (*z)(const MDBX_env *env); } salt; salt.begin = osal_monotime(); bin128_t uuid = {{0, 0}}; #if defined(__linux__) || defined(__gnu_linux__) if (proc_read_uuid("/proc/sys/kernel/random/uuid", &uuid) && check_uuid(uuid)) return uuid; #endif /* Linux */ #ifdef __FreeBSD__ STATIC_ASSERT(sizeof(uuid) == sizeof(struct uuid)); if (uuidgen((struct uuid *)&uuid, 1) == 0 && check_uuid(uuid)) return uuid; #endif /* FreeBSD */ #if defined(_WIN32) || defined(_WIN64) if (imports.CoCreateGuid && imports.CoCreateGuid(&uuid) == 0 && check_uuid(uuid)) return uuid; HCRYPTPROV hCryptProv = 0; if (CryptAcquireContextW(&hCryptProv, nullptr, nullptr, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT | CRYPT_SILENT)) { const BOOL ok = CryptGenRandom(hCryptProv, sizeof(uuid), (unsigned char *)&uuid); CryptReleaseContext(hCryptProv, 0); if (ok && check_uuid(uuid)) return uuid; } #elif defined(__IPHONE_OS_VERSION_MIN_REQUIRED) && defined(__IPHONE_8_0) #if __IPHONE_OS_VERSION_MIN_REQUIRED >= __IPHONE_8_0 if (CCRandomGenerateBytes(&uuid, sizeof(uuid)) == kCCSuccess && check_uuid(uuid)) return uuid; #endif /* iOS >= 8.x */ #else const int fd = open("/dev/urandom", O_RDONLY); if (fd != -1) { const ssize_t len = read(fd, &uuid, sizeof(uuid)); const int err = close(fd); assert(err == 0); (void)err; if (len == sizeof(uuid) && check_uuid(uuid)) return uuid; } #if (__GLIBC_PREREQ(2, 25) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__BSD__) || defined(__bsdi__) || \ defined(__DragonFly__)) && \ !defined(__APPLE__) && !defined(__ANDROID_API__) if (getrandom(&uuid, sizeof(uuid), 0) == sizeof(uuid) && check_uuid(uuid)) return uuid; #elif defined(__OpenBSD__) || (defined(__sun) && defined(__SVR4)) || \ (defined(__MAC_OS_X_VERSION_MIN_REQUIRED) && __MAC_OS_X_VERSION_MIN_REQUIRED >= 101200) if (getentropy(&uuid, sizeof(uuid)) == 0 && check_uuid(uuid)) return uuid; #endif /* getrandom() / getentropy() */ #endif /* !Windows */ uuid = globals.bootid; bootid_collect(&uuid, env, sizeof(*env)); salt.thread = osal_thread_self(); salt.pid = osal_getpid(); salt.x = &salt; salt.y = env; salt.z = &osal_guid; do { salt.cputime = osal_cputime(nullptr); salt.end = osal_monotime(); bootid_collect(&uuid, &salt, sizeof(salt)); } while (!check_uuid(uuid)); return uuid; } /*--------------------------------------------------------------------------*/ void osal_ctor(void) { #if MDBX_HAVE_PWRITEV && defined(_SC_IOV_MAX) osal_iov_max = sysconf(_SC_IOV_MAX); if (RUNNING_ON_VALGRIND && osal_iov_max > 64) /* чтобы не описывать все 1024 исключения в valgrind_suppress.txt */ osal_iov_max = 64; #endif /* MDBX_HAVE_PWRITEV && _SC_IOV_MAX */ #if defined(_WIN32) || defined(_WIN64) SYSTEM_INFO si; GetSystemInfo(&si); globals.sys_pagesize = si.dwPageSize; globals.sys_allocation_granularity = si.dwAllocationGranularity; #else globals.sys_pagesize = sysconf(_SC_PAGE_SIZE); globals.sys_allocation_granularity = (MDBX_WORDBITS > 32) ? 65536 : 4096; globals.sys_allocation_granularity = (globals.sys_allocation_granularity > globals.sys_pagesize) ? globals.sys_allocation_granularity : globals.sys_pagesize; #endif assert(globals.sys_pagesize > 0 && (globals.sys_pagesize & (globals.sys_pagesize - 1)) == 0); assert(globals.sys_allocation_granularity >= globals.sys_pagesize && globals.sys_allocation_granularity % globals.sys_pagesize == 0); globals.sys_pagesize_ln2 = log2n_powerof2(globals.sys_pagesize); #if defined(__linux__) || defined(__gnu_linux__) posix_clockid = choice_monoclock(); #endif #if defined(_WIN32) || defined(_WIN64) QueryPerformanceFrequency(&performance_frequency); #elif defined(__APPLE__) || defined(__MACH__) mach_timebase_info_data_t ti; mach_timebase_info(&ti); ratio_16dot16_to_monotine = UINT64_C(1000000000) * ti.denom / ti.numer; #endif monotime_limit = osal_16dot16_to_monotime(UINT32_MAX - 1); uint32_t proba = UINT32_MAX; while (true) { unsigned time_conversion_checkup = osal_monotime_to_16dot16(osal_16dot16_to_monotime(proba)); unsigned one_more = (proba < UINT32_MAX) ? proba + 1 : proba; unsigned one_less = (proba > 0) ? proba - 1 : proba; ENSURE(nullptr, time_conversion_checkup >= one_less && time_conversion_checkup <= one_more); if (proba == 0) break; proba >>= 1; } globals.bootid = osal_bootid(); } void osal_dtor(void) {}