Translate README.md to English. Move original one to README-RU.md

Signed-off-by: Dmitrii Tcvetkov <demfloro@demfloro.ru>
This commit is contained in:
Dmitrii Tcvetkov 2018-01-17 22:19:59 +03:00
parent cfd5ba357f
commit e348bd5ed1
No known key found for this signature in database
GPG Key ID: D8AE0C17E6CC5F1A
2 changed files with 965 additions and 492 deletions

690
README-RU.md Normal file
View File

@ -0,0 +1,690 @@
libmdbx
======================================
**The revised and extended descendant of [Symas LMDB](https://symas.com/lmdb/).**
*The Future will Positive. Всё будет хорошо.*
[![Build Status](https://travis-ci.org/leo-yuriev/libmdbx.svg?branch=master)](https://travis-ci.org/leo-yuriev/libmdbx)
[![Build status](https://ci.appveyor.com/api/projects/status/ue94mlopn50dqiqg/branch/master?svg=true)](https://ci.appveyor.com/project/leo-yuriev/libmdbx/branch/master)
[![Coverity Scan Status](https://scan.coverity.com/projects/12915/badge.svg)](https://scan.coverity.com/projects/reopen-libmdbx)
English version [by Google](https://translate.googleusercontent.com/translate_c?act=url&ie=UTF8&sl=ru&tl=en&u=https://github.com/leo-yuriev/libmdbx/tree/master)
and [by Yandex](https://translate.yandex.ru/translate?url=https%3A%2F%2Fgithub.com%2FReOpen%2Flibmdbx%2Ftree%2Fmaster&lang=ru-en).
### Project Status
**Now MDBX is under _active development_** and until 2018Q2 is expected a big
change both of API and database format. Unfortunately those update will lead to
loss of compatibility with previous versions.
The aim of this revolution in providing a clearer robust API and adding new
features, including the database properties.
## Содержание
- [Обзор](#Обзор)
- [Сравнение с другими СУБД](#Сравнение-с-другими-СУБД)
- [История & Acknowledgements](#История)
- [Основные свойства](#Основные-свойства)
- [Сравнение производительности](#Сравнение-производительности)
- [Интегральная производительность](#Интегральная-производительность)
- [Масштабируемость чтения](#Масштабируемость-чтения)
- [Синхронная фиксация](#Синхронная-фиксация)
- [Отложенная фиксация](#Отложенная-фиксация)
- [Асинхронная фиксация](#Асинхронная-фиксация)
- [Потребление ресурсов](#Потребление-ресурсов)
- [Недостатки и Компромиссы](#Недостатки-и-Компромиссы)
- [Проблема долгих чтений](#Проблема-долгих-чтений)
- [Сохранность данных в режиме асинхронной фиксации](#Сохранность-данных-в-режиме-асинхронной-фиксации)
- [Доработки и усовершенствования относительно LMDB](#Доработки-и-усовершенствования-относительно-lmdb)
## Обзор
_libmdbx_ - это встраиваемый key-value движок хранения со специфическим
набором свойств и возможностей, ориентированный на создание уникальных
легковесных решений с предельной производительностью.
_libmdbx_ позволяет множеству процессов совместно читать и обновлять
несколько key-value таблиц с соблюдением [ACID](https://ru.wikipedia.org/wiki/ACID),
при минимальных накладных расходах и амортизационной стоимости любых операций Olog(N).
_libmdbx_ обеспечивает
[serializability](https://en.wikipedia.org/wiki/Serializability)
изменений и согласованность данных после аварий. При этом транзакции
изменяющие данные никак не мешают операциям чтения и выполняются строго
последовательно с использованием единственного
[мьютекса](https://en.wikipedia.org/wiki/Mutual_exclusion).
_libmdbx_ позволяет выполнять операции чтения с гарантиями
[wait-free](https://en.wikipedia.org/wiki/Non-blocking_algorithm#Wait-freedom),
параллельно на каждом ядре CPU, без использования атомарных операций
и/или примитивов синхронизации.
_libmdbx_ не использует [LSM](https://en.wikipedia.org/wiki/Log-structured_merge-tree), а основан на [B+Tree](https://en.wikipedia.org/wiki/B%2B_tree) с [отображением](https://en.wikipedia.org/wiki/Memory-mapped_file) всех данных в память,
при этом текущая версия не использует [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging).
Это предопределяет многие свойства, в том числе удачные и противопоказанные сценарии использования.
### Сравнение с другими СУБД
Ввиду того, что в _libmdbx_ сейчас происходит революция, я посчитал лучшим решением
ограничится здесь ссылкой на [главу Comparison with other databases](https://github.com/coreos/bbolt#comparison-with-other-databases) в описании _BoltDB_.
### История
_libmdbx_ является результатом переработки и развития "Lightning Memory-Mapped Database",
известной под аббревиатурой
[LMDB](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database).
Изначально доработка производилась в составе проекта
[ReOpenLDAP](https://github.com/leo-yuriev/ReOpenLDAP). Примерно за год
работы внесенные изменения приобрели самостоятельную ценность. Осенью
2015 доработанный движок был выделен в отдельный проект, который был
[представлен на конференции Highload++
2015](http://www.highload.ru/2015/abstracts/1831.html).
В начале 2017 года движок _libmdbx_ получил новый импульс развития,
благодаря использованию в [Fast Positive
Tables](https://github.com/leo-yuriev/libfpta), aka ["Позитивные
Таблицы"](https://github.com/leo-yuriev/libfpta) by [Positive
Technologies](https://www.ptsecurity.ru).
#### Acknowledgements
Howard Chu (Symas Corporation) - the author of LMDB,
from which originated the MDBX in 2015.
Martin Hedenfalk <martin@bzero.se> - the author of `btree.c` code,
which was used for begin development of LMDB.
Основные свойства
=================
_libmdbx_ наследует все ключевые возможности и особенности от
своего прародителя [LMDB](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database),
но с устранением ряда описываемых далее проблем и архитектурных недочетов.
1. Данные хранятся в упорядоченном отображении (ordered map), ключи всегда
отсортированы, поддерживается выборка диапазонов (range lookups).
2. Данные отображается в память каждого работающего с БД процесса.
К данным и ключам обеспечивается прямой доступ в памяти без необходимости их
копирования.
3. Транзакции согласно
[ACID](https://ru.wikipedia.org/wiki/ACID), посредством
[MVCC](https://ru.wikipedia.org/wiki/MVCC) и
[COW](https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BF%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BF%D1%80%D0%B8_%D0%B7%D0%B0%D0%BF%D0%B8%D1%81%D0%B8).
Изменения строго последовательны и не блокируются чтением,
конфликты между транзакциями не возможны.
При этом гарантируется чтение только зафиксированных данных, см [relaxing serializability](https://en.wikipedia.org/wiki/Serializability).
4. Чтение и поиск [без блокировок](https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B1%D0%BB%D0%BE%D0%BA%D0%B8%D1%80%D1%83%D1%8E%D1%89%D0%B0%D1%8F_%D1%81%D0%B8%D0%BD%D1%85%D1%80%D0%BE%D0%BD%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F),
без [атомарных операций](https://ru.wikipedia.org/wiki/%D0%90%D1%82%D0%BE%D0%BC%D0%B0%D1%80%D0%BD%D0%B0%D1%8F_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%86%D0%B8%D1%8F).
Читатели не блокируются операциями записи и не конкурируют
между собой, чтение масштабируется линейно по ядрам CPU.
> Для точности следует отметить, что "подключение к БД" (старт первой
> читающей транзакции в потоке) и "отключение от БД" (закрытие БД или
> завершение потока) требуют краткосрочного захвата блокировки для
> регистрации/дерегистрации текущего потока в "таблице читателей".
5. Эффективное хранение дубликатов (ключей с несколькими
значениями), без дублирования ключей, с сортировкой значений, в
том числе целочисленных (для вторичных индексов).
6. Эффективная поддержка коротких ключей фиксированной длины, в том числе целочисленных.
7. Амортизационная стоимость любой операции Olog(N),
[WAF](https://en.wikipedia.org/wiki/Write_amplification) (Write
Amplification Factor) и RAF (Read Amplification Factor) также Olog(N).
8. Нет [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging) и журнала
транзакций, после сбоев не требуется восстановление. Не требуется компактификация
или какое-либо периодическое обслуживание. Поддерживается резервное копирование
"по горячему", на работающей БД без приостановки изменения данных.
9. Отсутствует какое-либо внутреннее управление памятью или кэшированием. Всё
необходимое штатно выполняет ядро ОС!
Сравнение производительности
============================
Все представленные ниже данные получены многократным прогоном тестов на
ноутбуке Lenovo Carbon-2, i7-4600U 2.1 ГГц, 8 Гб ОЗУ, с SSD-диском
SAMSUNG MZNTD512HAGL-000L1 (DXT23L0Q) 512 Гб.
Исходный код бенчмарка [_IOArena_](https://github.com/pmwkaa/ioarena) и
сценарии тестирования [доступны на
github](https://github.com/pmwkaa/ioarena/tree/HL%2B%2B2015).
--------------------------------------------------------------------------------
### Интегральная производительность
Показана соотнесенная сумма ключевых показателей производительности в трёх
бенчмарках:
- Чтение/Поиск на машине с 4-мя процессорами;
- Транзакции с [CRUD](https://ru.wikipedia.org/wiki/CRUD)-операциями
(вставка, чтение, обновление, удаление) в режиме **синхронной фиксации**
данных (fdatasync при завершении каждой транзакции или аналог);
- Транзакции с [CRUD](https://ru.wikipedia.org/wiki/CRUD)-операциями
(вставка, чтение, обновление, удаление) в режиме **отложенной фиксации**
данных (отложенная запись посредством файловой систем или аналог);
*Бенчмарк в режиме асинхронной записи не включен по двум причинам:*
1. Такое сравнение не совсем правомочно, его следует делать с движками
ориентированными на хранение данных в памяти ([Tarantool](https://tarantool.io/), [Redis](https://redis.io/)).
2. Превосходство libmdbx становится еще более подавляющем, что мешает
восприятию информации.
![Comparison #1: Integral Performance](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-1.png)
--------------------------------------------------------------------------------
### Масштабируемость чтения
Для каждого движка показана суммарная производительность при
одновременном выполнении запросов чтения/поиска в 1-2-4-8 потоков на
машине с 4-мя физическими процессорами.
