mdbx: split page_alloc() and page_new() to fast- and slow/rare- parts.

This commit is contained in:
Леонид Юрьев (Leonid Yuriev) 2022-06-21 19:48:49 +03:00
parent f1ccc717b4
commit ece2fe2514

View File

@ -3819,12 +3819,11 @@ struct page_result {
int err; int err;
}; };
static struct page_result mdbx_page_alloc(MDBX_cursor *mc, const pgno_t num,
int flags);
static txnid_t mdbx_kick_longlived_readers(MDBX_env *env, static txnid_t mdbx_kick_longlived_readers(MDBX_env *env,
const txnid_t laggard); const txnid_t laggard);
static struct page_result mdbx_page_new(MDBX_cursor *mc, const unsigned flags, static struct page_result page_new(MDBX_cursor *mc, const unsigned flags);
static struct page_result page_new_large(MDBX_cursor *mc,
const unsigned npages); const unsigned npages);
static int mdbx_page_touch(MDBX_cursor *mc); static int mdbx_page_touch(MDBX_cursor *mc);
static int mdbx_cursor_touch(MDBX_cursor *mc); static int mdbx_cursor_touch(MDBX_cursor *mc);
@ -6508,8 +6507,8 @@ __cold static int mdbx_wipe_steady(MDBX_env *env, const txnid_t last_steady) {
#define MDBX_ALLOC_NOLOG 32 #define MDBX_ALLOC_NOLOG 32
#define MDBX_ALLOC_ALL (MDBX_ALLOC_CACHE | MDBX_ALLOC_GC | MDBX_ALLOC_NEW) #define MDBX_ALLOC_ALL (MDBX_ALLOC_CACHE | MDBX_ALLOC_GC | MDBX_ALLOC_NEW)
__hot static struct page_result mdbx_page_alloc(MDBX_cursor *mc, __cold static struct page_result
const pgno_t num, int flags) { page_alloc_slowpath(MDBX_cursor *mc, const pgno_t num, int flags) {
struct page_result ret; struct page_result ret;
MDBX_txn *const txn = mc->mc_txn; MDBX_txn *const txn = mc->mc_txn;
MDBX_env *const env = txn->mt_env; MDBX_env *const env = txn->mt_env;
@ -6535,37 +6534,6 @@ __hot static struct page_result mdbx_page_alloc(MDBX_cursor *mc,
flags &= ~(MDBX_ALLOC_GC | MDBX_COALESCE); flags &= ~(MDBX_ALLOC_GC | MDBX_COALESCE);
} }
if (likely(num == 1 && (flags & MDBX_ALLOC_CACHE) != 0)) {
/* If there are any loose pages, just use them */
mdbx_assert(env, (flags & MDBX_ALLOC_SLOT) == 0);
if (likely(txn->tw.loose_pages)) {
#if MDBX_ENABLE_REFUND
if (txn->tw.loose_refund_wl > txn->mt_next_pgno) {
mdbx_refund(txn);
if (unlikely(!txn->tw.loose_pages))
goto no_loose;
}
#endif /* MDBX_ENABLE_REFUND */
ret.page = txn->tw.loose_pages;
txn->tw.loose_pages = ret.page->mp_next;
txn->tw.loose_count--;
mdbx_debug_extra("db %d use loose page %" PRIaPGNO, DDBI(mc),
ret.page->mp_pgno);
mdbx_tassert(txn, ret.page->mp_pgno < txn->mt_next_pgno);
mdbx_ensure(env, ret.page->mp_pgno >= NUM_METAS);
VALGRIND_MAKE_MEM_UNDEFINED(page_data(ret.page), page_space(txn->mt_env));
MDBX_ASAN_UNPOISON_MEMORY_REGION(page_data(ret.page),
page_space(txn->mt_env));
ret.page->mp_txnid = txn->mt_front;
ret.err = MDBX_SUCCESS;
return ret;
}
}
#if MDBX_ENABLE_REFUND
no_loose:
#endif /* MDBX_ENABLE_REFUND */
mdbx_tassert(txn, mdbx_tassert(txn,
