libmdbx/src/cogs.h

563 lines
20 KiB
C
Raw Normal View History

/// \copyright SPDX-License-Identifier: Apache-2.0
/// \author Леонид Юрьев aka Leonid Yuriev <leo@yuriev.ru> \date 2015-2024
#pragma once
#include "essentials.h"
MDBX_NOTHROW_CONST_FUNCTION MDBX_INTERNAL pgno_t pv2pages(uint16_t pv);
MDBX_NOTHROW_CONST_FUNCTION MDBX_INTERNAL uint16_t pages2pv(size_t pages);
MDBX_MAYBE_UNUSED MDBX_INTERNAL bool pv2pages_verify(void);
/*------------------------------------------------------------------------------
* Nodes, Keys & Values length limitation factors:
*
* BRANCH_NODE_MAX
* Branch-page must contain at least two nodes, within each a key and a child
* page number. But page can't be split if it contains less that 4 keys,
* i.e. a page should not overflow before adding the fourth key. Therefore,
* at least 3 branch-node should fit in the single branch-page. Further, the
* first node of a branch-page doesn't contain a key, i.e. the first node
* is always require space just for itself. Thus:
* PAGESPACE = pagesize - page_hdr_len;
* BRANCH_NODE_MAX = even_floor(
* (PAGESPACE - sizeof(indx_t) - NODESIZE) / (3 - 1) - sizeof(indx_t));
* KEYLEN_MAX = BRANCH_NODE_MAX - node_hdr_len;
*
* LEAF_NODE_MAX
* Leaf-node must fit into single leaf-page, where a value could be placed on
* a large/overflow page. However, may require to insert a nearly page-sized
* node between two large nodes are already fill-up a page. In this case the
* page must be split to two if some pair of nodes fits on one page, or
* otherwise the page should be split to the THREE with a single node
* per each of ones. Such 1-into-3 page splitting is costly and complex since
* requires TWO insertion into the parent page, that could lead to split it
* and so on up to the root. Therefore double-splitting is avoided here and
* the maximum node size is half of a leaf page space:
* LEAF_NODE_MAX = even_floor(PAGESPACE / 2 - sizeof(indx_t));
* DATALEN_NO_OVERFLOW = LEAF_NODE_MAX - NODESIZE - KEYLEN_MAX;
*
* - SubDatabase-node must fit into one leaf-page:
* SUBDB_NAME_MAX = LEAF_NODE_MAX - node_hdr_len - sizeof(tree_t);
*
* - Dupsort values itself are a keys in a dupsort-subdb and couldn't be longer
* than the KEYLEN_MAX. But dupsort node must not great than LEAF_NODE_MAX,
* since dupsort value couldn't be placed on a large/overflow page:
* DUPSORT_DATALEN_MAX = min(KEYLEN_MAX,
* max(DATALEN_NO_OVERFLOW, sizeof(tree_t));
*/
#define PAGESPACE(pagesize) ((pagesize) - PAGEHDRSZ)
#define BRANCH_NODE_MAX(pagesize) \
(EVEN_FLOOR((PAGESPACE(pagesize) - sizeof(indx_t) - NODESIZE) / (3 - 1) - \
sizeof(indx_t)))
#define LEAF_NODE_MAX(pagesize) \
(EVEN_FLOOR(PAGESPACE(pagesize) / 2) - sizeof(indx_t))
#define MAX_GC1OVPAGE(pagesize) (PAGESPACE(pagesize) / sizeof(pgno_t) - 1)
MDBX_NOTHROW_CONST_FUNCTION static inline size_t
keysize_max(size_t pagesize, MDBX_db_flags_t flags) {
assert(pagesize >= MDBX_MIN_PAGESIZE && pagesize <= MDBX_MAX_PAGESIZE &&
is_powerof2(pagesize));
STATIC_ASSERT(BRANCH_NODE_MAX(MDBX_MIN_PAGESIZE) - NODESIZE >= 8);
if (flags & MDBX_INTEGERKEY)
return 8 /* sizeof(uint64_t) */;
const intptr_t max_branch_key = BRANCH_NODE_MAX(pagesize) - NODESIZE;
STATIC_ASSERT(LEAF_NODE_MAX(MDBX_MIN_PAGESIZE) - NODESIZE -
/* sizeof(uint64) as a key */ 8 >
sizeof(tree_t));
if (flags &
(MDBX_DUPSORT | MDBX_DUPFIXED | MDBX_REVERSEDUP | MDBX_INTEGERDUP)) {