![Comparison #2: Read Scalability](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-2.png)
--------------------------------------------------------------------------------
### Синхронная фиксация
- Линейная шкала слева и темные прямоугольники соответствуют количеству
транзакций в секунду, усредненному за всё время теста.
- Логарифмическая шкала справа и желтые интервальные отрезки
соответствуют времени выполнения транзакций. При этом каждый отрезок
показывает минимальное и максимальное время затраченное на выполнение
транзакций, а крестиком отмечено среднеквадратичное значение.
Выполняется **10.000 транзакций в режиме синхронной фиксации данных** на
диске. При этом требуется гарантия, что при аварийном выключении питания
(или другом подобном сбое) все данные будут консистентны и полностью
соответствовать последней завершенной транзакции. В _libmdbx_ в этом
режиме при фиксации каждой транзакции выполняется системный вызов
[fdatasync](https://linux.die.net/man/2/fdatasync).
В каждой транзакции выполняется комбинированная CRUD-операция (две
вставки, одно чтение, одно обновление, одно удаление). Бенчмарк стартует
на пустой базе, а при завершении, в результате выполняемых действий, в
базе насчитывается 10.000 небольших key-value записей.
![Comparison #3: Sync-write mode](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-3.png)
--------------------------------------------------------------------------------
### Отложенная фиксация
- Линейная шкала слева и темные прямоугольники соответствуют количеству
транзакций в секунду, усредненному за всё время теста.
- Логарифмическая шкала справа и желтые интервальные отрезки
соответствуют времени выполнения транзакций. При этом каждый отрезок
показывает минимальное и максимальное время затраченное на выполнение
транзакций, а крестиком отмечено среднеквадратичное значение.
Выполняется **100.000 транзакций в режиме отложенной фиксации данных**
на диске. При этом требуется гарантия, что при аварийном выключении
питания (или другом подобном сбое) все данные будут консистентны на
момент завершения одной из транзакций, но допускается потеря изменений
из некоторого количества последних транзакций, что для многих движков
предполагает включение
[WAL](https://en.wikipedia.org/wiki/Write-ahead_logging) (write-ahead
logging) либо журнала транзакций, который в свою очередь опирается на
гарантию упорядоченности данных в журналируемой файловой системе.
_libmdbx_ при этом не ведет WAL, а передает весь контроль файловой
системе и ядру ОС.
В каждой транзакции выполняется комбинированная CRUD-операция (две
вставки, одно чтение, одно обновление, одно удаление). Бенчмарк стартует
на пустой базе, а при завершении, в результате выполняемых действий, в
базе насчитывается 100.000 небольших key-value записей.
![Comparison #4: Lazy-write mode](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-4.png)
--------------------------------------------------------------------------------
### Асинхронная фиксация
- Линейная шкала слева и темные прямоугольники соответствуют количеству
транзакций в секунду, усредненному за всё время теста.
- Логарифмическая шкала справа и желтые интервальные отрезки
соответствуют времени выполнения транзакций. При этом каждый отрезок
показывает минимальное и максимальное время затраченное на выполнение
транзакций, а крестиком отмечено среднеквадратичное значение.
Выполняется **1.000.000 транзакций в режиме асинхронной фиксации
данных** на диске. При этом требуется гарантия, что при аварийном
выключении питания (или другом подобном сбое) все данные будут
консистентны на момент завершения одной из транзакций, но допускается
потеря изменений из значительного количества последних транзакций. Во
всех движках при этом включался режим предполагающий минимальную
нагрузку на диск по-записи, и соответственно минимальную гарантию
сохранности данных. В _libmdbx_ при этом используется режим асинхронной
записи измененных страниц на диск посредством ядра ОС и системного
вызова [msync(MS_ASYNC)](https://linux.die.net/man/2/msync).
В каждой транзакции выполняется комбинированная CRUD-операция (две
вставки, одно чтение, одно обновление, одно удаление). Бенчмарк стартует
на пустой базе, а при завершении, в результате выполняемых действий, в
базе насчитывается 10.000 небольших key-value записей.
![Comparison #5: Async-write mode](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-5.png)
--------------------------------------------------------------------------------
### Потребление ресурсов
Показана соотнесенная сумма использованных ресурсов в ходе бенчмарка в
режиме отложенной фиксации:
- суммарное количество операций ввода-вывода (IOPS), как записи, так и
чтения.
- суммарное затраченное время процессора, как в режиме пользовательских процессов,
так и в режиме ядра ОС.
- использованное место на диске при завершении теста, после закрытия БД из тестирующего процесса,
но без ожидания всех внутренних операций обслуживания (компактификации LSM и т.п.).
Движок _ForestDB_ был исключен при оформлении результатов, так как
относительно конкурентов многократно превысил потребление каждого из
ресурсов (потратил процессорное время на генерацию IOPS для заполнения
диска), что не позволяло наглядно сравнить показатели остальных движков
на одной диаграмме.
Все данные собирались посредством системного вызова
[getrusage()](http://man7.org/linux/man-pages/man2/getrusage.2.html) и
сканированием директорий с данными.
![Comparison #6: Cost comparison](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-6.png)
--------------------------------------------------------------------------------
## Недостатки и Компромиссы
1. Единовременно может выполняться не более одной транзакция изменения данных
(один писатель). Зато все изменения всегда последовательны, не может быть
конфликтов или логических ошибок при откате транзакций.
2. Отсутствие [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging)
обуславливает относительно большой
[WAF](https://en.wikipedia.org/wiki/Write_amplification) (Write
Amplification Factor). Поэтому фиксация изменений на диске может быть
достаточно дорогой и являться главным ограничением производительности
при интенсивном изменении данных.
> В качестве компромисса _libmdbx_ предлагает несколько режимов ленивой
> и/или периодической фиксации. В том числе режим `MAPASYNC`, при котором
> изменения происходят только в памяти и асинхронно фиксируются на диске
> ядром ОС.
>
> Однако, следует воспринимать это свойство аккуратно и взвешенно.
> Например, полная фиксация транзакции в БД с журналом потребует минимум 2
> IOPS (скорее всего 3-4) из-за накладных расходов в файловой системе. В
> _libmdbx_ фиксация транзакции также требует от 2 IOPS. Однако, в БД с
> журналом кол-во IOPS будет меняться в зависимости от файловой системы,
> но не от кол-ва записей или их объема. Тогда как в _libmdbx_ кол-во
> будет расти логарифмически от кол-во записей/строк в БД (по высоте
> b+tree).
3. [COW](https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BF%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BF%D1%80%D0%B8_%D0%B7%D0%B0%D0%BF%D0%B8%D1%81%D0%B8)
для реализации [MVCC](https://ru.wikipedia.org/wiki/MVCC) выполняется на
уровне страниц в [B+
дереве](https://ru.wikipedia.org/wiki/B-%D0%B4%D0%B5%D1%80%D0%B5%D0%B2%D0%BE).
Поэтому изменение данных амортизационно требует копирования Olog(N)
страниц, что расходует [пропускную способность оперативной
памяти](https://en.wikipedia.org/wiki/Memory_bandwidth) и является
основным ограничителем производительности в режиме `MAPASYNC`.
> Этот недостаток неустраним, тем не менее следует дать некоторые пояснения.
> Дело в том, что фиксация изменений на диске потребует гораздо более
> значительного копирования данных в памяти и массы других затратных операций.
> Поэтому обусловленное этим недостатком падение производительности становится
> заметным только при отказе от фиксации изменений на диске.
> Соответственно, корректнее сказать что _libmdbx_ позволяет
> получить персистентность ценой минимального падения производительности.
> Если же нет необходимости оперативно сохранять данные, то логичнее
> использовать `std::map`.
4. В _LMDB_ существует проблема долгих чтений (приостановленных читателей),
которая приводит к деградации производительности и переполнению БД.
> В _libmdbx_ предложены средства для предотвращения, быстрого выхода из
> некомфортной ситуации и устранения её последствий. Подробности ниже.
5. В _LMDB_ есть вероятность разрушения БД в режиме `WRITEMAP+MAPASYNC`.
В _libmdbx_ для `WRITEMAP+MAPASYNC` гарантируется как сохранность базы,
так и согласованность данных.
> Дополнительно, в качестве альтернативы, предложен режим `UTTERLY_NOSYNC`.
> Подробности ниже.
#### Проблема долгих чтений
*Следует отметить*, что проблема "сборки мусора" так или иначе
существует во всех СУБД (Vacuum в PostgreSQL). Однако в случае _libmdbx_
и LMDB она проявляется более остро, прежде всего из-за высокой
производительности, а также из-за намеренного упрощения внутренних
механизмов ради производительности.
Понимание проблемы требует некоторых пояснений, которые
изложены ниже, но могут быть сложны для быстрого восприятия.
Поэтому, тезисно:
* Изменение данных на фоне долгой операции чтения может
приводить к исчерпанию места в БД.
* После чего любая попытка обновить данные будет приводить к
ошибке `MAP_FULL` до завершения долгой операции чтения.
* Характерными примерами долгих чтений являются горячее
резервное копирования и отладка клиентского приложения при
активной транзакции чтения.
* В оригинальной _LMDB_ после этого будет наблюдаться
устойчивая деградация производительности всех механизмов
обратной записи на диск (в I/O контроллере, в гипервизоре,
в ядре ОС).
* В _libmdbx_ предусмотрен механизм аварийного прерывания таких
операций, а также режим `LIFO RECLAIM` устраняющий последующую
деградацию производительности.
Операции чтения выполняются в контексте снимка данных (версии
БД), который был актуальным на момент старта транзакции чтения. Такой
читаемый снимок поддерживается неизменным до завершения операции. В свою
очередь, это не позволяет повторно использовать страницы БД в
последующих версиях (снимках БД).
Другими словами, если обновление данных выполняется на фоне долгой
операции чтения, то вместо повторного использования "старых" ненужных
страниц будут выделяться новые, так как "старые" страницы составляют
снимок БД, который еще используется долгой операцией чтения.
В результате, при интенсивном изменении данных и достаточно длительной
операции чтения, в БД могут быть исчерпаны свободные страницы, что не
позволит создавать новые снимки/версии БД. Такая ситуация будет
сохраняться до завершения операции чтения, которая использует старый
снимок данных и препятствует повторному использованию страниц БД.
Однако, на этом проблемы не заканчиваются. После описанной ситуации, все
дополнительные страницы, которые были выделены пока переработка старых
была невозможна, будут участвовать в цикле выделения/освобождения до
конца жизни экземпляра БД. В оригинальной _LMDB_ этот цикл использования
страниц работает по принципу [FIFO](https://ru.wikipedia.org/wiki/FIFO).