mdbx_pnl_check4assert(txn->tw.reclaimed_pglist, mdbx_pnl_check4assert(txn->tw.reclaimed_pglist,
txn->mt_next_pgno - MDBX_ENABLE_REFUND)); txn->mt_next_pgno - MDBX_ENABLE_REFUND));
@ -6968,7 +6936,6 @@ done:
if (env->me_flags & MDBX_WRITEMAP) { if (env->me_flags & MDBX_WRITEMAP) {
ret.page = pgno2page(env, pgno); ret.page = pgno2page(env, pgno);
/* LY: reset no-access flag from mdbx_page_loose() */
VALGRIND_MAKE_MEM_UNDEFINED(ret.page, pgno2bytes(env, num)); VALGRIND_MAKE_MEM_UNDEFINED(ret.page, pgno2bytes(env, num));
MDBX_ASAN_UNPOISON_MEMORY_REGION(ret.page, pgno2bytes(env, num)); MDBX_ASAN_UNPOISON_MEMORY_REGION(ret.page, pgno2bytes(env, num));
} else { } else {
@ -7022,6 +6989,76 @@ done:
return ret; return ret;
} }
__hot static struct page_result page_alloc(MDBX_cursor *mc) {
MDBX_txn *const txn = mc->mc_txn;
/* If there are any loose pages, just use them */
while (likely(txn->tw.loose_pages)) {
#if MDBX_ENABLE_REFUND
if (unlikely(txn->tw.loose_refund_wl > txn->mt_next_pgno)) {
mdbx_refund(txn);
if (!txn->tw.loose_pages)
break;
}
#endif /* MDBX_ENABLE_REFUND */
MDBX_page *page = txn->tw.loose_pages;
txn->tw.loose_pages = page->mp_next;
txn->tw.loose_count--;
mdbx_debug_extra("db %d use loose page %" PRIaPGNO, DDBI(mc),
page->mp_pgno);
mdbx_tassert(txn, page->mp_pgno < txn->mt_next_pgno);
mdbx_tassert(txn, page->mp_pgno >= NUM_METAS);
VALGRIND_MAKE_MEM_UNDEFINED(page_data(page), page_space(txn->mt_env));
MDBX_ASAN_UNPOISON_MEMORY_REGION(page_data(page), page_space(txn->mt_env));
page->mp_txnid = txn->mt_front;
struct page_result ret = {page, MDBX_SUCCESS};
return ret;
}
if (likely(!(mc->mc_flags & C_GCFREEZE))) {
MDBX_PNL pnl = txn->tw.reclaimed_pglist;
const unsigned len = MDBX_PNL_SIZE(pnl);
if (likely(len > 0)) {
MDBX_PNL_SIZE(pnl) = len - 1;
#if MDBX_PNL_ASCENDING
const pgno_t pgno = pnl[1];
for (unsigned i = 1; i < len; ++i)
pnl[i] = pnl[i + 1];
#else
const pgno_t pgno = pnl[len];
#endif
MDBX_env *const env = txn->mt_env;
struct page_result ret;
if (env->me_flags & MDBX_WRITEMAP) {
ret.page = pgno2page(env, pgno);
MDBX_ASAN_UNPOISON_MEMORY_REGION(ret.page, env->me_psize);
} else {
ret.page = mdbx_page_malloc(txn, 1);
if (unlikely(!ret.page)) {
ret.err = MDBX_ENOMEM;
return ret;
}
}
VALGRIND_MAKE_MEM_UNDEFINED(ret.page, env->me_psize);
ret.page->mp_pgno = pgno;
ret.page->mp_leaf2_ksize = 0;
ret.page->mp_flags = 0;
mdbx_tassert(txn, ret.page->mp_pgno >= NUM_METAS);
ret.err = mdbx_page_dirty(txn, ret.page, 1);
mdbx_tassert(
txn, mdbx_pnl_check4assert(txn->tw.reclaimed_pglist,
txn->mt_next_pgno - MDBX_ENABLE_REFUND));
return ret;
}
}
return page_alloc_slowpath(mc, 1, MDBX_ALLOC_ALL);
}
/* Copy the used portions of a non-overflow page. */ /* Copy the used portions of a non-overflow page. */