const intptr_t max_dupsort_leaf_key =
LEAF_NODE_MAX(pagesize) - NODESIZE - sizeof(tree_t);
return (max_branch_key < max_dupsort_leaf_key) ? max_branch_key
: max_dupsort_leaf_key;
}
return max_branch_key;
}
MDBX_NOTHROW_CONST_FUNCTION static inline size_t
env_keysize_max(const MDBX_env *env, MDBX_db_flags_t flags) {
size_t size_max;
if (flags & MDBX_INTEGERKEY)
size_max = 8 /* sizeof(uint64_t) */;
else {
const intptr_t max_branch_key = env->branch_nodemax - NODESIZE;
STATIC_ASSERT(LEAF_NODE_MAX(MDBX_MIN_PAGESIZE) - NODESIZE -
/* sizeof(uint64) as a key */ 8 >
sizeof(tree_t));
if (flags &
(MDBX_DUPSORT | MDBX_DUPFIXED | MDBX_REVERSEDUP | MDBX_INTEGERDUP)) {
const intptr_t max_dupsort_leaf_key =
env->leaf_nodemax - NODESIZE - sizeof(tree_t);
size_max = (max_branch_key < max_dupsort_leaf_key) ? max_branch_key
: max_dupsort_leaf_key;
} else
size_max = max_branch_key;
}
eASSERT(env, size_max == keysize_max(env->ps, flags));
return size_max;
}
MDBX_NOTHROW_CONST_FUNCTION static inline size_t
keysize_min(MDBX_db_flags_t flags) {
return (flags & MDBX_INTEGERKEY) ? 4 /* sizeof(uint32_t) */ : 0;
}
MDBX_NOTHROW_CONST_FUNCTION static inline size_t
valsize_min(MDBX_db_flags_t flags) {
if (flags & MDBX_INTEGERDUP)
return 4 /* sizeof(uint32_t) */;
else if (flags & MDBX_DUPFIXED)
return sizeof(indx_t);
else
return 0;
}
MDBX_NOTHROW_CONST_FUNCTION static inline size_t
valsize_max(size_t pagesize, MDBX_db_flags_t flags) {
assert(pagesize >= MDBX_MIN_PAGESIZE && pagesize <= MDBX_MAX_PAGESIZE &&
is_powerof2(pagesize));
if (flags & MDBX_INTEGERDUP)
return 8 /* sizeof(uint64_t) */;
if (flags & (MDBX_DUPSORT | MDBX_DUPFIXED | MDBX_REVERSEDUP))
return keysize_max(pagesize, 0);
const unsigned page_ln2 = log2n_powerof2(pagesize);
const size_t hard = 0x7FF00000ul;
const size_t hard_pages = hard >> page_ln2;
STATIC_ASSERT(PAGELIST_LIMIT <= MAX_PAGENO);
const size_t pages_limit = PAGELIST_LIMIT / 4;
const size_t limit =
(hard_pages < pages_limit) ? hard : (pages_limit << page_ln2);
return (limit < MAX_MAPSIZE / 2) ? limit : MAX_MAPSIZE / 2;
}
MDBX_NOTHROW_CONST_FUNCTION static inline size_t
env_valsize_max(const MDBX_env *env, MDBX_db_flags_t flags) {
size_t size_max;
if (flags & MDBX_INTEGERDUP)
size_max = 8 /* sizeof(uint64_t) */;
else if (flags & (MDBX_DUPSORT | MDBX_DUPFIXED | MDBX_REVERSEDUP))
size_max = env_keysize_max(env, 0);
else {
const size_t hard = 0x7FF00000ul;
const size_t hard_pages = hard >> env->ps2ln;
STATIC_ASSERT(PAGELIST_LIMIT <= MAX_PAGENO);
const size_t pages_limit = PAGELIST_LIMIT / 4;
const size_t limit =
(hard_pages < pages_limit) ? hard : (pages_limit << env->ps2ln);
size_max = (limit < MAX_MAPSIZE / 2) ? limit : MAX_MAPSIZE / 2;
}
eASSERT(env, size_max == valsize_max(env->ps, flags));
return size_max;
}
/*----------------------------------------------------------------------------*/
MDBX_NOTHROW_PURE_FUNCTION static inline size_t
leaf_size(const MDBX_env *env, const MDBX_val *key, const MDBX_val *data) {
size_t node_bytes = node_size(key, data);
if (node_bytes > env->leaf_nodemax)
/* put on large/overflow page */
node_bytes = node_size_len(key->iov_len, 0) + sizeof(pgno_t);
return node_bytes + sizeof(indx_t);
}
MDBX_NOTHROW_PURE_FUNCTION static inline size_t
branch_size(const MDBX_env *env, const MDBX_val *key) {
/* Size of a node in a branch page with a given key.
