mirror of
https://github.com/isar/libmdbx.git
synced 2025-08-19 19:39:26 +08:00
mdbx: fix typos and punctuation
This commit is contained in:
committed by
Leonid Yuriev
parent
f99df1ca35
commit
515adb674b
28
README.md
28
README.md
@@ -16,7 +16,7 @@ libmdbx
|
||||
2. Support for [raw block devices](https://en.wikipedia.org/wiki/Raw_device);
|
||||
3. Separate place (HDD) for large data items;
|
||||
4. Using "[Roaring bitmaps](http://roaringbitmap.org/about/)" inside garbage collector;
|
||||
5. Non-sequental reclaiming, like PostgreSQL's [Vacuum](https://www.postgresql.org/docs/9.1/static/sql-vacuum.html);
|
||||
5. Non-sequential reclaiming, like PostgreSQL's [Vacuum](https://www.postgresql.org/docs/9.1/static/sql-vacuum.html);
|
||||
6. [Asynchronous lazy data flushing](https://sites.fas.harvard.edu/~cs265/papers/kathuria-2008.pdf) to disk(s);
|
||||
7. etc...
|
||||
|
||||
@@ -33,7 +33,7 @@ Integration service will be available.
|
||||
|
||||
- [Overview](#overview)
|
||||
- [Comparison with other DBs](#comparison-with-other-dbs)
|
||||
- [History & Acknowledgements](#history)
|
||||
- [History & Acknowledgments](#history)
|
||||
- [Main features](#main-features)
|
||||
- [Performance comparison](#performance-comparison)
|
||||
- [Integral performance](#integral-performance)
|
||||
@@ -73,7 +73,7 @@ Because _libmdbx_ is currently overhauled, I think it's better to just link
|
||||
|
||||
### History
|
||||
|
||||
_libmdbx_ design is based on [Lightning Memory-Mapped Database](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database).
|
||||
The _libmdbx_ design is based on [Lightning Memory-Mapped Database](https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database).
|
||||
Initial development was going in [ReOpenLDAP](https://github.com/leo-yuriev/ReOpenLDAP) project, about a year later it
|
||||
received separate development effort and in autumn 2015 was isolated to separate project, which was
|
||||
[presented at Highload++ 2015 conference](http://www.highload.ru/2015/abstracts/1831.html).
|
||||
@@ -81,7 +81,7 @@ received separate development effort and in autumn 2015 was isolated to separate
|
||||
Since early 2017 _libmdbx_ is used in [Fast Positive Tables](https://github.com/leo-yuriev/libfpta),
|
||||
by [Positive Technologies](https://www.ptsecurity.com).
|
||||
|
||||
#### Acknowledgements
|
||||
#### Acknowledgments
|
||||
|
||||
Howard Chu (Symas Corporation) - the author of LMDB,
|
||||
from which originated the MDBX in 2015.
|
||||
@@ -277,7 +277,7 @@ scanning data directory.
|
||||
#### Long-time read transactions problem
|
||||
|
||||
Garbage collection problem exists in all databases one way or another (e.g. VACUUM in PostgreSQL).
|
||||
But in _libmbdx_ and LMDB it's even more important because of high performance and deliberate
|
||||
But in _libmdbx_ and LMDB it's even more important because of high performance and deliberate
|
||||
simplification of internals with emphasis on performance.
|
||||
|
||||
* Altering data during long read operation may exhaust available space on persistent storage.
|
||||
@@ -313,7 +313,7 @@ _libmdbx_ addresses the problem, details below. Illustrations to this problem ca
|
||||
In `WRITEMAP+MAPSYNC` mode dirty pages are written to persistent storage by kernel. This means that in case of application
|
||||
crash OS kernel will write all dirty data to disk and nothing will be lost. But in case of hardware malfunction or OS kernel
|
||||
fatal error only some dirty data might be synced to disk, and there is high probability that pages with metadata saved,
|
||||
will point to non-saved, hence non-existent, data pages. In such situation DB is completely corrupted and can't be
|
||||
will point to non-saved, hence non-existent, data pages. In such situation, DB is completely corrupted and can't be
|
||||
repaired even if there was full sync before the crash via `mdbx_env_sync().