__hot static void mdbx_page_copy(MDBX_page *dst, const MDBX_page *src, __hot static void mdbx_page_copy(MDBX_page *dst, const MDBX_page *src,
size_t psize) { size_t psize) {
@ -7131,7 +7168,7 @@ __hot static int mdbx_page_touch(MDBX_cursor *mc) {
rc = mdbx_pnl_need(&txn->tw.retired_pages, 1); rc = mdbx_pnl_need(&txn->tw.retired_pages, 1);
if (unlikely(rc != MDBX_SUCCESS)) if (unlikely(rc != MDBX_SUCCESS))
goto fail; goto fail;
const struct page_result par = mdbx_page_alloc(mc, 1, MDBX_ALLOC_ALL); const struct page_result par = page_alloc(mc);
rc = par.err; rc = par.err;
np = par.page; np = par.page;
if (unlikely(rc != MDBX_SUCCESS)) if (unlikely(rc != MDBX_SUCCESS))
@ -9126,9 +9163,9 @@ static int gcu_clean_stored_retired(MDBX_txn *txn, gcu_context_t *ctx) {
return err; return err;
} }
/* LY: Prepare a backlog of pages to modify GC itself, /* Prepare a backlog of pages to modify GC itself, while reclaiming is
* while reclaiming is prohibited. It should be enough to prevent search * prohibited. It should be enough to prevent search in page_alloc_slowpath()
* in mdbx_page_alloc() during a deleting, when GC tree is unbalanced. */ * during a deleting, when GC tree is unbalanced. */
static int gcu_prepare_backlog(MDBX_txn *txn, gcu_context_t *ctx, static int gcu_prepare_backlog(MDBX_txn *txn, gcu_context_t *ctx,
const bool reserve4retired) { const bool reserve4retired) {
const unsigned pages4retiredlist = const unsigned pages4retiredlist =
@ -9171,7 +9208,7 @@ static int gcu_prepare_backlog(MDBX_txn *txn, gcu_context_t *ctx,
err = gcu_clean_stored_retired(txn, ctx); err = gcu_clean_stored_retired(txn, ctx);
if (unlikely(err != MDBX_SUCCESS)) if (unlikely(err != MDBX_SUCCESS))
return err; return err;
err = mdbx_page_alloc(&ctx->cursor.outer, pages4retiredlist, err = page_alloc_slowpath(&ctx->cursor.outer, pages4retiredlist,
MDBX_ALLOC_GC | MDBX_ALLOC_FAKE) MDBX_ALLOC_GC | MDBX_ALLOC_FAKE)
.err; .err;
mdbx_trace("== after-4linear, backlog %u, err %d", gcu_backlog_size(txn), mdbx_trace("== after-4linear, backlog %u, err %d", gcu_backlog_size(txn),
@ -9183,9 +9220,9 @@ static int gcu_prepare_backlog(MDBX_txn *txn, gcu_context_t *ctx,
while (gcu_backlog_size(txn) < backlog4cow + pages4retiredlist && while (gcu_backlog_size(txn) < backlog4cow + pages4retiredlist &&
err == MDBX_SUCCESS) err == MDBX_SUCCESS)
err = mdbx_page_alloc(&ctx->cursor.outer, 0, err = page_alloc_slowpath(&ctx->cursor.outer, 0,
MDBX_ALLOC_GC | MDBX_ALLOC_SLOT | MDBX_ALLOC_FAKE | MDBX_ALLOC_GC | MDBX_ALLOC_SLOT |
MDBX_ALLOC_NOLOG) MDBX_ALLOC_FAKE | MDBX_ALLOC_NOLOG)
.err; .err;
ctx->cursor.outer.mc_flags |= C_RECLAIMING; ctx->cursor.outer.mc_flags |= C_RECLAIMING;
@ -9378,9 +9415,9 @@ retry:
if (txn->tw.loose_count > 0) { if (txn->tw.loose_count > 0) {
mdbx_trace("%s: try allocate gc-slot for %u loose-pages", mdbx_trace("%s: try allocate gc-slot for %u loose-pages",