* This is just the node header plus the key, there is no data. */
size_t node_bytes = node_size(key, nullptr);
if (unlikely(node_bytes > env->branch_nodemax)) {
/* put on large/overflow page, not implemented */
mdbx_panic("node_size(key) %zu > %u branch_nodemax", node_bytes,
env->branch_nodemax);
node_bytes = node_size(key, nullptr) + sizeof(pgno_t);
}
return node_bytes + sizeof(indx_t);
}
MDBX_NOTHROW_CONST_FUNCTION static inline uint16_t
flags_db2sub(uint16_t db_flags) {
uint16_t sub_flags = db_flags & MDBX_DUPFIXED;
/* MDBX_INTEGERDUP => MDBX_INTEGERKEY */
#define SHIFT_INTEGERDUP_TO_INTEGERKEY 2
STATIC_ASSERT((MDBX_INTEGERDUP >> SHIFT_INTEGERDUP_TO_INTEGERKEY) ==
MDBX_INTEGERKEY);
sub_flags |= (db_flags & MDBX_INTEGERDUP) >> SHIFT_INTEGERDUP_TO_INTEGERKEY;
/* MDBX_REVERSEDUP => MDBX_REVERSEKEY */
#define SHIFT_REVERSEDUP_TO_REVERSEKEY 5
STATIC_ASSERT((MDBX_REVERSEDUP >> SHIFT_REVERSEDUP_TO_REVERSEKEY) ==
MDBX_REVERSEKEY);
sub_flags |= (db_flags & MDBX_REVERSEDUP) >> SHIFT_REVERSEDUP_TO_REVERSEKEY;
return sub_flags;
}
static inline bool check_sdb_flags(unsigned flags) {
switch (flags & ~(MDBX_REVERSEKEY | MDBX_INTEGERKEY)) {
default:
NOTICE("invalid db-flags 0x%x", flags);
return false;
case MDBX_DUPSORT:
case MDBX_DUPSORT | MDBX_REVERSEDUP:
case MDBX_DUPSORT | MDBX_DUPFIXED:
case MDBX_DUPSORT | MDBX_DUPFIXED | MDBX_REVERSEDUP:
case MDBX_DUPSORT | MDBX_DUPFIXED | MDBX_INTEGERDUP:
case MDBX_DUPSORT | MDBX_DUPFIXED | MDBX_INTEGERDUP | MDBX_REVERSEDUP:
case MDBX_DB_DEFAULTS:
return (flags & (MDBX_REVERSEKEY | MDBX_INTEGERKEY)) !=
(MDBX_REVERSEKEY | MDBX_INTEGERKEY);
}
}
/*----------------------------------------------------------------------------*/
MDBX_NOTHROW_PURE_FUNCTION static inline size_t pgno2bytes(const MDBX_env *env,
size_t pgno) {
eASSERT(env, (1u << env->ps2ln) == env->ps);
return ((size_t)pgno) << env->ps2ln;
}
MDBX_NOTHROW_PURE_FUNCTION static inline page_t *pgno2page(const MDBX_env *env,
size_t pgno) {
return ptr_disp(env->dxb_mmap.base, pgno2bytes(env, pgno));
}
MDBX_NOTHROW_PURE_FUNCTION static inline pgno_t bytes2pgno(const MDBX_env *env,
size_t bytes) {
eASSERT(env, (env->ps >> env->ps2ln) == 1);
return (pgno_t)(bytes >> env->ps2ln);
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_INTERNAL size_t
bytes_align2os_bytes(const MDBX_env *env, size_t bytes);
MDBX_NOTHROW_PURE_FUNCTION MDBX_INTERNAL size_t
pgno_align2os_bytes(const MDBX_env *env, size_t pgno);
MDBX_NOTHROW_PURE_FUNCTION MDBX_INTERNAL pgno_t
pgno_align2os_pgno(const MDBX_env *env, size_t pgno);
MDBX_NOTHROW_PURE_FUNCTION static inline pgno_t
largechunk_npages(const MDBX_env *env, size_t bytes) {
return bytes2pgno(env, PAGEHDRSZ - 1 + bytes) + 1;
}
MDBX_NOTHROW_PURE_FUNCTION static inline MDBX_val get_key(const node_t *node) {
MDBX_val key;
key.iov_len = node_ks(node);
key.iov_base = node_key(node);
return key;
}
static inline void get_key_optional(const node_t *node,
MDBX_val *keyptr /* __may_null */) {
if (keyptr)
*keyptr = get_key(node);