Поэтому увеличение количества циркулирующий страниц, с точки зрения
механизмов кэширования и/или обратной записи, выглядит как увеличение
рабочего набор данных. Проще говоря, однократное попадание в ситуацию
"уснувшего читателя" приводит к устойчивому эффекту вымывания I/O кэша
при всех последующих изменениях данных.
Для устранения описанных проблемы в _libmdbx_ сделаны существенные
доработки, подробности ниже. Иллюстрации к проблеме "долгих чтений"
можно найти в [слайдах презентации](http://www.slideshare.net/leoyuriev/lmdb).
Там же приведен пример количественной оценки прироста производительности
за счет эффективной работы [BBWC](https://en.wikipedia.org/wiki/BBWC)
при включении `LIFO RECLAIM` в _libmdbx_.
#### Сохранность данных в режиме асинхронной фиксации
При работе в режиме `WRITEMAP+MAPSYNC` запись измененных страниц
выполняется ядром ОС, что имеет ряд преимуществ. Так например, при крахе
приложения, ядро ОС сохранит все изменения.
Однако, при аварийном отключении питания или сбое в ядре ОС, на диске
может быть сохранена только часть измененных страниц БД. При этом с большой
вероятностью может оказаться так, что будут сохранены мета-страницы со
ссылками на страницы с новыми версиями данных, но не сами новые данные.
В этом случае БД будет безвозвратна разрушена, даже если до аварии
производилась полная синхронизация данных (посредством
`mdbx_env_sync()`).
В _libmdbx_ эта проблема устранена путем полной переработки
пути записи данных:
* В режиме `WRITEMAP+MAPSYNC` _libmdbx_ не обновляет
мета-страницы непосредственно, а поддерживает их теневые копии
с переносом изменений после фиксации данных.
* При завершении транзакций, в зависимости от состояния
синхронности данных между диском и оперативной память,
_libmdbx_ помечает точки фиксации либо как сильные (strong),
либо как слабые (weak). Так например, в режиме
`WRITEMAP+MAPSYNC` завершаемые транзакции помечаются как
слабые, а при явной синхронизации данных как сильные.
* В _libmdbx_ поддерживается не две, а три отдельные мета-страницы.
Это позволяет выполнять фиксацию транзакций с формированием как
сильной, так и слабой точки фиксации, без потери двух предыдущих
точек фиксации (из которых одна может быть сильной, а вторая слабой).
В результате, _libmdbx_ позволяет в произвольном порядке чередовать
сильные и слабые точки фиксации без нарушения соответствующих
гарантий в случае неожиданной системной аварии во время фиксации.
* При открытии БД выполняется автоматический откат к последней
сильной фиксации. Этим обеспечивается гарантия сохранности БД.
Такая гарантия надежности не дается бесплатно. Для
сохранности данных, страницы формирующие крайний снимок с
сильной фиксацией, не должны повторно использоваться
(перезаписываться) до формирования следующей сильной точки
фиксации. Таким образом, крайняя точка фиксации создает
описанный выше эффект "долгого чтения". Разница же здесь в том,
что при исчерпании свободных страниц ситуация будет
автоматически исправлена, посредством записи изменений на диск
и формированием новой сильной точки фиксации.
Таким образом, в режиме безопасной асинхронной фиксации _libmdbx_ будет
всегда использовать новые страницы до исчерпания места в БД или до явного
формирования сильной точки фиксации посредством `mdbx_env_sync()`.
При этом суммарный трафик записи на диск будет примерно такой-же,
как если бы отдельно фиксировалась каждая транзакций.
В текущей версии _libmdbx_ вам предоставляется выбор между безопасным
режимом (по умолчанию) асинхронной фиксации, и режимом `UTTERLY_NOSYNC` когда
при системной аварии есть шанс полного разрушения БД как в LMDB.
В последующих версиях _libmdbx_ будут предусмотрены средства
для асинхронной записи данных на диск с автоматическим
формированием сильных точек фиксации.
--------------------------------------------------------------------------------
Доработки и усовершенствования относительно LMDB
================================================
1. Режим `LIFO RECLAIM`.
Для повторного использования выбираются не самые старые, а
самые новые страницы из доступных. За счет этого цикл
использования страниц всегда имеет минимальную длину и не
зависит от общего числа выделенных страниц.
В результате механизмы кэширования и обратной записи работают с
максимально возможной эффективностью. В случае использования
контроллера дисков или системы хранения с
[BBWC](https://en.wikipedia.org/wiki/BBWC) возможно
многократное увеличение производительности по записи
(обновлению данных).
2. Обработчик `OOM-KICK`.
Посредством `mdbx_env_set_oomfunc()` может быть установлен
внешний обработчик (callback), который будет вызван при
исчерпания свободных страниц из-за долгой операцией чтения.
Обработчику будет передан PID и pthread_id виновника.
В свою очередь обработчик может предпринять одно из действий:
* нейтрализовать виновника (отправить сигнал kill #9), если
долгое чтение выполняется сторонним процессом;
* отменить или перезапустить проблемную операцию чтения, если
операция выполняется одним из потоков текущего процесса;
* подождать некоторое время, в расчете что проблемная операция
чтения будет штатно завершена;
* прервать текущую операцию изменения данных с возвратом кода
ошибки.
3. Гарантия сохранности БД в режиме `WRITEMAP+MAPSYNC`.
В текущей версии _libmdbx_ вам предоставляется выбор между безопасным
режимом (по умолчанию) асинхронной фиксации, и режимом `UTTERLY_NOSYNC`
когда при системной аварии есть шанс полного разрушения БД как в LMDB.
Для подробностей смотрите раздел
[Сохранность данных в режиме асинхронной фиксации](#Сохранность-данных-в-режиме-асинхронной-фиксации).
4. Возможность автоматического формирования контрольных точек
(сброса данных на диск) при накоплении заданного объёма изменений,
устанавливаемого функцией `mdbx_env_set_syncbytes()`.
5. Возможность получить отставание текущей транзакции чтения от
последней версии данных в БД посредством `mdbx_txn_straggler()`.
6. Утилита mdbx_chk для проверки БД и функция `mdbx_env_pgwalk()` для
обхода всех страниц БД.
7. Управление отладкой и получение отладочных сообщений посредством
`mdbx_setup_debug()`.
8. Возможность связать с каждой завершаемой транзакцией до 3
дополнительных маркеров посредством `mdbx_canary_put()`, и прочитать их
в транзакции чтения посредством `mdbx_canary_get()`.
9. Возможность узнать есть ли за текущей позицией курсора строка данных
посредством `mdbx_cursor_eof()`.
10. Возможность явно запросить обновление существующей записи, без
создания новой посредством флажка `MDBX_CURRENT` для `mdbx_put()`.
11. Возможность посредством `mdbx_replace()` обновить или удалить запись
с получением предыдущего значения данных, а также адресно изменить
конкретное multi-значение.
12. Поддержка ключей и значений нулевой длины, включая сортированные
дубликаты.
13. Исправленный вариант `mdbx_cursor_count()`, возвращающий корректное
количество дубликатов для всех типов таблиц и любого положения курсора.
14. Возможность открыть БД в эксклюзивном режиме посредством
`mdbx_env_open_ex()`, например в целях её проверки.
15. Возможность закрыть БД в "грязном" состоянии (без сброса данных и
формирования сильной точки фиксации) посредством `mdbx_env_close_ex()`.
16. Возможность получить посредством `mdbx_env_info()` дополнительную
информацию, включая номер самой старой версии БД (снимка данных),
который используется одним из читателей.
17. Функция `mdbx_del()` не игнорирует дополнительный (уточняющий)
аргумент `data` для таблиц без дубликатов (без флажка `MDBX_DUPSORT`), а
при его ненулевом значении всегда использует его для сверки с удаляемой
записью.
18. Возможность открыть dbi-таблицу, одновременно с установкой
компараторов для ключей и данных, посредством `mdbx_dbi_open_ex()`.
19. Возможность посредством `mdbx_is_dirty()` определить находятся ли
некоторый ключ или данные в "грязной" странице БД. Таким образом,
избегая лишнего копирования данных перед выполнением модифицирующих
операций (значения в размещенные "грязных" страницах могут быть
перезаписаны при изменениях, иначе они будут неизменны).
20. Корректное обновление текущей записи, в том числе сортированного
дубликата, при использовании режима `MDBX_CURRENT` в
`mdbx_cursor_put()`.
21. Все курсоры, как в транзакциях только для чтения, так и в пишущих,
могут быть переиспользованы посредством `mdbx_cursor_renew()` и ДОЛЖНЫ
ОСВОБОЖДАТЬСЯ ЯВНО.
>
> ## _ВАЖНО_, Обратите внимание!
>
> Это единственное изменение в API, которое значимо меняет
> семантику управления курсорами и может приводить к утечкам
> памяти. Следует отметить, что это изменение вынужденно.
> Так устраняется неоднозначность с массой тяжких последствий:
>
> - обращение к уже освобожденной памяти;
> - попытки повторного освобождения памяти;
> - memory corruption and segfaults.
22. Дополнительный код ошибки `MDBX_EMULTIVAL`, который возвращается из
`mdbx_put()` и `mdbx_replace()` при попытке выполнить неоднозначное
обновление или удаления одного из нескольких значений с одним ключом.
23. Возможность посредством `mdbx_get_ex()` получить значение по
заданному ключу, одновременно с количеством дубликатов.
24. Наличие функций `mdbx_cursor_on_first()` и `mdbx_cursor_on_last()`,
которые позволяют быстро выяснить стоит ли курсор на первой/последней
позиции.
25. При завершении читающих транзакций, открытые в них DBI-хендлы не
закрываются и не теряются при завершении таких транзакций посредством
`mdbx_txn_abort()` или `mdbx_txn_reset()`. Что позволяет избавится от ряда
сложно обнаруживаемых ошибок.
26. Генерация последовательностей посредством `mdbx_dbi_sequence()`.
27. Расширенное динамическое управление размером БД, включая выбор
размера страницы посредством `mdbx_env_set_geometry()`,
в том числе в **Windows**
28. Три мета-страницы вместо двух, что позволяет гарантированно
консистентно обновлять слабые контрольные точки фиксации без риска
повредить крайнюю сильную точку фиксации.