dbg_prefix_mode, txn->tw.loose_count); dbg_prefix_mode, txn->tw.loose_count);
rc = rc = page_alloc_slowpath(&ctx->cursor.outer, 0,
mdbx_page_alloc(&ctx->cursor.outer, 0, MDBX_ALLOC_GC | MDBX_ALLOC_SLOT |
MDBX_ALLOC_GC | MDBX_ALLOC_SLOT | MDBX_ALLOC_FAKE) MDBX_ALLOC_FAKE)
.err; .err;
if (rc == MDBX_SUCCESS) { if (rc == MDBX_SUCCESS) {
mdbx_trace("%s: retry since gc-slot for %u loose-pages available", mdbx_trace("%s: retry since gc-slot for %u loose-pages available",
@ -9552,9 +9589,9 @@ retry:
ctx->cursor.outer.mc_flags &= ~C_RECLAIMING; ctx->cursor.outer.mc_flags &= ~C_RECLAIMING;
do { do {
snap_oldest = mdbx_find_oldest(txn); snap_oldest = mdbx_find_oldest(txn);
rc = rc = page_alloc_slowpath(&ctx->cursor.outer, 0,
mdbx_page_alloc(&ctx->cursor.outer, 0, MDBX_ALLOC_GC | MDBX_ALLOC_SLOT |
MDBX_ALLOC_GC | MDBX_ALLOC_SLOT | MDBX_ALLOC_FAKE) MDBX_ALLOC_FAKE)
.err; .err;
if (likely(rc == MDBX_SUCCESS)) { if (likely(rc == MDBX_SUCCESS)) {
mdbx_trace("%s: took @%" PRIaTXN " from GC", dbg_prefix_mode, mdbx_trace("%s: took @%" PRIaTXN " from GC", dbg_prefix_mode,
@ -9585,7 +9622,7 @@ retry:
} else { } else {
mdbx_tassert(txn, txn->tw.last_reclaimed == 0); mdbx_tassert(txn, txn->tw.last_reclaimed == 0);
if (unlikely(mdbx_find_oldest(txn) != snap_oldest)) if (unlikely(mdbx_find_oldest(txn) != snap_oldest))
/* should retry mdbx_page_alloc(MDBX_ALLOC_GC) /* should retry page_alloc_slowpath(MDBX_ALLOC_GC)
* if the oldest reader changes since the last attempt */ * if the oldest reader changes since the last attempt */
goto retry_rid; goto retry_rid;
/* no reclaimable GC entries, /* no reclaimable GC entries,
@ -15655,7 +15692,7 @@ int mdbx_cursor_put(MDBX_cursor *mc, const MDBX_val *key, MDBX_val *data,
if (unlikely(err != MDBX_SUCCESS)) if (unlikely(err != MDBX_SUCCESS))
return err; return err;
} }
struct page_result npr = mdbx_page_new(mc, P_LEAF, 1); struct page_result npr = page_new(mc, P_LEAF);
if (unlikely(npr.err != MDBX_SUCCESS)) if (unlikely(npr.err != MDBX_SUCCESS))
return npr.err; return npr.err;
npr.err = mdbx_cursor_push(mc, npr.page); npr.err = mdbx_cursor_push(mc, npr.page);
@ -15945,7 +15982,7 @@ int mdbx_cursor_put(MDBX_cursor *mc, const MDBX_val *key, MDBX_val *data,
nested_dupdb.md_entries = page_numkeys(fp); nested_dupdb.md_entries = page_numkeys(fp);
xdata.iov_len = sizeof(nested_dupdb); xdata.iov_len = sizeof(nested_dupdb);
xdata.iov_base = &nested_dupdb; xdata.iov_base = &nested_dupdb;
const struct page_result par = mdbx_page_alloc(mc, 1, MDBX_ALLOC_ALL); const struct page_result par = page_alloc(mc);
mp = par.page; mp = par.page;
if (unlikely(par.err != MDBX_SUCCESS)) if (unlikely(par.err != MDBX_SUCCESS))
return par.err; return par.err;
@ -16301,34 +16338,26 @@ fail:
} }
/* Allocate and initialize new pages for a database. /* Allocate and initialize new pages for a database.