}
MDBX_NOTHROW_PURE_FUNCTION static inline void *page_data(const page_t *mp) {
return ptr_disp(mp, PAGEHDRSZ);
}
MDBX_NOTHROW_PURE_FUNCTION static inline const page_t *
data_page(const void *data) {
return container_of(data, page_t, entries);
}
MDBX_NOTHROW_PURE_FUNCTION static inline meta_t *page_meta(page_t *mp) {
return (meta_t *)page_data(mp);
}
MDBX_NOTHROW_PURE_FUNCTION static inline size_t page_numkeys(const page_t *mp) {
return mp->lower >> 1;
}
MDBX_NOTHROW_PURE_FUNCTION static inline size_t page_room(const page_t *mp) {
return mp->upper - mp->lower;
}
MDBX_NOTHROW_PURE_FUNCTION static inline size_t
page_space(const MDBX_env *env) {
STATIC_ASSERT(PAGEHDRSZ % 2 == 0);
return env->ps - PAGEHDRSZ;
}
MDBX_NOTHROW_PURE_FUNCTION static inline size_t page_used(const MDBX_env *env,
const page_t *mp) {
return page_space(env) - page_room(mp);
}
/* The percentage of space used in the page, in a percents. */
MDBX_MAYBE_UNUSED MDBX_NOTHROW_PURE_FUNCTION static inline unsigned
page_fill_percentum_x10(const MDBX_env *env, const page_t *mp) {
const size_t space = page_space(env);
return (unsigned)((page_used(env, mp) * 1000 + space / 2) / space);
}
MDBX_NOTHROW_PURE_FUNCTION static inline node_t *page_node(const page_t *mp,
size_t i) {
assert(page_type_compat(mp) == P_LEAF || page_type(mp) == P_BRANCH);
assert(page_numkeys(mp) > i);
assert(mp->entries[i] % 2 == 0);
return ptr_disp(mp, mp->entries[i] + PAGEHDRSZ);
}
MDBX_NOTHROW_PURE_FUNCTION static inline void *
page_dupfix_ptr(const page_t *mp, size_t i, size_t keysize) {
assert(page_type_compat(mp) == (P_LEAF | P_DUPFIX) && i == (indx_t)i &&
mp->dupfix_ksize == keysize);
(void)keysize;
return ptr_disp(mp, PAGEHDRSZ + mp->dupfix_ksize * (indx_t)i);
}
MDBX_NOTHROW_PURE_FUNCTION static inline MDBX_val
page_dupfix_key(const page_t *mp, size_t i, size_t keysize) {
MDBX_val r;
r.iov_base = page_dupfix_ptr(mp, i, keysize);
r.iov_len = mp->dupfix_ksize;
return r;
}
/*----------------------------------------------------------------------------*/
MDBX_NOTHROW_PURE_FUNCTION MDBX_INTERNAL int
cmp_int_unaligned(const MDBX_val *a, const MDBX_val *b);
#if MDBX_UNALIGNED_OK < 2 || \
(MDBX_DEBUG || MDBX_FORCE_ASSERTIONS || !defined(NDEBUG))
MDBX_NOTHROW_PURE_FUNCTION MDBX_INTERNAL int
/* Compare two items pointing at 2-byte aligned unsigned int's. */
cmp_int_align2(const MDBX_val *a, const MDBX_val *b);
#else
#define cmp_int_align2 cmp_int_unaligned
#endif /* !MDBX_UNALIGNED_OK || debug */
#if MDBX_UNALIGNED_OK < 4 || \
(MDBX_DEBUG || MDBX_FORCE_ASSERTIONS || !defined(NDEBUG))
MDBX_NOTHROW_PURE_FUNCTION MDBX_INTERNAL int
/* Compare two items pointing at 4-byte aligned unsigned int's. */
cmp_int_align4(const MDBX_val *a, const MDBX_val *b);
#else
#define cmp_int_align4 cmp_int_unaligned
#endif /* !MDBX_UNALIGNED_OK || debug */
/* Compare two items lexically */
MDBX_NOTHROW_PURE_FUNCTION MDBX_INTERNAL int cmp_lexical(const MDBX_val *a,
const MDBX_val *b);
/* Compare two items in reverse byte order */