29. В _libmdbx_ реализован автоматический возврат освобождающихся
страниц в область нераспределенного резерва в конце файла данных. При
этом уменьшается количество страниц загруженных в память и участвующих в
цикле обновления данных и записи на диск. Фактически _libmdbx_ выполняет
постоянную компактификацию данных, но не затрачивая на это
дополнительных ресурсов, а только освобождая их. При освобождении места
в БД и установки соответствующих параметров геометрии базы данных, также будет
уменьшаться размер файла на диске, в том числе в **Windows**.
--------------------------------------------------------------------------------
```
$ objdump -f -h -j .text libmdbx.so
libmdbx.so: file format elf64-x86-64
architecture: i386:x86-64, flags 0x00000150:
HAS_SYMS, DYNAMIC, D_PAGED
start address 0x000030e0
Sections:
Idx Name Size VMA LMA File off Algn
11 .text 00014d84 00000000000030e0 00000000000030e0 000030e0 2**4
CONTENTS, ALLOC, LOAD, READONLY, CODE
```
```
$ gcc -v
Using built-in specs.
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/7/lto-wrapper
OFFLOAD_TARGET_NAMES=nvptx-none
OFFLOAD_TARGET_DEFAULT=1
Target: x86_64-linux-gnu
Configured with: ../src/configure -v --with-pkgversion='Ubuntu 7.2.0-8ubuntu3' --with-bugurl=file:///usr/share/doc/gcc-7/README.Bugs --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++ --prefix=/usr --with-gcc-major-version-only --program-suffix=-7 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --with-sysroot=/ --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-libmpx --enable-plugin --enable-default-pie --with-system-zlib --with-target-system-zlib --enable-objc-gc=auto --enable-multiarch --disable-werror --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu
Thread model: posix
gcc version 7.2.0 (Ubuntu 7.2.0-8ubuntu3)
```

765
README.md
View File

@ -1,94 +1,69 @@
libmdbx
======================================
**The revised and extended descendant of [Symas LMDB](https://symas.com/lmdb/).**
**Revised and extended descendant of [Symas LMDB](https://symas.com/lmdb/).**
*The Future will Positive. Всё будет хорошо.*
*The Future will be positive.*
[![Build Status](https://travis-ci.org/leo-yuriev/libmdbx.svg?branch=master)](https://travis-ci.org/leo-yuriev/libmdbx)
[![Build status](https://ci.appveyor.com/api/projects/status/ue94mlopn50dqiqg/branch/master?svg=true)](https://ci.appveyor.com/project/leo-yuriev/libmdbx/branch/master)
[![Coverity Scan Status](https://scan.coverity.com/projects/12915/badge.svg)](https://scan.coverity.com/projects/reopen-libmdbx)
English version [by Google](https://translate.googleusercontent.com/translate_c?act=url&ie=UTF8&sl=ru&tl=en&u=https://github.com/leo-yuriev/libmdbx/tree/master)
and [by Yandex](https://translate.yandex.ru/translate?url=https%3A%2F%2Fgithub.com%2FReOpen%2Flibmdbx%2Ftree%2Fmaster&lang=ru-en).
### Project Status
**Now MDBX is under _active development_** and until 2018Q2 is expected a big
change both of API and database format. Unfortunately those update will lead to
loss of compatibility with previous versions.
**MDBX is under _active development_**, database format and API aren't stable
at least until 2018Q2. New version won't be backwards compatible. Main focus of the rework is to provide
clear and robust API and new features.
The aim of this revolution in providing a clearer robust API and adding new
features, including the database properties.
## Contents
- [Overview](#overview)
- [Comparison with other DBs](#comparison-with-other-dbs)
- [History & Acknowledgements](#history)
- [Main features](#main-features)
- [Perfomance comparison](#perfomance-comparison)
- [Integral perfomance](#integral-perfomance)
- [Read scalability](#read-scalability)
- [Sync-write mode](#sync-write-mode)
- [Lazy-write mode](#lazy-write-mode)
- [Async-write mode](#async-write-mode)
- [Cost comparison](#cost-comparison)
- [Gotchas](#gotchas)
- [Long-time read transactions problem](#long-time-read-transactions-problem)
- [Data safety in async-write-mode](#data-safety-in-async-write-mode)
- [Improvements over LMDB](#improvements-over-lmdb)
## Содержание
## Overview
- [Обзор](#Обзор)
- [Сравнение с другими СУБД](#Сравнение-с-другими-СУБД)
- [История & Acknowledgements](#История)
- [Основные свойства](#Основные-свойства)
- [Сравнение производительности](#Сравнение-производительности)
- [Интегральная производительность](#Интегральная-производительность)
- [Масштабируемость чтения](#Масштабируемость-чтения)
- [Синхронная фиксация](#Синхронная-фиксация)
- [Отложенная фиксация](#Отложенная-фиксация)
- [Асинхронная фиксация](#Асинхронная-фиксация)
- [Потребление ресурсов](#Потребление-ресурсов)
- [Недостатки и Компромиссы](#Недостатки-и-Компромиссы)
- [Проблема долгих чтений](#Проблема-долгих-чтений)
- [Сохранность данных в режиме асинхронной фиксации](#Сохранность-данных-в-режиме-асинхронной-фиксации)
- [Доработки и усовершенствования относительно LMDB](#Доработки-и-усовершенствования-относительно-lmdb)
_libmdbx_ is an embedded lightweight key-value database engine oriented for perfomance.
_libmdbx_ allows multiple processes to read and update several key-value tables concurrently,
while being [ACID](https://en.wikipedia.org/wiki/ACID)-compliant, with minimal overhead and operation cost of Olog(N).
## Обзор
_libmdbx_ provides
[serializability](https://en.wikipedia.org/wiki/Serializability) and consistency of data after crash.
Read-write transactions don't block read-only transactions and are
[serialized](https://en.wikipedia.org/wiki/Serializability) by [mutex](https://en.wikipedia.org/wiki/Mutual_exclusion).
_libmdbx_ - это встраиваемый key-value движок хранения со специфическим
набором свойств и возможностей, ориентированный на создание уникальных
легковесных решений с предельной производительностью.
_libmdbx_ [wait-free](https://en.wikipedia.org/wiki/Non-blocking_algorithm#Wait-freedom) provides parallel read transactions
without atomic operations or synchronization primitives.
_libmdbx_ позволяет множеству процессов совместно читать и обновлять
несколько key-value таблиц с соблюдением [ACID](https://ru.wikipedia.org/wiki/ACID),
при минимальных накладных расходах и амортизационной стоимости любых операций Olog(N).
_libmdbx_ uses [B+Trees](https://en.wikipedia.org/wiki/B%2B_tree) and [mmap](https://en.wikipedia.org/wiki/Memory-mapped_file),
doesn't use [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging). This might have caveats for some workloads.
_libmdbx_ обеспечивает
[serializability](https://en.wikipedia.org/wiki/Serializability)
изменений и согласованность данных после аварий. При этом транзакции
изменяющие данные никак не мешают операциям чтения и выполняются строго
последовательно с использованием единственного
[мьютекса](https://en.wikipedia.org/wiki/Mutual_exclusion).
### Comparison with other DBs
_libmdbx_ позволяет выполнять операции чтения с гарантиями
[wait-free](https://en.wikipedia.org/wiki/Non-blocking_algorithm#Wait-freedom),
параллельно на каждом ядре CPU, без использования атомарных операций
и/или примитивов синхронизации.
Because _libmdbx_ is currently overhauled, I think it's better to just link
[chapter of Comparison with other databases](https://github.com/coreos/bbolt#comparison-with-other-databases) here.
_libmdbx_ не использует [LSM](https://en.wikipedia.org/wiki/Log-structured_merge-tree), а основан на [B+Tree](https://en.wikipedia.org/wiki/B%2B_tree) с [отображением](https://en.wikipedia.org/wiki/Memory-mapped_file) всех данных в память,
при этом текущая версия не использует [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging).
Это предопределяет многие свойства, в том числе удачные и противопоказанные сценарии использования.
### History
### Сравнение с другими СУБД
Ввиду того, что в _libmdbx_ сейчас происходит революция, я посчитал лучшим решением
ограничится здесь ссылкой на [главу Comparison with other databases](https://github.com/coreos/bbolt#comparison-with-other-databases) в описании _BoltDB_.
### История
_libmdbx_ является результатом переработки и развития "Lightning Memory-Mapped Database",
известной под аббревиатурой
[LMDB](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database).
Изначально доработка производилась в составе проекта
[ReOpenLDAP](https://github.com/leo-yuriev/ReOpenLDAP). Примерно за год
работы внесенные изменения приобрели самостоятельную ценность. Осенью
2015 доработанный движок был выделен в отдельный проект, который был
[представлен на конференции Highload++
2015](http://www.highload.ru/2015/abstracts/1831.html).
В начале 2017 года движок _libmdbx_ получил новый импульс развития,
благодаря использованию в [Fast Positive
Tables](https://github.com/leo-yuriev/libfpta), aka ["Позитивные
Таблицы"](https://github.com/leo-yuriev/libfpta) by [Positive
Technologies](https://www.ptsecurity.ru).
_libmdbx_ design is based on [Lightning Memory-Mapped Database](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database).
Initial development was going in [ReOpenLDAP](https://github.com/leo-yuriev/ReOpenLDAP) project, about a year later it
received separate development effort and in autumn 2015 was isolated to separate project, which was
[presented at Highload++ 2015 conference](http://www.highload.ru/2015/abstracts/1831.html).
Since early 2017 _libmdbx_ is used in [Fast Positive Tables](https://github.com/leo-yuriev/libfpta),
by [Positive Technologies](https://www.ptsecurity.ru).
#### Acknowledgements
@ -99,565 +74,373 @@ Martin Hedenfalk <martin@bzero.se> - the author of `btree.c` code,
which was used for begin development of LMDB.
Основные свойства
Main features
=================
_libmdbx_ наследует все ключевые возможности и особенности от
своего прародителя [LMDB](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database),
но с устранением ряда описываемых далее проблем и архитектурных недочетов.
_libmdbx_ inherits all keys features and characteristics from
[LMDB](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database):
1. Данные хранятся в упорядоченном отображении (ordered map), ключи всегда
отсортированы, поддерживается выборка диапазонов (range lookups).
1. Data is stored in ordered map, keys are always sorted, range lookups are supported.
2. Данные отображается в память каждого работающего с БД процесса.
К данным и ключам обеспечивается прямой доступ в памяти без необходимости их
копирования.