|
||||
|
||||
_libmdbx_ addresses this by fully reimplementing write path of data:
|
||||
@@ -336,7 +336,7 @@ synchronization point. So last steady synchronization point creates "long-time r
|
||||
of memory exhaustion the problem will be immediately addressed by flushing changes to persistent storage and forming new steady
|
||||
synchronization point.
|
||||
|
||||
So in async-write mode _libmdbx_ will always use new pages until memory is exhausted or `mdbx_env_sync()`is invoked. Total
|
||||
So in async-write mode _libmdbx_ will always use new pages until memory is exhausted or `mdbx_env_sync()` is invoked. Total
|
||||
disk usage will be almost the same as in sync-write mode.
|
||||
|
||||
Current _libmdbx_ gives a choice of safe async-write mode (default) and `UTTERLY_NOSYNC` mode which may result in full DB
|
||||
@@ -352,7 +352,7 @@ Improvements over LMDB
|
||||
1. `LIFO RECLAIM` mode:
|
||||
|
||||
The newest pages are picked for reuse instead of the oldest.
|
||||
This allows to minimize reclaim loop and make it execution time independent from total page count.
|
||||
This allows to minimize reclaim loop and make it execution time independent of total page count.
|
||||
|
||||
This results in OS kernel cache mechanisms working with maximum efficiency.
|
||||
In case of using disk controllers or storages with
|
||||
@@ -364,7 +364,7 @@ Improvements over LMDB
|
||||
`mdbx_env_set_oomfunc()` allows to set a callback, which will be called
|
||||
in the event of memory exhausting during long-time read transaction.
|
||||
Callback will be invoked with PID and pthread_id of offending thread as parameters.
|
||||
Callback can do any of this things to remedy the problem:
|
||||
Callback can do any of these things to remedy the problem:
|
||||
|
||||
* wait for read transaction to finish normally;
|
||||
|
||||
@@ -408,7 +408,7 @@ Improvements over LMDB
|
||||
15. Ability to close DB in "dirty" state (without data flush and creation of steady synchronization point)
|
||||
via `mdbx_env_close_ex()`.
|
||||
|
||||
16. Ability to get addition info, including number of the oldest snapshot of DB, which is used by one of the readers.
|
||||
16. Ability to get additional info, including number of the oldest snapshot of DB, which is used by one of the readers.
|
||||
Implemented via `mdbx_env_info()`.
|
||||
|
||||
17. `mdbx_del()` doesn't ignore additional argument (specifier) `data`
|
||||
@@ -417,7 +417,7 @@ Improvements over LMDB
|
||||
|
||||
18. Ability to open dbi-table with simultaneous setup of comparators for keys and values, via `mdbx_dbi_open_ex()`.
|
||||
|
||||
19. Ability to find out if key or value are in dirty page. This may be useful to make a decision to avoid
|
||||
19. Ability to find out if key or value is in dirty page. This may be useful to make a decision to avoid
|
||||
excessive CoW before updates. Implemented via `mdbx_is_dirty()`.
|
||||
|
||||
20. Correct update of current record in `MDBX_CURRENT` mode of `mdbx_cursor_put()`, including sorted duplicated.
|
||||
@@ -448,12 +448,12 @@ Improvements over LMDB
|
||||
27. Advanced dynamic control over DB size, including ability to choose page size via `mdbx_env_set_geometry()`,
|
||||
including on Windows.
|
||||
|
||||
28. Three meta-pages instead two, this allows to guarantee consistently update weak sync-points without risking to
|
||||
28. Three meta-pages instead of two, this allows to guarantee consistently update weak sync-points without risking to
|
||||
corrupt last steady sync-point.
|
||||
|
||||
29. Automatic reclaim of freed pages to specific reserved space in the end of database file. This lowers amount of pages,
|
||||
29. Automatic reclaim of freed pages to specific reserved space at the end of database file. This lowers amount of pages,
|
||||
loaded to memory, used in update/flush loop. In fact _libmdbx_ constantly performs compactification of data,
|
||||
but doesn't use addition resources for that. Space reclaim of DB and setup of database geometry parameters also decreases
|
||||
but doesn't use additional resources for that. Space reclaim of DB and setup of database geometry parameters also decreases
|
||||
size of the database on disk, including on Windows.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
Reference in New Issue
Block a user