* Set MDBX_TXN_ERROR on failure. * Set MDBX_TXN_ERROR on failure. */
* static struct page_result page_new(MDBX_cursor *mc, const unsigned flags) {
* [in] mc a cursor on the database being added to. mdbx_cassert(mc, (flags & P_OVERFLOW) == 0);
* [in] flags flags defining what type of page is being allocated. struct page_result ret = page_alloc(mc);
* [in] num the number of pages to allocate. This is usually 1,
* unless allocating overflow pages for a large record.
* [out] mp Address of a page, or NULL on failure.
*
* Returns 0 on success, non-zero on failure. */
static struct page_result mdbx_page_new(MDBX_cursor *mc, const unsigned flags,
const unsigned npages) {
struct page_result ret = mdbx_page_alloc(mc, npages, MDBX_ALLOC_ALL);
if (unlikely(ret.err != MDBX_SUCCESS)) if (unlikely(ret.err != MDBX_SUCCESS))
return ret; return ret;
mdbx_debug("db %u allocated new page %" PRIaPGNO ", num %u", mc->mc_dbi, mdbx_debug("db %u allocated new page %" PRIaPGNO, mc->mc_dbi,
ret.page->mp_pgno, npages); ret.page->mp_pgno);
ret.page->mp_flags = (uint16_t)flags; ret.page->mp_flags = (uint16_t)flags;
ret.page->mp_txnid = mc->mc_txn->mt_front; ret.page->mp_txnid = mc->mc_txn->mt_front;
mdbx_cassert(mc, *mc->mc_dbistate & DBI_DIRTY); mdbx_cassert(mc, *mc->mc_dbistate & DBI_DIRTY);
mdbx_cassert(mc, mc->mc_txn->mt_flags & MDBX_TXN_DIRTY); mdbx_cassert(mc, mc->mc_txn->mt_flags & MDBX_TXN_DIRTY);
#if MDBX_ENABLE_PGOP_STAT #if MDBX_ENABLE_PGOP_STAT
mc->mc_txn->mt_env->me_lck->mti_pgop_stat.newly.weak += npages; mc->mc_txn->mt_env->me_lck->mti_pgop_stat.newly.weak += 1;
#endif /* MDBX_ENABLE_PGOP_STAT */ #endif /* MDBX_ENABLE_PGOP_STAT */
if (likely((flags & P_OVERFLOW) == 0)) {
STATIC_ASSERT(P_BRANCH == 1); STATIC_ASSERT(P_BRANCH == 1);
const bool is_branch = flags & P_BRANCH; const unsigned is_branch = flags & P_BRANCH;
ret.page->mp_lower = 0; ret.page->mp_lower = 0;
ret.page->mp_upper = (indx_t)(mc->mc_txn->mt_env->me_psize - PAGEHDRSZ); ret.page->mp_upper = (indx_t)(mc->mc_txn->mt_env->me_psize - PAGEHDRSZ);
mc->mc_db->md_branch_pages += is_branch; mc->mc_db->md_branch_pages += is_branch;
@ -16338,12 +16367,30 @@ static struct page_result mdbx_page_new(MDBX_cursor *mc, const unsigned flags,
outer->md_branch_pages += is_branch; outer->md_branch_pages += is_branch;
outer->md_leaf_pages += 1 - is_branch; outer->md_leaf_pages += 1 - is_branch;
} }
} else { return ret;
}
static struct page_result page_new_large(MDBX_cursor *mc,
const unsigned npages) {
struct page_result ret =