2. Data is [mmaped](https://en.wikipedia.org/wiki/Memory-mapped_file) to memory of each worker DB process, read transactions are zero-copy
3. Транзакции согласно
[ACID](https://ru.wikipedia.org/wiki/ACID), посредством
[MVCC](https://ru.wikipedia.org/wiki/MVCC) и
[COW](https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BF%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BF%D1%80%D0%B8_%D0%B7%D0%B0%D0%BF%D0%B8%D1%81%D0%B8).
Изменения строго последовательны и не блокируются чтением,
конфликты между транзакциями не возможны.
При этом гарантируется чтение только зафиксированных данных, см [relaxing serializability](https://en.wikipedia.org/wiki/Serializability).
3. Transactions are [ACID](https://en.wikipedia.org/wiki/ACID)-compliant, thanks to
[MVCC](https://en.wikipedia.org/wiki/Multiversion_concurrency_control) and [CoW](https://en.wikipedia.org/wiki/Copy-on-write).
Writes are strongly serialized and aren't blocked by reads, transactions can't conflict with each other.
Reads are guaranteed to get only commited data
([relaxing serializability](https://en.wikipedia.org/wiki/Serializability#Relaxing_serializability)).
4. Чтение и поиск [без блокировок](https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B1%D0%BB%D0%BE%D0%BA%D0%B8%D1%80%D1%83%D1%8E%D1%89%D0%B0%D1%8F_%D1%81%D0%B8%D0%BD%D1%85%D1%80%D0%BE%D0%BD%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F),
без [атомарных операций](https://ru.wikipedia.org/wiki/%D0%90%D1%82%D0%BE%D0%BC%D0%B0%D1%80%D0%BD%D0%B0%D1%8F_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%86%D0%B8%D1%8F).
Читатели не блокируются операциями записи и не конкурируют
между собой, чтение масштабируется линейно по ядрам CPU.
> Для точности следует отметить, что "подключение к БД" (старт первой
> читающей транзакции в потоке) и "отключение от БД" (закрытие БД или
> завершение потока) требуют краткосрочного захвата блокировки для
> регистрации/дерегистрации текущего потока в "таблице читателей".
4. Reads and queries are [non-blocking](https://en.wikipedia.org/wiki/Non-blocking_algorithm),
don't use [atomic operations](https://en.wikipedia.org/wiki/Linearizability#High-level_atomic_operations).
Readers don't block each other and aren't blocked by writers. Read perfomance scales linearly with CPU core count.
> Though "connect to DB" (start of first read transaction in thread) and "disconnect from DB" (shutdown or thread
> termination) requires to acquire a lock to register/unregister current thread from "readers table"
5. Эффективное хранение дубликатов (ключей с несколькими
значениями), без дублирования ключей, с сортировкой значений, в
том числе целочисленных (для вторичных индексов).
5. Keys with multiple values are stored efficiently without key duplication, sorted by value, including intereger
(for secondary indexes).
6. Эффективная поддержка коротких ключей фиксированной длины, в том числе целочисленных.
6. Efficient operation on short fixed length keys, including integer ones.
7. Амортизационная стоимость любой операции Olog(N),
[WAF](https://en.wikipedia.org/wiki/Write_amplification) (Write
Amplification Factor) и RAF (Read Amplification Factor) также Olog(N).
7. [WAF](https://en.wikipedia.org/wiki/Write_amplification) (Write Amplification Factor) и RAF (Read Amplification Factor)
are Olog(N).
8. Нет [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging) и журнала
транзакций, после сбоев не требуется восстановление. Не требуется компактификация
или какое-либо периодическое обслуживание. Поддерживается резервное копирование
"по горячему", на работающей БД без приостановки изменения данных.
8. No [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging) and transaction journal.
In case of a crash no recovery needed. No need for regular maintenance. Backups can be made on the fly on working DB
without freezing writers.
9. Отсутствует какое-либо внутреннее управление памятью или кэшированием. Всё
необходимое штатно выполняет ядро ОС!
9. No custom memory management, all done with standard OS syscalls.
Сравнение производительности
============================
Perfomance comparison
=====================
Все представленные ниже данные получены многократным прогоном тестов на
ноутбуке Lenovo Carbon-2, i7-4600U 2.1 ГГц, 8 Гб ОЗУ, с SSD-диском
SAMSUNG MZNTD512HAGL-000L1 (DXT23L0Q) 512 Гб.
All benchmark were done by multiple test runs on Lenovo Carbon-2 laptop, i7-4600U 2.1 ГГц, 8 Гб ОЗУ, SSD
SAMSUNG MZNTD512HAGL-000L1 (DXT23L0Q) 512 Gb.
Исходный код бенчмарка [_IOArena_](https://github.com/pmwkaa/ioarena) и
сценарии тестирования [доступны на
github](https://github.com/pmwkaa/ioarena/tree/HL%2B%2B2015).
Benchmark: [_IOArena_](https://github.com/pmwkaa/ioarena)
[test scripts](https://github.com/pmwkaa/ioarena/tree/HL%2B%2B2015).
--------------------------------------------------------------------------------
### Интегральная производительность
### Integral perfomance
Показана соотнесенная сумма ключевых показателей производительности в трёх
бенчмарках:
Here showed sum of perfomance metrics in 3 benchmarks:
- Чтение/Поиск на машине с 4-мя процессорами;
- Read/Search on 4 CPU cores machine;
- Транзакции с [CRUD](https://ru.wikipedia.org/wiki/CRUD)-операциями
(вставка, чтение, обновление, удаление) в режиме **синхронной фиксации**
данных (fdatasync при завершении каждой транзакции или аналог);
- Transactions with [CRUD](https://en.wikipedia.org/wiki/CRUD) operations
in sync-write mode (fdatasync is called after each transaction);
- Транзакции с [CRUD](https://ru.wikipedia.org/wiki/CRUD)-операциями
(вставка, чтение, обновление, удаление) в режиме **отложенной фиксации**
данных (отложенная запись посредством файловой систем или аналог);
- Transactions with [CRUD](https://en.wikipedia.org/wiki/CRUD) operations
in lazy-write mode (moment to sync data to persistent storage is decided by OS);
*Бенчмарк в режиме асинхронной записи не включен по двум причинам:*
*Reasons why asynchronous mode isn't benchmarked here:*
1. Такое сравнение не совсем правомочно, его следует делать с движками
ориентированными на хранение данных в памяти ([Tarantool](https://tarantool.io/), [Redis](https://redis.io/)).
1. It doesn't make sense as it has to be done with DB engines, oriented for keeping data in memory e.g.
[Tarantool](https://tarantool.io/), [Redis](https://redis.io/)), etc.
2. Превосходство libmdbx становится еще более подавляющем, что мешает
восприятию информации.
2. perfomance gap is too high to compare in any meaningful way.
![Comparison #1: Integral Performance](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-1.png)
--------------------------------------------------------------------------------
### Масштабируемость чтения
### Read Scalability
Для каждого движка показана суммарная производительность при
одновременном выполнении запросов чтения/поиска в 1-2-4-8 потоков на
машине с 4-мя физическими процессорами.
Summary perfomance with concurrent read/search queries in 1-2-4-8 threads on 4 CPU cores machine.
![Comparison #2: Read Scalability](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-2.png)
--------------------------------------------------------------------------------
### Синхронная фиксация
### Sync-write mode
- Линейная шкала слева и темные прямоугольники соответствуют количеству
транзакций в секунду, усредненному за всё время теста.
- Linear scale on left and dark rectangles mean arithmetic mean transactions per second
- Логарифмическая шкала справа и желтые интервальные отрезки
соответствуют времени выполнения транзакций. При этом каждый отрезок
показывает минимальное и максимальное время затраченное на выполнение
транзакций, а крестиком отмечено среднеквадратичное значение.
- Logarithmic scale on right is in seconds and yellow intervals mean execution time of transactions.
Each interval shows minimal and maximum execution time, cross marks standart deviation.
Выполняется **10.000 транзакций в режиме синхронной фиксации данных** на
диске. При этом требуется гарантия, что при аварийном выключении питания
(или другом подобном сбое) все данные будут консистентны и полностью
соответствовать последней завершенной транзакции. В _libmdbx_ в этом
режиме при фиксации каждой транзакции выполняется системный вызов
[fdatasync](https://linux.die.net/man/2/fdatasync).
**10,000 transactions in sync-write mode**. In case of a crash all data is consistent and state is right after last successful transaction. [fdatasync](https://linux.die.net/man/2/fdatasync) syscall is used after each write transaction in this mode.
В каждой транзакции выполняется комбинированная CRUD-операция (две
вставки, одно чтение, одно обновление, одно удаление). Бенчмарк стартует
на пустой базе, а при завершении, в результате выполняемых действий, в
базе насчитывается 10.000 небольших key-value записей.
In the benchmark each transaction contains combined CRUD operations (2 inserts, 1 read, 1 update, 1 delete).
Benchmark starts on empty database and after full run the database contains 10,000 small key-value records.
![Comparison #3: Sync-write mode](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-3.png)
--------------------------------------------------------------------------------
### Отложенная фиксация
### Lazy-write mode
- Линейная шкала слева и темные прямоугольники соответствуют количеству
транзакций в секунду, усредненному за всё время теста.
- Linear scale on left and dark rectangles mean arithmetic mean of thousands transactions per second
- Логарифмическая шкала справа и желтые интервальные отрезки
соответствуют времени выполнения транзакций. При этом каждый отрезок
показывает минимальное и максимальное время затраченное на выполнение
транзакций, а крестиком отмечено среднеквадратичное значение.
- Logarithmic scale on right in seconds and yellow intervals mean execution time of transactions. Each interval shows minimal and maximum execution time, cross marks standart deviation.
Выполняется **100.000 транзакций в режиме отложенной фиксации данных**
на диске. При этом требуется гарантия, что при аварийном выключении
питания (или другом подобном сбое) все данные будут консистентны на
момент завершения одной из транзакций, но допускается потеря изменений
из некоторого количества последних транзакций, что для многих движков
предполагает включение
[WAL](https://en.wikipedia.org/wiki/Write-ahead_logging) (write-ahead
logging) либо журнала транзакций, который в свою очередь опирается на
гарантию упорядоченности данных в журналируемой файловой системе.
_libmdbx_ при этом не ведет WAL, а передает весь контроль файловой
системе и ядру ОС.
**100,000 transactions in lazy-write mode**.
In case of a crash all data is consistent and state is right after one of last transactions, but transactions after it
will be lost. Other DB engines use [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging) or transaction journal for that,
which in turn depends on order of operations in journaled filesystem. _libmdbx_ doesn't use WAL and hands I/O operations
to filesystem and OS kernel (mmap).
