/* * Copyright 2017-2018 Leonid Yuriev * and other libmdbx authors: please see AUTHORS file. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted only as authorized by the OpenLDAP * Public License. * * A copy of this license is available in the file LICENSE in the * top-level directory of the distribution or, alternatively, at * . */ #include "test.h" #include #if defined(HAVE_IEEE754_H) || __has_include() #include #endif std::string format(const char *fmt, ...) { va_list ap, ones; va_start(ap, fmt); va_copy(ones, ap); #ifdef _MSC_VER int needed = _vscprintf(fmt, ap); #else int needed = vsnprintf(nullptr, 0, fmt, ap); #endif assert(needed >= 0); va_end(ap); std::string result; result.reserve((size_t)needed + 1); result.resize((size_t)needed, '\0'); int actual = vsnprintf((char *)result.data(), result.capacity(), fmt, ones); assert(actual == needed); (void)actual; va_end(ones); return result; } std::string data2hex(const void *ptr, size_t bytes, simple_checksum &checksum) { std::string result; if (bytes > 0) { const uint8_t *data = (const uint8_t *)ptr; checksum.push(data, bytes); result.reserve(bytes * 2); const uint8_t *const end = data + bytes; do { char h = *data >> 4; char l = *data & 15; result.push_back((l < 10) ? l + '0' : l - 10 + 'a'); result.push_back((h < 10) ? h + '0' : h - 10 + 'a'); } while (++data < end); } assert(result.size() == bytes * 2); return result; } bool hex2data(const char *hex_begin, const char *hex_end, void *ptr, size_t bytes, simple_checksum &checksum) { if (bytes * 2 != (size_t)(hex_end - hex_begin)) return false; uint8_t *data = (uint8_t *)ptr; for (const char *hex = hex_begin; hex != hex_end; hex += 2, ++data) { unsigned l = hex[0], h = hex[1]; if (l >= '0' && l <= '9') l = l - '0'; else if (l >= 'A' && l <= 'F') l = l - 'A' + 10; else if (l >= 'a' && l <= 'f') l = l - 'a' + 10; else return false; if (h >= '0' && h <= '9') h = h - '0'; else if (h >= 'A' && h <= 'F') h = h - 'A' + 10; else if (h >= 'a' && h <= 'f') h = h - 'a' + 10; else return false; uint32_t c = l + (h << 4); checksum.push(c); *data = (uint8_t)c; } return true; } bool is_samedata(const MDBX_val *a, const MDBX_val *b) { return a->iov_len == b->iov_len && memcmp(a->iov_base, b->iov_base, a->iov_len) == 0; } //----------------------------------------------------------------------------- /* TODO: replace my 'libmera' from t1ha. */ uint64_t entropy_ticks(void) { #if defined(EMSCRIPTEN) return (uint64_t)emscripten_get_now(); #endif /* EMSCRIPTEN */ #if defined(__APPLE__) || defined(__MACH__) return mach_absolute_time(); #endif /* defined(__APPLE__) || defined(__MACH__) */ #if defined(__sun__) || defined(__sun) return gethrtime(); #endif /* __sun__ */ #if defined(__GNUC__) || defined(__clang__) #if defined(__ia64__) uint64_t ticks; __asm __volatile("mov %0=ar.itc" : "=r"(ticks)); return ticks; #elif defined(__hppa__) uint64_t ticks; __asm __volatile("mfctl 16, %0" : "=r"(ticks)); return ticks; #elif defined(__s390__) uint64_t ticks; __asm __volatile("stck 0(%0)" : : "a"(&(ticks)) : "memory", "cc"); return ticks; #elif defined(__alpha__) uint64_t ticks; __asm __volatile("rpcc %0" : "=r"(ticks)); return ticks; #elif defined(__sparc__) || defined(__sparc) || defined(__sparc64__) || \ defined(__sparc64) || defined(__sparc_v8plus__) || \ defined(__sparc_v8plus) || defined(__sparc_v8plusa__) || \ defined(__sparc_v8plusa) || defined(__sparc_v9__) || defined(__sparc_v9) union { uint64_t u64; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ uint32_t h, l; #else uint32_t l, h; #endif } u32; } cycles; #if defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || \ defined(__sparc_v9__) || defined(__sparc_v8plus) || \ defined(__sparc_v8plusa) || defined(__sparc_v9) #if UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul || \ defined(__sparc64__) || defined(__sparc64) __asm __volatile("rd %%tick, %0" : "=r"(cycles.u64)); #else __asm __volatile("rd %%tick, %1; srlx %1, 32, %0" : "=r"(cycles.u32.h), "=r"(cycles.u32.l)); #endif /* __sparc64__ */ #else __asm __volatile(".byte 0x83, 0x41, 0x00, 0x00; mov %%g1, %0" : "=r"(cycles.u64) : : "%g1"); #endif /* __sparc8plus__ || __sparc_v9__ */ return cycles.u64; #elif (defined(__powerpc64__) || defined(__ppc64__) || defined(__ppc64) || \ defined(__powerpc64)) uint64_t ticks; __asm __volatile("mfspr %0, 268" : "=r"(ticks)); return ticks; #elif (defined(__powerpc__) || defined(__ppc__) || defined(__powerpc) || \ defined(__ppc)) #if UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul uint64_t ticks; __asm __volatile("mftb %0" : "=r"(ticks)); *now = ticks; #else uint64_t ticks; uint32_t low, high_before, high_after; __asm __volatile("mftbu %0; mftb %1; mftbu %2" : "=r"(high_before), "=r"(low), "=r"(high_after)); ticks = (uint64_t)high_after << 32; ticks |= low & /* zeroes if high part has changed */ ~(high_before - high_after); #endif #elif (defined(__aarch64__) || (defined(__ARM_ARCH) && __ARM_ARCH > 7)) && \ !defined(MDBX_SAFE4QEMU) uint64_t virtual_timer; __asm __volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer)); return virtual_timer; #elif (defined(__ARM_ARCH) && __ARM_ARCH > 5 && __ARM_ARCH < 8) || \ defined(_M_ARM) static uint32_t pmcntenset = 0x00425B00; if (unlikely(pmcntenset == 0x00425B00)) { uint32_t pmuseren; #ifdef _M_ARM pmuseren = _MoveFromCoprocessor(15, 0, 9, 14, 0); #else __asm("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren)); #endif if (1 & pmuseren /* Is it allowed for user mode code? */) { #ifdef _M_ARM pmcntenset = _MoveFromCoprocessor(15, 0, 9, 12, 1); #else __asm("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset)); #endif } else pmcntenset = 0; } if (pmcntenset & 0x80000000ul /* Is it counting? */) { #ifdef _M_ARM return __rdpmccntr64(); #else uint32_t pmccntr; __asm __volatile("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr)); return pmccntr; #endif } #elif defined(__mips__) || defined(__mips) || defined(_R4000) unsigned count; __asm __volatile("rdhwr %0, $2" : "=r"(count)); return count; #endif /* arch selector */ #endif /* __GNUC__ || __clang__ */ #if defined(__e2k__) || defined(__ia32__) return __rdtsc(); #elif defined(_WIN32) || defined(_WIN64) || defined(_WINDOWS) LARGE_INTEGER PerformanceCount; if (QueryPerformanceCounter(&PerformanceCount)) return PerformanceCount.QuadPart; return GetTickCount64(); #else struct timespec ts; #if defined(CLOCK_MONOTONIC_COARSE) clockid_t clk_id = CLOCK_MONOTONIC_COARSE; #elif defined(CLOCK_MONOTONIC_RAW) clockid_t clk_id = CLOCK_MONOTONIC_RAW; #else clockid_t clk_id = CLOCK_MONOTONIC; #endif int rc = clock_gettime(clk_id, &ts); if (unlikely(rc)) failure_perror("clock_gettime()", rc); return (((uint64_t)ts.tv_sec) << 32) + ts.tv_nsec; #endif } //----------------------------------------------------------------------------- static __inline uint64_t bleach64(uint64_t dirty) { return mul_64x64_high(bswap64(dirty), UINT64_C(17048867929148541611)); } static __inline uint32_t bleach32(uint32_t dirty) { return (uint32_t)((bswap32(dirty) * UINT64_C(2175734609)) >> 32); } uint64_t prng64_careless(uint64_t &state) { state = state * UINT64_C(6364136223846793005) + 1; return state; } uint64_t prng64_white(uint64_t &state) { state = state * UINT64_C(6364136223846793005) + UINT64_C(1442695040888963407); return bleach64(state); } uint32_t prng32(uint64_t &state) { return (uint32_t)(prng64_careless(state) >> 32); } void prng_fill(uint64_t &state, void *ptr, size_t bytes) { while (bytes >= 4) { *((uint32_t *)ptr) = prng32(state); ptr = (uint32_t *)ptr + 1; bytes -= 4; } switch (bytes & 3) { case 3: { uint32_t u32 = prng32(state); memcpy(ptr, &u32, 3); } break; case 2: *((uint16_t *)ptr) = (uint16_t)prng32(state); break; case 1: *((uint8_t *)ptr) = (uint8_t)prng32(state); break; case 0: break; } } static __thread uint64_t prng_state; void prng_seed(uint64_t seed) { prng_state = bleach64(seed); } uint32_t prng32(void) { return prng32(prng_state); } uint64_t prng64(void) { return prng64_white(prng_state); } void prng_fill(void *ptr, size_t bytes) { prng_fill(prng_state, ptr, bytes); } uint64_t entropy_white() { return bleach64(entropy_ticks()); } double double_from_lower(uint64_t salt) { #ifdef IEEE754_DOUBLE_BIAS ieee754_double r; r.ieee.negative = 0; r.ieee.exponent = IEEE754_DOUBLE_BIAS; r.ieee.mantissa0 = (unsigned)(salt >> 32); r.ieee.mantissa1 = (unsigned)salt; return r.d; #else const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1; const double scale = 1.0 / (double)top; return (salt & top) * scale; #endif } double double_from_upper(uint64_t salt) { #ifdef IEEE754_DOUBLE_BIAS ieee754_double r; r.ieee.negative = 0; r.ieee.exponent = IEEE754_DOUBLE_BIAS; salt >>= 64 - DBL_MANT_DIG; r.ieee.mantissa0 = (unsigned)(salt >> 32); r.ieee.mantissa1 = (unsigned)salt; return r.d; #else const uint64_t top = (UINT64_C(1) << DBL_MANT_DIG) - 1; const double scale = 1.0 / (double)top; return (salt >> (64 - DBL_MANT_DIG)) * scale; #endif } bool flipcoin() { return bleach32((uint32_t)entropy_ticks()) & 1; } bool jitter(unsigned probability_percent) { const uint32_t top = UINT32_MAX - UINT32_MAX % 100; uint32_t dice, edge = (top) / 100 * probability_percent; do dice = bleach32((uint32_t)entropy_ticks()); while (dice >= top); return dice < edge; } void jitter_delay(bool extra) { unsigned dice = entropy_white() & 3; if (dice == 0) { log_trace("== jitter.no-delay"); } else { log_trace(">> jitter.delay: dice %u", dice); do { cpu_relax(); memory_barrier(); cpu_relax(); if (dice > 1) { osal_yield(); cpu_relax(); if (dice > 2) { unsigned us = entropy_white() & (extra ? 0xfffff /* 1.05 s */ : 0x3ff /* 1 ms */); log_trace("== jitter.delay: %0.6f", us / 1000000.0); osal_udelay(us); } } } while (flipcoin()); log_trace("<< jitter.delay: dice %u", dice); } }