MDBX_NOTHROW_PURE_FUNCTION MDBX_INTERNAL int cmp_reverse(const MDBX_val *a,
const MDBX_val *b);
/* Fast non-lexically comparator */
MDBX_NOTHROW_PURE_FUNCTION MDBX_INTERNAL int cmp_lenfast(const MDBX_val *a,
const MDBX_val *b);
MDBX_NOTHROW_PURE_FUNCTION MDBX_INTERNAL bool
eq_fast_slowpath(const uint8_t *a, const uint8_t *b, size_t l);
MDBX_NOTHROW_PURE_FUNCTION static inline bool eq_fast(const MDBX_val *a,
const MDBX_val *b) {
return unlikely(a->iov_len == b->iov_len) &&
eq_fast_slowpath(a->iov_base, b->iov_base, a->iov_len);
}
MDBX_NOTHROW_PURE_FUNCTION MDBX_INTERNAL int
cmp_equal_or_greater(const MDBX_val *a, const MDBX_val *b);
MDBX_NOTHROW_PURE_FUNCTION MDBX_INTERNAL int
cmp_equal_or_wrong(const MDBX_val *a, const MDBX_val *b);
static inline MDBX_cmp_func *builtin_keycmp(MDBX_db_flags_t flags) {
return (flags & MDBX_REVERSEKEY) ? cmp_reverse
: (flags & MDBX_INTEGERKEY) ? cmp_int_align2
: cmp_lexical;
}
static inline MDBX_cmp_func *builtin_datacmp(MDBX_db_flags_t flags) {
return !(flags & MDBX_DUPSORT)
? cmp_lenfast
: ((flags & MDBX_INTEGERDUP)
? cmp_int_unaligned
: ((flags & MDBX_REVERSEDUP) ? cmp_reverse : cmp_lexical));
}
/*----------------------------------------------------------------------------*/
MDBX_INTERNAL uint32_t combine_durability_flags(const uint32_t a,
const uint32_t b);
MDBX_CONST_FUNCTION static inline lck_t *lckless_stub(const MDBX_env *env) {
uintptr_t stub = (uintptr_t)&env->lckless_placeholder;
/* align to avoid false-positive alarm from UndefinedBehaviorSanitizer */
stub = (stub + MDBX_CACHELINE_SIZE - 1) & ~(MDBX_CACHELINE_SIZE - 1);
return (lck_t *)stub;
}
#if !(defined(_WIN32) || defined(_WIN64))
MDBX_MAYBE_UNUSED static inline int ignore_enosys(int err) {
#ifdef ENOSYS
if (err == ENOSYS)
return MDBX_RESULT_TRUE;
#endif /* ENOSYS */
#ifdef ENOIMPL
if (err == ENOIMPL)
return MDBX_RESULT_TRUE;
#endif /* ENOIMPL */
#ifdef ENOTSUP
if (err == ENOTSUP)
return MDBX_RESULT_TRUE;
#endif /* ENOTSUP */
#ifdef ENOSUPP
if (err == ENOSUPP)
return MDBX_RESULT_TRUE;
#endif /* ENOSUPP */
#ifdef EOPNOTSUPP
if (err == EOPNOTSUPP)
return MDBX_RESULT_TRUE;
#endif /* EOPNOTSUPP */
if (err == EAGAIN)
return MDBX_RESULT_TRUE;
return err;
}
#endif /* defined(_WIN32) || defined(_WIN64) */
static inline int check_env(const MDBX_env *env, const bool wanna_active) {
if (unlikely(!env))
return MDBX_EINVAL;
if (unlikely(env->signature.weak != env_signature))
return MDBX_EBADSIGN;
if (unlikely(env->flags & ENV_FATAL_ERROR))
return MDBX_PANIC;
if (wanna_active) {
#if MDBX_ENV_CHECKPID
if (unlikely(env->pid != osal_getpid()) && env->pid) {
((MDBX_env *)env)->flags |= ENV_FATAL_ERROR;
return MDBX_PANIC;
}
#endif /* MDBX_ENV_CHECKPID */
if (unlikely((env->flags & ENV_ACTIVE) == 0))
return MDBX_EPERM;
eASSERT(env, env->dxb_mmap.base != nullptr);
}
return MDBX_SUCCESS;
}
static inline int check_txn(const MDBX_txn *txn, int bad_bits) {
if (unlikely(!txn))
return MDBX_EINVAL;
if (unlikely(txn->signature != txn_signature))