In the benchmark each transaction contains combined CRUD operations (2 inserts, 1 read, 1 update, 1 delete).
Benchmark starts on empty database and after full run the database contains 100,000 small key-value records.
В каждой транзакции выполняется комбинированная CRUD-операция (две
вставки, одно чтение, одно обновление, одно удаление). Бенчмарк стартует
на пустой базе, а при завершении, в результате выполняемых действий, в
базе насчитывается 100.000 небольших key-value записей.
![Comparison #4: Lazy-write mode](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-4.png)
--------------------------------------------------------------------------------
### Асинхронная фиксация
### Async-write mode
- Линейная шкала слева и темные прямоугольники соответствуют количеству
транзакций в секунду, усредненному за всё время теста.
- Linear scale on left and dark rectangles mean arithmetic mean of thousands transactions per second
- Логарифмическая шкала справа и желтые интервальные отрезки
соответствуют времени выполнения транзакций. При этом каждый отрезок
показывает минимальное и максимальное время затраченное на выполнение
транзакций, а крестиком отмечено среднеквадратичное значение.
- Logarithmic scale on right in seconds and yellow intervals mean execution time of transactions. Each interval shows minimal and maximum execution time, cross marks standart deviation.
Выполняется **1.000.000 транзакций в режиме асинхронной фиксации
данных** на диске. При этом требуется гарантия, что при аварийном
выключении питания (или другом подобном сбое) все данные будут
консистентны на момент завершения одной из транзакций, но допускается
потеря изменений из значительного количества последних транзакций. Во
всех движках при этом включался режим предполагающий минимальную
нагрузку на диск по-записи, и соответственно минимальную гарантию
сохранности данных. В _libmdbx_ при этом используется режим асинхронной
записи измененных страниц на диск посредством ядра ОС и системного
вызова [msync(MS_ASYNC)](https://linux.die.net/man/2/msync).
**1,000,000 transactions in async-write mode**. In case of a crash all data will be consistent and state will be right after one of last transactions, but lost transaction count is much higher than in lazy-write mode. All DB engines in this mode do as little writes as possible on persistent storage. _libmdbx_ uses [msync(MS_ASYNC)](https://linux.die.net/man/2/msync) in this mode.
В каждой транзакции выполняется комбинированная CRUD-операция (две
вставки, одно чтение, одно обновление, одно удаление). Бенчмарк стартует
на пустой базе, а при завершении, в результате выполняемых действий, в
базе насчитывается 10.000 небольших key-value записей.
In the benchmark each transaction contains combined CRUD operations (2 inserts, 1 read, 1 update, 1 delete).
Benchmark starts on empty database and after full run the database contains 10,000 small key-value records.
![Comparison #5: Async-write mode](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-5.png)
--------------------------------------------------------------------------------
### Потребление ресурсов
### Cost comparison
Показана соотнесенная сумма использованных ресурсов в ходе бенчмарка в
режиме отложенной фиксации:
Summary of used resources during lazy-write mode benchmarks:
- суммарное количество операций ввода-вывода (IOPS), как записи, так и
чтения.
- read and write IOPS
- суммарное затраченное время процессора, как в режиме пользовательских процессов,
так и в режиме ядра ОС.
- sum of user CPU time and sys CPU time
- использованное место на диске при завершении теста, после закрытия БД из тестирующего процесса,
но без ожидания всех внутренних операций обслуживания (компактификации LSM и т.п.).
- used space on persistent storage after the test and closed DB, but not waiting for the end of all internal
housekeeping operations (LSM compactification, etc)
Движок _ForestDB_ был исключен при оформлении результатов, так как
относительно конкурентов многократно превысил потребление каждого из
ресурсов (потратил процессорное время на генерацию IOPS для заполнения
диска), что не позволяло наглядно сравнить показатели остальных движков
на одной диаграмме.
_ForestDB_ is excluded because benchmark showed it's resource consumption for each resource (CPU, IOPS) much higher than other engines which prevents to meaningfully compare it with them.
Все данные собирались посредством системного вызова
[getrusage()](http://man7.org/linux/man-pages/man2/getrusage.2.html) и
сканированием директорий с данными.
All benchmark data is gathered by [getrusage()](http://man7.org/linux/man-pages/man2/getrusage.2.html) syscall and by
scanning data directory.
![Comparison #6: Cost comparison](https://raw.githubusercontent.com/wiki/leo-yuriev/libmdbx/img/perf-slide-6.png)
--------------------------------------------------------------------------------
## Недостатки и Компромиссы
## Gotchas
1. Единовременно может выполняться не более одной транзакция изменения данных
(один писатель). Зато все изменения всегда последовательны, не может быть
конфликтов или логических ошибок при откате транзакций.
1.
At one moment there can be only one writer. But this allows to serialize writes and eliminate any possibility
of conflict or logical errors during transaction rollback.
2. Отсутствие [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging)
обуславливает относительно большой
[WAF](https://en.wikipedia.org/wiki/Write_amplification) (Write
Amplification Factor). Поэтому фиксация изменений на диске может быть
достаточно дорогой и являться главным ограничением производительности
при интенсивном изменении данных.
> В качестве компромисса _libmdbx_ предлагает несколько режимов ленивой
> и/или периодической фиксации. В том числе режим `MAPASYNC`, при котором
> изменения происходят только в памяти и асинхронно фиксируются на диске
> ядром ОС.
2. No [WAL](https://en.wikipedia.org/wiki/Write-ahead_logging) means relatively
big [WAF](https://en.wikipedia.org/wiki/Write_amplification) (Write Amplification Factor).
Because of this syncing data to disk might be quite resource intensive and be main perfomance bottleneck
during intensive write workload.
> As compromise _libmdbx_ allows several modes of lazy and/or periodic syncing, including `MAPASYNC` mode, which modificates
> data in memory and asynchronously syncs data to disc, moment to sync is picked by OS.
>
> Однако, следует воспринимать это свойство аккуратно и взвешенно.
> Например, полная фиксация транзакции в БД с журналом потребует минимум 2
> IOPS (скорее всего 3-4) из-за накладных расходов в файловой системе. В
> _libmdbx_ фиксация транзакции также требует от 2 IOPS. Однако, в БД с
> журналом кол-во IOPS будет меняться в зависимости от файловой системы,
> но не от кол-ва записей или их объема. Тогда как в _libmdbx_ кол-во
> будет расти логарифмически от кол-во записей/строк в БД (по высоте
> b+tree).
> Although this should be used with care, synchronous transactions in a DB with transaction journal will require 2 IOPS
> minimum (probably 3-4 in practice) because of filesystem overhead, overhead depends on filesystem, not on record
> count or record size. In _libmdbx_ IOPS count will grow logarithmically depending on record count in DB (height of B+ tree)
> and will require at least 2 IOPS per transaction too.
3. [COW](https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BF%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BF%D1%80%D0%B8_%D0%B7%D0%B0%D0%BF%D0%B8%D1%81%D0%B8)
для реализации [MVCC](https://ru.wikipedia.org/wiki/MVCC) выполняется на
уровне страниц в [B+
дереве](https://ru.wikipedia.org/wiki/B-%D0%B4%D0%B5%D1%80%D0%B5%D0%B2%D0%BE).
Поэтому изменение данных амортизационно требует копирования Olog(N)
страниц, что расходует [пропускную способность оперативной
памяти](https://en.wikipedia.org/wiki/Memory_bandwidth) и является
основным ограничителем производительности в режиме `MAPASYNC`.
> Этот недостаток неустраним, тем не менее следует дать некоторые пояснения.
> Дело в том, что фиксация изменений на диске потребует гораздо более
> значительного копирования данных в памяти и массы других затратных операций.
> Поэтому обусловленное этим недостатком падение производительности становится
> заметным только при отказе от фиксации изменений на диске.
> Соответственно, корректнее сказать что _libmdbx_ позволяет
> получить персистентность ценой минимального падения производительности.
> Если же нет необходимости оперативно сохранять данные, то логичнее
> использовать `std::map`.
4. В _LMDB_ существует проблема долгих чтений (приостановленных читателей),
которая приводит к деградации производительности и переполнению БД.
> В _libmdbx_ предложены средства для предотвращения, быстрого выхода из
> некомфортной ситуации и устранения её последствий. Подробности ниже.
5. В _LMDB_ есть вероятность разрушения БД в режиме `WRITEMAP+MAPASYNC`.
В _libmdbx_ для `WRITEMAP+MAPASYNC` гарантируется как сохранность базы,
так и согласованность данных.
> Дополнительно, в качестве альтернативы, предложен режим `UTTERLY_NOSYNC`.
> Подробности ниже.
3. [CoW](https://en.wikipedia.org/wiki/Copy-on-write)
for [MVCC](https://en.wikipedia.org/wiki/Multiversion_concurrency_control) is done on memory page level with [B+
trees](https://ru.wikipedia.org/wiki/B-%D0%B4%D0%B5%D1%80%D0%B5%D0%B2%D0%BE).
Therefore altering data requires to copy about Olog(N) memory pages, which uses [memory bandwidth](https://en.wikipedia.org/wiki/Memory_bandwidth) and is main perfomance bottleneck in `MAPASYNC` mode.
> This is unavoidable, but isn't that bad. Syncing data to disk requires much more similiar operations which will
> be done by OS, therefore this is noticeable only if data sync to persistent storage is fully disabled.
> _libmdbx_ allows to safely save data to persistent storage with minimal perfomance overhead. If there is no need
> to save data to persistent storage then it's much more preferrable to use `std::map`.
#### Проблема долгих чтений
4. LMDB has a problem of long-time readers which degrades perfomance and bloats DB
> _libmdbx_ addresses that, details below.
*Следует отметить*, что проблема "сборки мусора" так или иначе
существует во всех СУБД (Vacuum в PostgreSQL). Однако в случае _libmdbx_
и LMDB она проявляется более остро, прежде всего из-за высокой
производительности, а также из-за намеренного упрощения внутренних
механизмов ради производительности.
Понимание проблемы требует некоторых пояснений, которые
изложены ниже, но могут быть сложны для быстрого восприятия.
Поэтому, тезисно:
* Изменение данных на фоне долгой операции чтения может
приводить к исчерпанию места в БД.
* После чего любая попытка обновить данные будет приводить к
ошибке `MAP_FULL` до завершения долгой операции чтения.
* Характерными примерами долгих чтений являются горячее
резервное копирования и отладка клиентского приложения при
активной транзакции чтения.