likely(npages == 1) ? page_alloc(mc)
: page_alloc_slowpath(mc, npages, MDBX_ALLOC_ALL);
if (unlikely(ret.err != MDBX_SUCCESS))
return ret;
mdbx_debug("db %u allocated new large-page %" PRIaPGNO ", num %u", mc->mc_dbi,
ret.page->mp_pgno, npages);
ret.page->mp_flags = P_OVERFLOW;
ret.page->mp_txnid = mc->mc_txn->mt_front;
mdbx_cassert(mc, *mc->mc_dbistate & DBI_DIRTY);
mdbx_cassert(mc, mc->mc_txn->mt_flags & MDBX_TXN_DIRTY);
#if MDBX_ENABLE_PGOP_STAT
mc->mc_txn->mt_env->me_lck->mti_pgop_stat.newly.weak += npages;
#endif /* MDBX_ENABLE_PGOP_STAT */
mc->mc_db->md_overflow_pages += npages; mc->mc_db->md_overflow_pages += npages;
ret.page->mp_pages = npages; ret.page->mp_pages = npages;
mdbx_cassert(mc, !(mc->mc_flags & C_SUB)); mdbx_cassert(mc, !(mc->mc_flags & C_SUB));
}
return ret; return ret;
} }
@ -16464,7 +16511,7 @@ static int __must_check_result mdbx_node_add_leaf(MDBX_cursor *mc,
return MDBX_PROBLEM; return MDBX_PROBLEM;
} }
const pgno_t ovpages = number_of_ovpages(mc->mc_txn->mt_env, data->iov_len); const pgno_t ovpages = number_of_ovpages(mc->mc_txn->mt_env, data->iov_len);
const struct page_result npr = mdbx_page_new(mc, P_OVERFLOW, ovpages); const struct page_result npr = page_new_large(mc, ovpages);
if (unlikely(npr.err != MDBX_SUCCESS)) if (unlikely(npr.err != MDBX_SUCCESS))
return npr.err; return npr.err;
largepage = npr.page; largepage = npr.page;
@ -18599,7 +18646,7 @@ static int mdbx_page_split(MDBX_cursor *mc, const MDBX_val *const newkey,
mdbx_cassert(mc, nkeys + 1 >= minkeys * 2); mdbx_cassert(mc, nkeys + 1 >= minkeys * 2);
/* Create a new sibling page. */ /* Create a new sibling page. */
struct page_result npr = mdbx_page_new(mc, mp->mp_flags, 1); struct page_result npr = page_new(mc, mp->mp_flags);
if (unlikely(npr.err != MDBX_SUCCESS)) if (unlikely(npr.err != MDBX_SUCCESS))
return npr.err; return npr.err;
MDBX_page *const sister = npr.page; MDBX_page *const sister = npr.page;
@ -18611,7 +18658,7 @@ static int mdbx_page_split(MDBX_cursor *mc, const MDBX_val *const newkey,
* the cursor height may be greater because it walks * the cursor height may be greater because it walks
* up the stack while finding the branch slot to update. */ * up the stack while finding the branch slot to update. */
if (mc->mc_top < 1) { if (mc->mc_top < 1) {
npr = mdbx_page_new(mc, P_BRANCH, 1); npr = page_new(mc, P_BRANCH);
rc = npr.err; rc = npr.err;
if (unlikely(rc != MDBX_SUCCESS)) if (unlikely(rc != MDBX_SUCCESS))
goto done; goto done;