return MDBX_EBADSIGN;
if (bad_bits && unlikely(txn->flags & bad_bits)) {
if ((bad_bits & MDBX_TXN_PARKED) == 0)
return MDBX_BAD_TXN;
else
return txn_check_badbits_parked(txn, bad_bits);
}
tASSERT(txn, (txn->flags & MDBX_TXN_FINISHED) ||
(txn->flags & MDBX_NOSTICKYTHREADS) ==
(txn->env->flags & MDBX_NOSTICKYTHREADS));
#if MDBX_TXN_CHECKOWNER
STATIC_ASSERT((long)MDBX_NOSTICKYTHREADS > (long)MDBX_TXN_FINISHED);
if ((txn->flags & (MDBX_NOSTICKYTHREADS | MDBX_TXN_FINISHED)) <
MDBX_TXN_FINISHED &&
unlikely(txn->owner != osal_thread_self()))
return txn->owner ? MDBX_THREAD_MISMATCH : MDBX_BAD_TXN;
#endif /* MDBX_TXN_CHECKOWNER */
if (bad_bits && unlikely(!txn->env->dxb_mmap.base))
return MDBX_EPERM;
return MDBX_SUCCESS;
}
static inline int check_txn_rw(const MDBX_txn *txn, int bad_bits) {
int err = check_txn(txn, bad_bits & ~MDBX_TXN_PARKED);
if (unlikely(err))
return err;
if (unlikely(txn->flags & MDBX_TXN_RDONLY))
return MDBX_EACCESS;
return MDBX_SUCCESS;
}
/*----------------------------------------------------------------------------*/
MDBX_INTERNAL void mincore_clean_cache(const MDBX_env *const env);
MDBX_INTERNAL void update_mlcnt(const MDBX_env *env,
const pgno_t new_aligned_mlocked_pgno,
const bool lock_not_release);
MDBX_INTERNAL void munlock_after(const MDBX_env *env, const pgno_t aligned_pgno,
const size_t end_bytes);
MDBX_INTERNAL void munlock_all(const MDBX_env *env);
/*----------------------------------------------------------------------------*/
/* Cache coherence and mmap invalidation */
#ifndef MDBX_CPU_WRITEBACK_INCOHERENT
#error "The MDBX_CPU_WRITEBACK_INCOHERENT must be defined before"
#elif MDBX_CPU_WRITEBACK_INCOHERENT
#define osal_flush_incoherent_cpu_writeback() osal_memory_barrier()
#else
#define osal_flush_incoherent_cpu_writeback() osal_compiler_barrier()
#endif /* MDBX_CPU_WRITEBACK_INCOHERENT */
MDBX_MAYBE_UNUSED static inline void
osal_flush_incoherent_mmap(const void *addr, size_t nbytes,
const intptr_t pagesize) {
#ifndef MDBX_MMAP_INCOHERENT_FILE_WRITE
#error "The MDBX_MMAP_INCOHERENT_FILE_WRITE must be defined before"
#elif MDBX_MMAP_INCOHERENT_FILE_WRITE
char *const begin = (char *)(-pagesize & (intptr_t)addr);
char *const end =
(char *)(-pagesize & (intptr_t)((char *)addr + nbytes + pagesize - 1));
int err = msync(begin, end - begin, MS_SYNC | MS_INVALIDATE) ? errno : 0;
eASSERT(nullptr, err == 0);
(void)err;
#else
(void)pagesize;
#endif /* MDBX_MMAP_INCOHERENT_FILE_WRITE */
#ifndef MDBX_MMAP_INCOHERENT_CPU_CACHE
#error "The MDBX_MMAP_INCOHERENT_CPU_CACHE must be defined before"
#elif MDBX_MMAP_INCOHERENT_CPU_CACHE
#ifdef DCACHE
/* MIPS has cache coherency issues.
* Note: for any nbytes >= on-chip cache size, entire is flushed. */
cacheflush((void *)addr, nbytes, DCACHE);
#else
#error "Oops, cacheflush() not available"
#endif /* DCACHE */
#endif /* MDBX_MMAP_INCOHERENT_CPU_CACHE */
#if !MDBX_MMAP_INCOHERENT_FILE_WRITE && !MDBX_MMAP_INCOHERENT_CPU_CACHE
(void)addr;
(void)nbytes;
#endif
}