* В оригинальной _LMDB_ после этого будет наблюдаться
устойчивая деградация производительности всех механизмов
обратной записи на диск (в I/O контроллере, в гипервизоре,
в ядре ОС).
* В _libmdbx_ предусмотрен механизм аварийного прерывания таких
операций, а также режим `LIFO RECLAIM` устраняющий последующую
деградацию производительности.
Операции чтения выполняются в контексте снимка данных (версии
БД), который был актуальным на момент старта транзакции чтения. Такой
читаемый снимок поддерживается неизменным до завершения операции. В свою
очередь, это не позволяет повторно использовать страницы БД в
последующих версиях (снимках БД).
Другими словами, если обновление данных выполняется на фоне долгой
операции чтения, то вместо повторного использования "старых" ненужных
страниц будут выделяться новые, так как "старые" страницы составляют
снимок БД, который еще используется долгой операцией чтения.
В результате, при интенсивном изменении данных и достаточно длительной
операции чтения, в БД могут быть исчерпаны свободные страницы, что не
позволит создавать новые снимки/версии БД. Такая ситуация будет
сохраняться до завершения операции чтения, которая использует старый
снимок данных и препятствует повторному использованию страниц БД.
Однако, на этом проблемы не заканчиваются. После описанной ситуации, все
дополнительные страницы, которые были выделены пока переработка старых
была невозможна, будут участвовать в цикле выделения/освобождения до
конца жизни экземпляра БД. В оригинальной _LMDB_ этот цикл использования
страниц работает по принципу [FIFO](https://ru.wikipedia.org/wiki/FIFO).
Поэтому увеличение количества циркулирующий страниц, с точки зрения
механизмов кэширования и/или обратной записи, выглядит как увеличение
рабочего набор данных. Проще говоря, однократное попадание в ситуацию
"уснувшего читателя" приводит к устойчивому эффекту вымывания I/O кэша
при всех последующих изменениях данных.
Для устранения описанных проблемы в _libmdbx_ сделаны существенные
доработки, подробности ниже. Иллюстрации к проблеме "долгих чтений"
можно найти в [слайдах презентации](http://www.slideshare.net/leoyuriev/lmdb).
Там же приведен пример количественной оценки прироста производительности
за счет эффективной работы [BBWC](https://en.wikipedia.org/wiki/BBWC)
при включении `LIFO RECLAIM` в _libmdbx_.
5. _LMDB_ is susceptible to DB corruption in `WRITEMAP+MAPASYNC` mode.
_libmdbx_ in `WRITEMAP+MAPASYNC` guarantees DB integrity and consistency of data.
> Additionaly there is an alternative: `UTTERLY_NOSYNC` mode. Details below
#### Сохранность данных в режиме асинхронной фиксации
#### Long-time read transactions problem
При работе в режиме `WRITEMAP+MAPSYNC` запись измененных страниц
выполняется ядром ОС, что имеет ряд преимуществ. Так например, при крахе
приложения, ядро ОС сохранит все изменения.
Garbage collection problem exists in all databases one way or another (e.g. VACUUM in PostgreSQL).
But in _libmbdx_ and LMDB it's even more important because of high perfomance and deliberate
simplification of internals with emphasis on perfomance.
Однако, при аварийном отключении питания или сбое в ядре ОС, на диске
может быть сохранена только часть измененных страниц БД. При этом с большой
вероятностью может оказаться так, что будут сохранены мета-страницы со
ссылками на страницы с новыми версиями данных, но не сами новые данные.
В этом случае БД будет безвозвратна разрушена, даже если до аварии
производилась полная синхронизация данных (посредством
`mdbx_env_sync()`).
* Altering data during long read operation may exhaust available space on persistent storage
В _libmdbx_ эта проблема устранена путем полной переработки
пути записи данных:
* If available space is exhausted then any attempt to update data
results in `MAP_FULL` error until long read operation ends
* В режиме `WRITEMAP+MAPSYNC` _libmdbx_ не обновляет
мета-страницы непосредственно, а поддерживает их теневые копии
с переносом изменений после фиксации данных.
* Main examples of long readers is hot backup
and debugging of client application which actively uses read transactions
* При завершении транзакций, в зависимости от состояния
синхронности данных между диском и оперативной память,
_libmdbx_ помечает точки фиксации либо как сильные (strong),
либо как слабые (weak). Так например, в режиме
`WRITEMAP+MAPSYNC` завершаемые транзакции помечаются как
слабые, а при явной синхронизации данных как сильные.
* In _LMDB_ this results in degraded perfomace of all operations
of syncing data to persistent storage.
* В _libmdbx_ поддерживается не две, а три отдельные мета-страницы.
Это позволяет выполнять фиксацию транзакций с формированием как
сильной, так и слабой точки фиксации, без потери двух предыдущих
точек фиксации (из которых одна может быть сильной, а вторая слабой).
В результате, _libmdbx_ позволяет в произвольном порядке чередовать
сильные и слабые точки фиксации без нарушения соответствующих
гарантий в случае неожиданной системной аварии во время фиксации.
* _libmdbx_ has a mechanism which aborts such operations and `LIFO RECLAIM`
mode which addresses perfomance degradation.
* При открытии БД выполняется автоматический откат к последней
сильной фиксации. Этим обеспечивается гарантия сохранности БД.
Read operations operate only over snapshot of DB which is consistent on the moment when read transaction started.
This snapshot doesn't change throughout the transaction but this leads to inability to reclaim the pages until
read transaction ends.
Такая гарантия надежности не дается бесплатно. Для
сохранности данных, страницы формирующие крайний снимок с
сильной фиксацией, не должны повторно использоваться
(перезаписываться) до формирования следующей сильной точки
фиксации. Таким образом, крайняя точка фиксации создает
описанный выше эффект "долгого чтения". Разница же здесь в том,
что при исчерпании свободных страниц ситуация будет
автоматически исправлена, посредством записи изменений на диск
и формированием новой сильной точки фиксации.
In _LMDB_ this leads to a problem that memory pages, allocated for operations during long read, will be used for operations
and won't be reclaimed until DB process terminates. In _LMDB_ they are used in
[FIFO](https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)) manner, which causes increased page count
and less chance of cache hit during I/O. In other words: one long-time reader can impact perfomance of all database
until it'll be reopened.
Таким образом, в режиме безопасной асинхронной фиксации _libmdbx_ будет
всегда использовать новые страницы до исчерпания места в БД или до явного
формирования сильной точки фиксации посредством `mdbx_env_sync()`.
При этом суммарный трафик записи на диск будет примерно такой-же,
как если бы отдельно фиксировалась каждая транзакций.
_libmdbx_ addresses the problem, details below. Illustrations to this problem can be found in the
[presentation](http://www.slideshare.net/leoyuriev/lmdb). There is also example of perfomance increase thanks to
[BBWC](https://en.wikipedia.org/wiki/Disk_buffer#Write_acceleration) when `LIFO RECLAIM` enabled in _libmdbx_.
В текущей версии _libmdbx_ вам предоставляется выбор между безопасным
режимом (по умолчанию) асинхронной фиксации, и режимом `UTTERLY_NOSYNC` когда
при системной аварии есть шанс полного разрушения БД как в LMDB.
#### Data safety in async-write mode
В последующих версиях _libmdbx_ будут предусмотрены средства
для асинхронной записи данных на диск с автоматическим
формированием сильных точек фиксации.
In `WRITEMAP+MAPSYNC` mode dirty pages are written to persistent storage by kernel. This means that in case of application
crash OS kernel will write all dirty data to disk and nothing will be lost. But in case of hardware malfunction or OS kernel
fatal error only some dirty data might be synced to disk, and there is high probability that pages with metadata saved,
will point to non-saved, hence non-existent, data pages. In such situation DB is completely corrupted and can't be
repaired even if there was full sync before the crash via `mdbx_env_sync().
_libmdbx_ addresses this by fully reimplementing write path of data:
* In `WRITEMAP+MAPSYNC` mode meta-data pages aren't updated in place, instead their shadow copies are used and their updates
are synced after data is flushed to disk.
* During transaction commit _libmdbx_ marks synchronization points as steady or weak depending on how much synchronization
needed between RAM and persistent storage, e.g. in `WRITEMAP+MAPSYNC` commited transactions are marked as weak,
but during explicit data synchronization - as steady.
* _libmdbx_ maintains three separate meta-pages instead of two. This allows to commit transaction with steady or
weak synchronization point without losing two previous synchronization points (one of them can be steady, and second - weak).
This allows to order weak and steady synchronization points in any order without losing consistency in case of system crash.
* During DB open _libmdbx_ rollbacks to the last steady synchronization point, this guarantees database integrity.
For data safety pages which form database snapshot with steady synchronization point must not be updated until next steady
synchronization point. So last steady synchronization point creates "long-time read" effect. The only difference that in case
of memory exhaustion the problem will be immediatly addressed by flushing changes to persistent storage and forming new steady
synchronization point.
So in async-write mode _libmdbx_ will always use new pages until memory is exhausted or `mdbx_env_sync()`is invoked. Total
disk usage will be almost the same as in sync-write mode.
Current _libmdbx_ gives a choice of safe async-write mode (default) and `UTTERLY_NOSYNC` mode which may result in full DB
corruption during system crash as with LMDB.
Next version of _libmdbx_ will create steady synchronization points automatically in async-write mode.
--------------------------------------------------------------------------------
Доработки и усовершенствования относительно LMDB
Improvements over LMDB
================================================
1. Режим `LIFO RECLAIM`.
1. `LIFO RECLAIM` mode:
Для повторного использования выбираются не самые старые, а
самые новые страницы из доступных. За счет этого цикл
использования страниц всегда имеет минимальную длину и не
зависит от общего числа выделенных страниц.
The newest pages are picked for reuse instead of the oldest.
This allows to minimize reclaim loop and make it execution time independent from total page count.
В результате механизмы кэширования и обратной записи работают с
максимально возможной эффективностью. В случае использования
контроллера дисков или системы хранения с
[BBWC](https://en.wikipedia.org/wiki/BBWC) возможно
многократное увеличение производительности по записи
(обновлению данных).
This results in OS kernel cache mechanisms working with maximum efficiency.
In case of using disc controllers or storages with
[BBWC](https://en.wikipedia.org/wiki/Disk_buffer#Write_acceleration) this may greatly improve
write perfomance.
2. Обработчик `OOM-KICK`.
2. `OOM-KICK` callback.
Посредством `mdbx_env_set_oomfunc()` может быть установлен
внешний обработчик (callback), который будет вызван при
исчерпания свободных страниц из-за долгой операцией чтения.
Обработчику будет передан PID и pthread_id виновника.
В свою очередь обработчик может предпринять одно из действий:
`mdbx_env_set_oomfunc()` allows to set a callback, which will be called
in the event of memory exhausting during long-time read transaction.
Callback will be invoked with PID and pthread_id of offending thread as parameters.
Callback can do any of this things to remedy the problem:
* нейтрализовать виновника (отправить сигнал kill #9), если
долгое чтение выполняется сторонним процессом;
* wait for read transaction to finish normally;
* отменить или перезапустить проблемную операцию чтения, если
операция выполняется одним из потоков текущего процесса;
* kill the offending process (signal 9), if separate process is doing long-time read;
* подождать некоторое время, в расчете что проблемная операция
чтения будет штатно завершена;
* abort or restart offending read transaction if it's running in sibling thread;
* прервать текущую операцию изменения данных с возвратом кода
ошибки.
* abort current write transaction with returning error code
3. Гарантия сохранности БД в режиме `WRITEMAP+MAPSYNC`.
3. Guarantee of DB integrity in `WRITEMAP+MAPSYNC` mode:
В текущей версии _libmdbx_ вам предоставляется выбор между безопасным
режимом (по умолчанию) асинхронной фиксации, и режимом `UTTERLY_NOSYNC`
когда при системной аварии есть шанс полного разрушения БД как в LMDB.
Для подробностей смотрите раздел
[Сохранность данных в режиме асинхронной фиксации](#Сохранность-данных-в-режиме-асинхронной-фиксации).
Current _libmdbx_ gives a choice of safe async-write mode (default) and `UTTERLY_NOSYNC` mode which may result in full
DB corruption during system crash as with LMDB. For details see
[Data safety in async-write mode](#data-safety-in-async-write-mode)
4. Возможность автоматического формирования контрольных точек
(сброса данных на диск) при накоплении заданного объёма изменений,
устанавливаемого функцией `mdbx_env_set_syncbytes()`.
4. Automatic creation of synchronization points (flush changes to persistent storage)
when changes reach set threshold (threshold can be set by `mdbx_env_set_syncbytes()`).
5. Возможность получить отставание текущей транзакции чтения от
последней версии данных в БД посредством `mdbx_txn_straggler()`.
5. Ability to get how far current readonly snapshot is from latest version of the DB by `mdbx_txn_straggler()`
6. Утилита mdbx_chk для проверки БД и функция `mdbx_env_pgwalk()` для
обхода всех страниц БД.
6. mdbx_chk tool for DB checking and `mdbx_env_pgwalk()` for pagewalking all pages in DB
7. Управление отладкой и получение отладочных сообщений посредством
`mdbx_setup_debug()`.
7. Control over debugging and receiveing of debugging messages via `mdbx_setup_debug()`
8. Возможность связать с каждой завершаемой транзакцией до 3
дополнительных маркеров посредством `mdbx_canary_put()`, и прочитать их
в транзакции чтения посредством `mdbx_canary_get()`.
8. Ability to assign up to 3 markers to commiting transaction with `mdbx_canary_put()` and then get them in read transaction
by `mdbx_canary_get()`
9. Возможность узнать есть ли за текущей позицией курсора строка данных
посредством `mdbx_cursor_eof()`.
9. Check if there is a row with data after current cursor position via `mdbx_cursor_eof()`
10. Возможность явно запросить обновление существующей записи, без
создания новой посредством флажка `MDBX_CURRENT` для `mdbx_put()`.
10. Ability to explicitly request update of current record without creating new record. Implemented as `MDBX_CURRENT` flag
for `mdbx_put()`
11. Возможность посредством `mdbx_replace()` обновить или удалить запись
с получением предыдущего значения данных, а также адресно изменить
конкретное multi-значение.
11. Ability to update or delete record and get previous value via `mdbx_replace()` Also can update specific multi-value.
12. Поддержка ключей и значений нулевой длины, включая сортированные
дубликаты.
12. Support for keys and values of zero length, including sorted duplicates
13. Исправленный вариант `mdbx_cursor_count()`, возвращающий корректное
количество дубликатов для всех типов таблиц и любого положения курсора.
13. Fixed `mdbx_cursor_count()`, which returns correct count of duplicated for all table types and any cursor position
14. Возможность открыть БД в эксклюзивном режиме посредством
`mdbx_env_open_ex()`, например в целях её проверки.
14. Ability to open DB in exclusive mode via `mdbx_env_open_ex()`, e.g. for integrity check
15. Возможность закрыть БД в "грязном" состоянии (без сброса данных и
формирования сильной точки фиксации) посредством `mdbx_env_close_ex()`.
15. Ability to close DB in "dirty" state (without data flush and creation of steady synchronization point)
via `mdbx_env_close_ex()`
16. Возможность получить посредством `mdbx_env_info()` дополнительную
информацию, включая номер самой старой версии БД (снимка данных),
который используется одним из читателей.
16. Ability to get addition info, including number of the oldest snapshot of DB, which is used by one of the readers.
Implemented via `mdbx_env_info()`
17. Функция `mdbx_del()` не игнорирует дополнительный (уточняющий)
аргумент `data` для таблиц без дубликатов (без флажка `MDBX_DUPSORT`), а
при его ненулевом значении всегда использует его для сверки с удаляемой
записью.
17. `mdbx_del()` doesn't ignore additional argument (specifier) `data`
for tables without duplicates (without flag `MDBX_DUPSORT`), if `data` is not zero then always uses it to verify
record, which is being deleted
18. Возможность открыть dbi-таблицу, одновременно с установкой
компараторов для ключей и данных, посредством `mdbx_dbi_open_ex()`.
18. Ability to open dbi-table with simultaneous setup of comparators for keys and values, via `mdbx_dbi_open_ex()`
19. Возможность посредством `mdbx_is_dirty()` определить находятся ли
некоторый ключ или данные в "грязной" странице БД. Таким образом,
избегая лишнего копирования данных перед выполнением модифицирующих
операций (значения в размещенные "грязных" страницах могут быть
перезаписаны при изменениях, иначе они будут неизменны).
19. Ability to find out if key or value are in dirty page. This may be useful to make a decision to avoid
excessive CoW before updates. Implemented via `mdbx_is_dirty()`
20. Корректное обновление текущей записи, в том числе сортированного
дубликата, при использовании режима `MDBX_CURRENT` в
`mdbx_cursor_put()`.
20. Correct update of current recordi in `MDBX_CURRENT` mode of `mdbx_cursor_put()`, including sorted duplicated.
21. Все курсоры, как в транзакциях только для чтения, так и в пишущих,
могут быть переиспользованы посредством `mdbx_cursor_renew()` и ДОЛЖНЫ
ОСВОБОЖДАТЬСЯ ЯВНО.
21. All cursors in all read and write transactions can be reused by `mdbx_cursor_renew()` and MUST be freed explicitly.
> ## Caution
>
> ## _ВАЖНО_, Обратите внимание!
>
> Это единственное изменение в API, которое значимо меняет
> семантику управления курсорами и может приводить к утечкам
> памяти. Следует отметить, что это изменение вынужденно.
> Так устраняется неоднозначность с массой тяжких последствий:
>
> - обращение к уже освобожденной памяти;
> - попытки повторного освобождения памяти;
> This is the only change of API, which changes semantics of cursor management
> and can lead to memory leaks on misuse. This is a needed change as it eliminates ambiguity
> which helps to avoid such errors as:
> - use-after-free;
> - double-free;
> - memory corruption and segfaults.
22. Дополнительный код ошибки `MDBX_EMULTIVAL`, который возвращается из
`mdbx_put()` и `mdbx_replace()` при попытке выполнить неоднозначное
обновление или удаления одного из нескольких значений с одним ключом.
22. Additional error code `MDBX_EMULTIVAL`, which is returned by `mdbx_put()` and
`mdbx_replace()` in case os ambigous update or delete.
23. Возможность посредством `mdbx_get_ex()` получить значение по
заданному ключу, одновременно с количеством дубликатов.
23. Ability to get value by key and duplicates count by `mdbx_get_ex()`
24. Наличие функций `mdbx_cursor_on_first()` и `mdbx_cursor_on_last()`,
которые позволяют быстро выяснить стоит ли курсор на первой/последней
позиции.
24. Functions `mdbx_cursor_on_first() and mdbx_cursor_on_last(), which allows to know if cursor is currently on first or
last position respectevely
25. При завершении читающих транзакций, открытые в них DBI-хендлы не
закрываются и не теряются при завершении таких транзакций посредством
`mdbx_txn_abort()` или `mdbx_txn_reset()`. Что позволяет избавится от ряда
сложно обнаруживаемых ошибок.
25. If read transaction is aborted via `mdbx_txn_abort()` or `mdbx_txn_reset()` then DBI-handles, which were opened in it,
aren't closed or deleted. This allows to avoid several types of hard-to-debug errors.
26. Генерация последовательностей посредством `mdbx_dbi_sequence()`.
26. Sequence generation via `mdbx_dbi_sequence()`.
27. Расширенное динамическое управление размером БД, включая выбор
размера страницы посредством `mdbx_env_set_geometry()`,
в том числе в **Windows**
27. Advanced dynamic control over DB size, including ability to choose page size via `mdbx_env_set_geometry()`,
including on Windows
28. Три мета-страницы вместо двух, что позволяет гарантированно
консистентно обновлять слабые контрольные точки фиксации без риска
повредить крайнюю сильную точку фиксации.
28. Three meta-pages instead two, this allows to guarantee consistently update weak synchronisation points without risking to
corrupt last steady synchronisation point.
29. В _libmdbx_ реализован автоматический возврат освобождающихся
страниц в область нераспределенного резерва в конце файла данных. При
этом уменьшается количество страниц загруженных в память и участвующих в
цикле обновления данных и записи на диск. Фактически _libmdbx_ выполняет
постоянную компактификацию данных, но не затрачивая на это
дополнительных ресурсов, а только освобождая их. При освобождении места
в БД и установки соответствующих параметров геометрии базы данных, также будет
уменьшаться размер файла на диске, в том числе в **Windows**.
29. Automatic reclaim of freed pages to specific reserved space in the end of database file. This lowers amount of pages,
loaded to memory, used in update/flush loop. In fact _llibmdbx_ constantly perfoms compactification of data,
but doesn't use addition resources for that. Space reclaim of DB and setup of database geometry parameters also decreases
size of the database on disk, including on Windows.
--------------------------------------------------------------------------------